专题9:构造辅助圆2-定弦定角

合集下载

浅谈构造辅助圆解决点的问题

浅谈构造辅助圆解决点的问题

浅谈构造辅助圆解决点的问题对于数学中较全面、有简易解题方法且不易看出知识点的题目,如果可以根据题干中的基本要素,结合到圆的相应理论,合适地画出辅助圆,一般可以变复杂为简单,变困难为基础,发现答题技巧,添加辅助圆的一般过程是:基于“圆的定义”添加辅助圆、通过“圆周角的性质”添加辅助圆、通过圆周角与圆内外角的联系添加辅助圆、基于“弦切角的模型”添加辅助圆、利用“圆幂定理”添加辅助圆、利用“判定四点共圆的理论”添加辅助圆、利用“两圆相切的定义”添加辅助圆、利用“托勒密理论”添加辅助圆。

标签:数学问题添加辅助圆基础题型从全国高中数学联赛与国际数学奥林匹克中涉及的相关题型来看,可以了解到,数学问题,作为竞赛中最常涉及的内容之一,在数学竞赛中,其地位是数一数二的。

对于一些较全面、有简易解题方法且不易看出知识点的题目而言,解题的人哪怕是在灵活运用所学知识与思维逻辑推算方面有着较强的能力,但是难免也会被此绊住脚步。

因此,解题者如果可以通过题干基本框架及特征,从而联系到圆的理论应用,合适地添加辅助圆,通常能够变复杂为简单,变困难为基础,从而发现答题的关键出口。

本篇文章的中心就是介绍如何利用添加辅助圆来达到解题目的。

在日常的教授课程中,老师们常会根据圆的性质来添加辅助圆,由此便将原有问题变成了辅助圆与直线的公共点的相应问题。

一、根据“在同一个圆内,若两弧相等,则两弧对的圆周角相等”添加辅助圆题1 如图所示,平行四边形ABCD中,E在AD,延长CE至F点,使得。

(1)证明:;(2)用做图工具在直线AD上取一点P,使∠CPB=∠PDC(作法不需写,保留作图印记)(1)由题目可知AD//BC,所以。

又,所以可以知道,由此可得。

(2)因为P在直线AD上,又AD//BC,所以。

若要得,就是要使得,从(1)可以知道条件,则只需,也就是和可以视为弧BC对应的圆周角,因此P 点为的外接圆和AD所相交的点。

解(1)省略。

(2)分别在边BF与BC上作垂直平分线,设两垂直平分线交于O点。

《构造辅助圆》教学设计

《构造辅助圆》教学设计

《构造辅助圆》教学设计丰台八中赵鹏科目数学课题专题:构造辅助圆教师赵鹏班级初三(6)班时间2012.4.17 学生情况分析本节课前,学生已经学习了圆的基本知识,掌握了圆的一些有关性质,并对辅助圆有了初步的认识.对于直线形中常见的几何问题形成了一些基本的解题策略,但从辅助圆这个新的视角解决问题还显得弱了很多.学生对于一些数学问题容易产生想法,但欠缺的是归纳总结提升,而本节课想要达到的目的,就是引导学生学会归纳总结,将以前学过的一些知识从一个新的视角研究,简化证明过程.初步形成构造曲线形辅助线的意识. 设计意图对于平面几何问题,学生常常想到的是构造直线形辅助线来转化条件,从而利用三角形、四边形的知识来解决问题.但辅助线的添加就被局限在直线形,而实际上曲线形辅助线在一些特定条件下,更有利于条件的集中,辅助圆是曲线形辅助线的代表,利用圆,就会让图形的条件更丰富,而学生对此又很少了解,故想借此节课,和学生一起探究,通过多种解题方法的对比,来感受辅助圆的独特.本节课想以一种学生探究,老师引领学生作归纳总结的形式呈现,通过学生思想的碰撞,最终达成共识.学生探究时,以审条件,审图形,审结论的方式阐述,并说明解题思路.这样其他同学听得也清楚明白.对于程度较好的学生,能够掌握构造辅助圆的基本方法,中等的学生能够在几何题中想到利用辅助圆,基础薄弱学生也能够想得起辅助圆. 教学目标1.进一步巩固圆的定义和性质,能够正确利用圆找到符合条件的点所在的位置;2.通过对例题条件和结论的分析,体会利用圆解决点的轨迹问题,进而掌握利用作圆解决分类讨论问题的方法;3.逐步建立从圆的观点看问题的意识,能够多角度认识事物,全面还原事物的本质. 教学重点利用辅助圆解决有关问题教学难点建立用圆的观点看问题的意识,能够判断出构造圆的条件教学方法讲练结合、教师引导下的学生自主探究教学用具圆规、几何画板、尺子教学设计教学过程设计说明一、类型一引例(2011北京17)如图,在平面直角坐标系中,一次函数y=-2x的图象与反比例函数的图象的一个交点为A(-1,n).(1)求反比例函数的解析式(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.提问:什么条件让你想到可以以A为圆心,OA为半径作圆?依据是什么?引导:我们经常添加辅助线来解题,并且,以前所做的辅助线都是直线形,而通过这道题,我们发现,所添加的辅助线也可以是曲线形,初中阶段,构造辅助圆就是曲线形辅助线的代表,今天,我们就来探究,构造辅助圆,还可以解决哪些类型的题目?例1、如图所示,在四边形ABCD中,AB=AC=AD,?BAC=26?,?CAD=74?,则=________°,=________°什么条件让你想到可以构造圆,可以构造圆的依据是什么?条件:__有公共端点的等线段_______________;依据:__同圆半径相等_____________________.小结1:当遇有公共端点的等线段长时,通常以公共端点为圆心,等线段长为半径,构造辅助圆.二、类型二引例:若Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的外接圆半径为_____________.什么条件让你想到可以构造圆,可以构造圆的依据是什么?条件:__直角___________________;依据:__90°的圆周角所对的弦是直径________.小结2:可以利用90°的圆周角所对的弦是直径,以斜边为直径,构造辅助圆.例2、在平面直角坐标系中,已知A(2,2),B(2,?3),点P在y轴上,且△ABP为直角三角形. 请问满足条件的点P有几个?并求出它们的坐标.解:(1)过点A作AP⊥y轴于P∴∠PAB=90°∴P1(0,2)(2)过点B作BP⊥y轴于P∴∠PBA=90°∴P2(0,-3)(3)以AB为直径作圆,交y轴于P,设圆心为D∴∠APB=90°∵D(2,-0.5)∴AD=BD=PD=2.5作DE⊥y轴于E,则E(0,-0.5)∴DE=2,OE=0.5∵∠PED=90°∴∴PE=1.5∴P3(0,1),P4(0,-2)综上所述:共有4个点P.预案:可能有的学生会用相似解决问题,先表示赞同,再引导用圆的知识求线段.四、总结提升1.数学方法:构造辅助圆(1)当遇有公共端点的等线段长时,通常以公共端点为圆心,等线段长为半径,构造辅助圆. (2)可以利用直径所对的圆周角是直角,以斜边为直径,构造辅助圆.2.数学思想:转化思想利用构造辅助圆解决分类讨论问题,可以很快找到符合条件的点,并可以将问题转化为圆中求线段、求角度的问题.3.辅助线的构造可以是直线形,也可以是曲线形.五、课后作业1. 在平面直角坐标系中,A(4,0),O为坐标原点,求直线y=x+3上一点P,使△AOP是等腰三角形,这样的P点有几个?2. 如图所示,在凸四边形ABCD中,AB=BC=BD,则的度数为 .3.已知如图,梯形ABCD中,AB⊥BC于B,CD⊥BC于C(1)当AB=4,CD=1,BC=4时,点P在直线BC上,且,这样的点有个.(2)设AB=a,DC=b,AD=c,点P在直线BC上,且,试确定此时a,b,c满足的关系式.六、板书设计课题例1 小结1 例2小结2七、课后反思这是一道学生熟悉的题目,以此告诉学生构造辅助圆来解决问题是一种常见的解题方法,那么构造辅助圆还可以解决哪些类型的题目呢?带着这样的疑问,学生会主动寻找解决问题的方法,从而提升学生学习新知识的主动性,实现构造圆解决问题的思路.本题可从两个方面入手解决:1.利用等边对等角;2.利用构造辅助圆将问题转化为圆中圆周角与圆心角的关系.想达到的效果是:学生习惯于利用前者,少数人有了引例中的方法意识,开始从圆的定义出发构造辅助圆.初步让学生尝到新方法的甜头.从而强化辅助圆的意识.让学生复习90°的圆周角所对的弦是直径,从而为例题构造辅助圆做铺垫.通过直角顶点的分类,并利用直径所对的圆周角是直角,很快就能找到满足条件的点P;构造辅助圆也可以将问题转化为圆中的计算问题。

人教版九年级数学上册《构造辅助圆解决几何问题》PPT

人教版九年级数学上册《构造辅助圆解决几何问题》PPT

E
D F
解:∵∠ABC =90°,
BE平分∠ABC,
B
C
∴∠ABE =45°.
∴∠ACE=∠ABE =45°.
三、利用“四点共圆”构造辅助圆
例3 如图,四边形ABCD为矩形,BE平分∠ABC, 交AD于点F,∠AEC =90°.
(1)A、B、C、E四点共圆吗?
(2)求∠ACE的度数;
(3)求证:BE⊥ED .
A
E
D F
证明:连接BD.
∵四边形ABCD是矩形,
∴A、B、C、D四点共圆,
B
C
并且BD是直径.
又∵A、B、C、E四点共圆,
∴A、B、C、D、E五点共圆.
∴∠BED为直角,即BE⊥ED.
三例、3 利如用图“,四四点边共形圆A”BC构D造为辅矩助形圆,BE平分∠ABC, 交AD于点F,∠AEC =90°.
纵观例题及其变式,其共同之处都存在着同一个结 构,如图所示,即共端点的三条等线段,它让我们联想到 “所有到定点的距离等于定长的点都在以定点为圆心、定 长为半径的同一个圆上”
建立模型:遇等线(共端点),作辅圆
拓展训练
1. 在平面直角坐标系xoy中,已知点A(-2,0),B(0,3), 在坐标轴上找一点P,使得△ABP是等腰三角形,则这样的点共 有 8 个.
一、利用圆的定义来构造辅助圆
变式:(2019江西九江模拟) 如图,已知AB=AC=AD, ∠CBD=2∠BDC68° B.88° C.90° D.112°
解题策略: 利用圆的定义构造圆 (圆可以看成是所有到定点的距离等于定长的点的集合)
一、利用圆的定义来构造辅助圆
通过构造辅助圆,巧妙地将线段的最值问
题转化为圆外一点与圆上的点的最大距离与最

中考数学专题复习—道是无圆却有圆(构造辅助圆)

中考数学专题复习—道是无圆却有圆(构造辅助圆)

中考复习之——道是无圆却有圆(构造辅助圆)许多几何问题虽然与圆无关,但是若能根据问题的条件、图形特点添补圆或找出潜在的圆,就能充分运用圆的丰富性质为解题服务,使问题获得简解或巧解,下列情形不妨作出辅助圆。

一、定点定长隐藏圆:1.有公共端点的等线段;2.与“等腰三角形”相关问题的讨论;3.解与“旋转”相关的问题。

二、定弦定角隐藏圆:1.与“直角、垂直”相关问题的探讨;2.其他特殊角(30°,45°,60°,120°等)问题的探讨。

三、判定四点共圆的方法:①平面内到某一定点等距离的几个点在同一个圆上。

②同斜边的直角三角形各个顶点共圆。

③同底同侧张角相等的三角形各个顶点共圆。

④一组对角互补的四边形的各个顶点共圆。

⑤一个外角等于内对角的四边形各个顶点共圆。

⑥对角线AC 、BD 相交于点P ,若PA ·PC=PB ·PD ,则四边形各个顶点共圆。

★常用方法归类:一、找定点,寻定长→现“圆形”1.如图,正方形ABCD 的边长为2,将长为2的线段QF 的两端放在正方形相邻两边上同时滑动,点Q 从点A 出发,沿A →B →C →D →A 方向滑动到点A 为止;同时点F 从点B 出发,沿B →C →D →A →B 方向滑动到点B 为止,在这个过程中,线段QF 的中点M 所经过的路线围成的图形面积为 。

2.在矩形ABCD 中,已知AB=2cm ,BC=3cm ,现有一根长为2cm 的小棒EF 紧贴着矩形的边,按逆时针方向滑动一周,则小棒EF 的中点P 在运动过程中所围成的图形面积为 。

3.如图,在矩形ABCD 中,AB=2,AD=3,点E、F 分别为AD 、DC 边上的点,且EF=2,G 为EF 中点,P 为BC边上的一个动点,则PA+PG 的最小值为 。

4.(自贡)如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 边上的动点,将ΔEBF 沿EF 所在直线折叠得到ΔEB ’F ,连接B ’D ,则B ’D 的最小值为 。

精心构造辅助圆,解决问题少困难

精心构造辅助圆,解决问题少困难

精心构造辅助圆 解决问题少困难圆是几何中具有美学价值的一种图形,不仅曲线光滑圆润,美丽迷人,是美好象征的化身,而且几何性质众多,在解决诸多数学问题中,显示出非常重要的作用,有圆的参与,将会使一个比较困难的问题简单起来,所以,在解决一些与圆有关的问题中,要深入挖掘圆的信息,精心构造辅助圆,利用圆的几何性质和圆的方程,发挥出圆的价值,让这些问题迎刃而解,实现“精心构造辅助圆,解决问题少困难”的理想目标.一、利用方程,构造圆在平面上涉及动点轨迹的问题中,直接求解问题比较困难时,可以先考虑建立直角坐标系,特别是有垂直条件与对称条件时,就更要考虑解析法,求出动点的轨迹方程,如果满足圆方程的结构特点,就可以构造圆,让圆的几何性质闪耀光彩,使问题得到解决.例1. (2016届北京西城期末理科)如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.如果对于常数λ,在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立,那么λ的取值范围是( )(A )(0,7)(B )(4,7)(C )(0,4)(D )(5,16)- 图1解:以D 为坐标原点,DC 所在直线建立直角坐标系,设点(,)P x y ,则点(0,4),(6,4)E F ,所以(0,4),=(6-x,4-y)PE x y PF =--,由=PE PF λ⋅得动点P 的轨迹方程是:22(3)(4)9x y λ-+-=+,所以动点P 的轨迹是一个以(3,4)为圆心, 9λ+为半径的圆,所以“在正方形ABCD 的四条边上,有且只有6个不同的点P 使得=PE PF λ⋅成立”等价于“圆与正方形四条边有且仅有6个不同交点”,当且仅当3913λ<+<,解得:04λ<<,所以选C.评析:通过解析法揭穿了动点P 的几何意义,为实现问题的转化起到了桥梁作用,通过几何背景的分析,抽象代数特征,促使问题圆满解决,其间,由代数方程,构造了一个圆,将原问题转化为直线与圆的位置关系讨论,从而建立起了不等式,实现了向量问题坐标化,几何问题代数化的转化目标.从而减少了解题的困难程度. 例2.直线:(2)l y k x =+与曲线2:465C y x x =----有且仅有两个不同公共点.求实数k 的取值范围.解:由曲线2:465C y x x =----的方程可以构造出半圆:22(3)(+4)4x y -+=且4y ≤-. E FD P C A BE FD P C A B x y 图2如图所示:要使直线l 与曲线C 有且仅有2个公共点,则需AB AC k k k <≤其中AB 为半圆的切线,(1,4)C -,半圆的圆心到直线:(2)l y k x =+的距离是2342202372,211k kd k k ++-±==⇒=+由图可知:20237=21AB k --,43AC k =- 所以实数k 的取值范围是202374(,]213--- 评析:解决本题的关键是由曲线C 的方程构造半圆,然后由图形抽象代数条件,完全回避了探究较复杂的一元二次方程在区间[1,5]上有两个不等实根的条件.所以在解决解析几何的问题时,一定要分析曲线方程的结构特点,抓住构造几何图形的机会,将会让图形闪耀光辉.相关问题:1.(2019届北京昌平区高三上期末理科)设点12,F F 分别为椭圆22:195x y C +=的左、右焦点,点P 是椭圆上任意一点,若使得12PF PF m ⋅=成立的点恰好是4个,则实数m 的值可以是( ) BA .B .C .5D .8 2.(2019届北京西城区高三上期末理科) 设双曲线22: 13y C x -=的左焦点为F ,右顶点为A . 若在双曲线C 上,有且只有2个不同的点P 使得=PF PA λ⋅成立,则实数λ的取值范围是____. (-2,0)二、利用定义,构造圆圆的定义是:在平面内到定点的距离等于定长的点的集合叫做圆.即动点满足一定点和一定长的轨迹可以生成圆,在解决问题的过程中,如能构造出这样的几何条件,就可以构造辅助圆,将原问题转化为圆的问题求解,可能使复杂问题简单化.例3. 设直线:,圆,若在圆C 上存在两点,在直线 上存在一点M ,使得,则的取值范围是( )A. [18,6]-B. [652,652]-+C. [16,4]-D. [652,652]---+解:考虑极端情形:当,MP MQ 是圆C 的切线时,如果此时的M 点轨迹与直线有公共点,那 么对于,MP MQ 不都是圆C 的切线时,都能在直线上存在符合条件的M 点.所以“在圆C 上存 在两点,在直线上存在一点M ,使得”等价于“当,MP MQ 是圆C 的切线时,M 点的轨迹与直线有公共点”.而当,MP MQ 是圆C 的切线时,易证:四边形MPCQ 是正方形,所 以MC 的长是定值2,且C 为定点,因此,动点M 的轨迹是以C 为圆心,2为半径的圆, C 123l 340x y a 22 (2)2C x y :,P Q l 90PMQ a l l ,P Q l 90PMQ l AD C B即M 点的轨迹方程是22(2)4x y -+=,直线2164a ≤⇒-≤≤,所以选C.评析:根据极端性原理,抓住几何条件构造点M 的圆轨迹是解决本题的关键,而构造圆的关键在于构造定值(即半径)与配套的定点(即圆心),所以在解决解析几何问题时,要时刻关注定值的出现于定点的出现,特别是在解决有关椭圆、双曲线问题中,要紧扣椭圆、双曲线定义,关注定值的相关信息与定点的相关信息.例4.过点(1,2)P --作圆22:(3)(4)1C x y -+-=的两切线,PA PB ,其中,,A B 为切点,求直线AB 的方程.解:由圆的切线性质可知:=PA PB ,所以由圆的定义可知:,A B 在以PA 为直径,P 为圆心的圆上,=PA PB =于是可得圆P 的方程:22(1)(2)52x y +++=,将圆C 的方程与圆P 的方程相减可得公共弦AB 所在的直线方程为:812710x y +-=评析:本题的解决中利用了等长线段构造辅助圆,从而出现了两圆公共弦的大好时机.具有一个公共定点的等长线段的另一个端点在一个圆上,这就是圆定义的灵活运用,在解决问题中要注意这些信息.相关问题:已知椭圆C: 22143x y +=的左右焦点分别是12,F F ,点P 是椭圆C 上的动点,N 是线段1F P 的延长线上一点,点M 是2NPF ∠的平分线上一点,且20PM F M ⋅=,直线:34150l x y --=与x 轴、y 轴交点分别为,A B ,求ABM ∆面积的最大值. 1258三、利用垂直,构造圆圆有一个重要性质是:直径上的圆周角是直角.反过来说,直角三角形的直角顶点在以斜边为直径,斜边中点为圆心的圆上,这显然是一个真命题.这也是构造辅助圆的依据,所以当垂直条件出现时,要注意辅助圆的构造,可能使原问题转化为圆的问题,从而获得解题思路. 例5. 已知圆和两点,,若圆上存在点,使得,则的最大值为( )A .7B .6C .5D .4解:由于,所以可以构造一个圆:点P 在以AB 为直径的圆上,记此圆为圆O ,点P 又在圆C 上,所以“圆上存在点,使得”等价于“圆O 与圆C 有公共点”, 所以1146m CO m m -≤≤+⇒≤≤,所以的最大值为6.选B.评析:从垂直条件出发,构造了一个辅助圆,实现了将原问题转化为两圆位置关系的转化目标,使问题轻松获解,其间表现出辅助圆的重要作用. l ()()22:341C x y -+-=(),0A m -()(),00B m m >C P 90APB ∠=m 90APB ∠=C P 90APB ∠=m例6.过点(0,4)P 的直线l 交椭圆22:14x C y +=于不同两点,A B (A 在PB 之间),O 为坐标原点.当90PAO ∠=,求直线l 的斜率.解:按照通常用到的方法,将直角用斜率之积为-1或用向量的数量积为0写出坐标关系,再用直线与曲线联立,出韦达定理,代入求值.但是在直角中不涉及,A B 两点坐标,只涉及A 点的坐标,所以直曲联立与韦达定理不好使.基于此,需要变换思路,由直角构造圆,点A 在PO 为直径的圆上,于是得到下列解法:设00(,)A x y ,则2200(2)4x y +-=,220044x y +=,消去0x 得:002,23y y ==-(舎),0x =l的斜率是24k -=24k -== 评析:由此题的解答可见:由垂直条件构造辅助圆是构造方程的主要依据,这种方法仅是直曲联立用韦达定理方法的补充,不能迷信它.比如将本题的条件90PAO ∠=改为90AOB ∠=,就没有必要构造辅助圆了,直接用斜率之积为-1或用向量的数量积为0,写出坐标关系,直曲联立出韦达定理,代入求值比较简单.相关问题:设点P 是双曲线22:1169x y C -=上一点,12,F F 是双曲线C 的左右焦点,且120PF PF ⋅=,求点P 到x 轴的距离. 95四、利用换元,构造圆由于圆的方程是特殊的二元二次方程,特殊性表现在两个方面:一是没有两元的交叉项,二是两元的二次项系数相等。

初数-构造辅助圆解题教法解析

初数-构造辅助圆解题教法解析
(2)如图2,当/历(C=100° ,a=20。时,求NCW的大小; (60=<w< 1205 ),若/C3D的大小与(2)中的结果相
■七 口工 思路: .1 ADCB^AFCB ADAB^ADAF InllSlll FD=BD=FB zDBF=60° zCBD=30° izUlE^ Example
在平面直角坐标系中,已知A (-3, 0) , B (1, 0),点P
在y轴上,且4ABP为直角三角形,NAPB=90° .请问满
足条件的点P有几个?并求出它们的坐标.
思路:作以AB为直径的圆,P在圆 与y轴的交点上,根据圆的定义和 勾股定理即可求P坐标
例题 Example
二、作三角形的外接 园
总结:直角三角形斜边即为直角三 角形外接圆半径
求证:ZCPO=ZDPO.
思路:切线长定理可知,OA^AP,
AM±OP,可得AM2=OM・MP,由
相交弦定理可知CM.MD=AM. MB, 因此可得CM.MD=OM.MP,所以C、
圆,由CO=BO即
Example
三、运用四点共圆的判定方法构造辅助 国 (不在11月月考范围内)
总结:若四边形A5CD的一组对边A3、DC的延长线相交于居
LilI心角关系定理:同B0或等国中, “知一推二”
周角定理及推论
1 .圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
2 .推论1:同弧或等弧所对的圆周角相等.
3 .推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
4 .推论3:如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角
思路:连DF, EF,寻找PD、PE、PF之间的
・关系,证明△PDF-Z\PFE,而发现P、D、B、

专题9二次函数与圆综合问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(解析版)

专题9二次函数与圆综合问题-挑战2022年中考数学压轴题之学霸秘笈大揭秘(解析版)

专题9二次函数与圆综合问题解决函数与圆的综合问题的关键是找准函数与圆的结合点,弄清题目的本质,利用圆的基本性质和函数的性质、数形结合、方程思想、全等与相似,以便找到对应的解题途径.常见的考法有:1.直线与圆的位置关系:平面直角坐标系中的直线与圆的位置关系问题关键是圆心到直线的距离等于半径的大小,常用的方法有:(1)利用圆心到直线的距离等于半径的大小这一数量关系列出关系式解决问题(2)利用勾股定理解决问题(3)利用相似列出比例式解决问题2.函数与圆的新定义题目:利用已掌握的知识和方法理解新定义,化生为熟3.函数与圆的性质综合类问题:利用几何性质,结合图形,找到问题中的“不变”关键因素和“临界位置”.【例1】【例1】(2021•花都区三模)如图,抛物线y=ax2+bx+2经过A(﹣1,0),B(4,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)在y轴上是否存在点P使得∠OBP+∠OBC=45°,若存在,求出点P的坐标,若不存在,请说明理由;(3)点M是BC为直径的圆上的动点,将点M绕原点O顺时针旋转90°得点N,连接NA,求NA的取值范围.【分析】(1)将点A(﹣1,0),B(4,0)代入y=ax2+bx+2即可求解析式;(2)过点P作PH⊥BC交于点H,设P(0,t),CH=x,由已知分别可求BC=2,BH=2﹣x,HP=BH=2﹣x,在Rt△CPH中,sin∠PCH===,cos∠PCH===,求出t=﹣,则P(0,﹣),与x轴对称点为(0,),此点也满足所求;(3)当M点在B点处时,N点在F(0,﹣4)处,当M点在O点处时,N点在E(2,0)处,∠EOF=90°,EF=BC=2,可以判断N点在以EF为直径的圆上运动,连接OO',O'(1,﹣2),NA有最大值和最小值,O'A=2,则可求NA最大值为2+,NA最小值为2﹣,进而求得2﹣≤NA≤2+.【解答】解:(1)将点A(﹣1,0),B(4,0)代入y=ax2+bx+2,得,解得,∴y=﹣x2+x+2;(2)过点P作PH⊥BC交于点H,设P(0,t),CH=x,∵C(0,2),B(4,0),∴BC=2,∴BH=2﹣x,∵∠OBP+∠OBC=45°,∴∠CBP=45°,∴HP=BH=2﹣x,在Rt△CPH中,sin∠PCH==,cos∠PCH==,在Rt△BOC中,sin∠PCH=,cos∠PCH=,∴=,=,∴x=,t=﹣,∴P(0,﹣),P点关于x轴对称点为(0,),此点也满足∠OBP+∠OBC=45°,∴满足条件的P点坐标为(0,﹣)或(0,);(3)当M点在B点处时,N点在F(0,﹣4)处,当M点在C点处时,N点在E(2,0)处,∵∠EOF=90°,EF=BC=2,可以判断N点在以EF为直径的圆上运动,连接OO',当NA经过圆心O'时,NA有最大值和最小值,∴O'(1,﹣2),∵A(﹣1,0),∴O'A=2,∴NA最大值为2+,NA最小值为2﹣,∴2﹣≤NA≤2+.【例2】(2020•遵义)如图,抛物线y=ax2+94x+c经过点A(﹣1,0)和点C(0,3)与x轴的另一交点为点B,点M是直线BC上一动点,过点M作MP∥y轴,交抛物线于点P.(1)求该抛物线的解析式;(2)在抛物线上是否存在一点Q,使得△QCO是等边三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)以M为圆心,MP为半径作⊙M,当⊙M与坐标轴相切时,求出⊙M的半径.【分析】(1)把点A(﹣1,0)和点C(0,3)代入y=ax2+94x+c求出a与c的值即可得出抛物线的解析式;(2)①当点Q在y轴右边时,假设△QCO为等边三角形,过点Q作QH⊥OC于H,OC=3,则OH=32,tan60°=QHOH,求出Q(3√32,32),把x=3√32代入y=−34x2+94x+3,得y=27√38−3316≠32,则假设不成立;②当点Q在y轴的左边时,假设△QCO为等边三角形,过点Q作QT⊥OC于T,OC=3,则OT=32,tan60°=QTOT,求出Q(−3√32,32),把x=−3√32代入y=−34x2+94x+3,得y=−27√38−3316≠32,则假设不成立;(3)求出B(4,0),待定系数法得出BC直线的解析式y=−34x+3,当M在线段BC上,⊙M与x轴相切时,延长PM交AB于点D,则点D为⊙M与x轴的切点,即PM=MD,设P(x,−34x2+94x+3),M(x,−34x+3),则PD=−34x2+94x+3,MD=−34x+3,由PD﹣MD=MD,求出x=1,即可得出结果;当M在线段BC上,⊙M与y轴相切时,延长PM交AB于点D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,−34x2+94x+3),M(x,−34x+3),则PD=−34x2+94x+3,MD=−34x+3,代入即可得出结果;当M在BC延长线,⊙M与x轴相切时,点P与A重合,M的纵坐标的值即为所求;当M在CB延长线,⊙M与y轴相切时,延长PD交x轴于D,过点M作ME⊥y轴于E,则点E为⊙M与y轴的切点,即PM=ME,PD﹣MD=EM=x,设P(x,−34x2+94x+3),M(x,−34x+3),则PD=34x2−94x﹣3,MD=34x﹣3,代入即可得出结果.【解答】解:(1)把点A(﹣1,0)和点C(0,3)代入y=ax2+94x+c得:{0=a−94+c3=c,解得:{a =−34c =3,∴抛物线的解析式为:y =−34x 2+94x +3; (2)不存在,理由如下:①当点Q 在y 轴右边时,如图1所示: 假设△QCO 为等边三角形, 过点Q 作QH ⊥OC 于H , ∵点C (0,3), ∴OC =3,则OH =12OC =32,tan60°=QH OH , ∴QH =OH •tan60°=32×√3=3√32, ∴Q (3√32,32), 把x =3√32代入y =−34x 2+94x +3, 得:y =27√38−3316≠32, ∴假设不成立,∴当点Q 在y 轴右边时,不存在△QCO 为等边三角形; ②当点Q 在y 轴的左边时,如图2所示: 假设△QCO 为等边三角形, 过点Q 作QT ⊥OC 于T , ∵点C (0,3), ∴OC =3,则OT =12OC =32,tan60°=QT OT , ∴QT =OT •tan60°=32×√3=3√32, ∴Q (−3√32,32), 把x =−3√32代入y =−34x 2+94x +3, 得:y =−27√38−3316≠32,∴假设不成立,∴当点Q 在y 轴左边时,不存在△QCO 为等边三角形;综上所述,在抛物线上不存在一点Q ,使得△QCO 是等边三角形;(3)令−34x 2+94x +3=0, 解得:x 1=﹣1,x 2=4, ∴B (4,0),设BC 直线的解析式为:y =kx +b , 把B 、C 的坐标代入则{0=4k +b 3=b ,解得:{k =−34b =3,∴BC 直线的解析式为:y =−34x +3,当M 在线段BC 上,⊙M 与x 轴相切时,如图3所示: 延长PM 交AB 于点D ,则点D 为⊙M 与x 轴的切点,即PM =MD , 设P (x ,−34x 2+94x +3),M (x ,−34x +3), 则PD =−34x 2+94x +3,MD =−34x +3, ∴(−34x 2+94x +3)﹣(−34x +3)=−34x +3, 解得:x 1=1,x 2=4(不合题意舍去), ∴⊙M 的半径为:MD =−34+3=94;当M 在线段BC 上,⊙M 与y 轴相切时,如图4所示: 延长PM 交AB 于点D ,过点M 作ME ⊥y 轴于E ,则点E 为⊙M 与y 轴的切点,即PM =ME ,PD ﹣MD =EM =x , 设P (x ,−34x 2+94x +3),M (x ,−34x +3), 则PD =−34x 2+94x +3,MD =−34x +3, ∴(−34x 2+94x +3)﹣(−34x +3)=x , 解得:x 1=83,x 2=0(不合题意舍去), ∴⊙M 的半径为:EM =83;当M 在BC 延长线,⊙M 与x 轴相切时,如图5所示:点P 与A 重合, ∴M 的横坐标为﹣1,∴⊙M 的半径为:M 的纵坐标的值, 即:−34×(﹣1)+3=154; 当M 在CB 延长线,⊙M 与y 轴相切时,如图6所示:延长PM 交x 轴于D ,过点M 作ME ⊥y 轴于E ,则点E 为⊙M 与y 轴的切点,即PM =ME ,PD ﹣MD =EM =x , 设P (x ,−34x 2+94x +3),M (x ,−34x +3), 则PD =34x 2−94x ﹣3,MD =34x ﹣3, ∴(34x 2−94x ﹣3)﹣(34x ﹣3)=x ,解得:x 1=163,x 2=0(不合题意舍去), ∴⊙M 的半径为:EM =163; 综上所述,⊙M 的半径为94或83或154或163.【点评】本题是二次函数综合题,主要考查了待定系数法求解析式、等边三角形的性质、圆的性质、三角函数等知识;熟练掌握待定系数法求解析式是解题的关键.【例3】(2020•济宁)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与x轴交于点A,B,且点B的坐标为(8,0),与y轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.(1)求⊙C的标准方程;(2)试判断直线AE与⊙C的位置关系,并说明理由.【分析】(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.在Rt △BCM中,利用勾股定理求出半径以及点C的坐标即可解决问题.(2)结论:AE是⊙C的切线.连接AC,CE.求出抛物线的解析式,推出点E的坐标,求出AC,AE,CE,利用勾股定理的逆定理证明∠CAE=90°即可解决问题.【解答】解:(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.∵与y轴相切于点D(0,4),∴CD⊥OD,∵∠CDO=∠CMO=∠DOM=90°,∴四边形ODCM是矩形,∴CM=OD=4,CD=OM=r,∵B(8,0),∴OB=8,∴BM=8﹣r,在Rt△CMB中,∵BC2=CM2+BM2,∴r2=42+(8﹣r)2,解得r=5,∴C(5,4),∴⊙C的标准方程为(x﹣5)2+(y﹣4)2=25.(2)结论:AE是⊙C的切线.理由:连接AC,CE.∵CM⊥AB,∴AM=BM=3,∴A(2,0),B(8,0)设抛物线的解析式为y=a(x﹣2)(x﹣8),把D(0,4)代入y=a(x﹣2)(x﹣8),可得a=1 4,∴抛物线的解析式为y=14(x﹣2)(x﹣8)=14x2−52x+4=14(x﹣5)2−94,∴抛物线的顶点E(5,−9 4),∵AE=√32+(94)2=154,CE=4+94=254,AC=5,∴EC2=AC2+AE2,∴∠CAE=90°,∴CA⊥AE,∴AE是⊙C的切线.【点评】本题属于二次函数综合题,考查了矩形的判定和性质,解直角三角形,圆的方程,切线的判定等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考压轴题.【例4】(2020•西藏)在平面直角坐标系中,二次函数y =12x 2+bx +c 的图象与x 轴交于A (﹣2,0),B (4,0)两点,交y 轴于点C ,点P 是第四象限内抛物线上的一个动点.(1)求二次函数的解析式;(2)如图甲,连接AC ,P A ,PC ,若S △P AC =152,求点P 的坐标; (3)如图乙,过A ,B ,P 三点作⊙M ,过点P 作PE ⊥x 轴,垂足为D ,交⊙M 于点E .点P 在运动过程中线段DE 的长是否变化,若有变化,求出DE 的取值范围;若不变,求DE 的长.【分析】(1)由二次函数y =12x 2+bx +c 的图象与x 轴交于A (﹣2,0),B (4,0)两点,可得二次函数的解析式为y =12(x +2)(x ﹣4),由此即可解决问题.(2)根据S △P AC =S △AOC +S △OPC ﹣S △AOP ,构建方程即可解决问题.(3)结论:点P 在运动过程中线段DE 的长是定值,DE =2.根据AM =MP ,根据方程求出t ,再利用中点坐标公式,求出点E 的纵坐标即可解决问题.【解答】解:(1)∵二次函数y =12x 2+bx +c 的图象与x 轴交于A (﹣2,0),B (4,0)两点,∴二次函数的解析式为y =12(x +2)(x ﹣4),即y =12x 2﹣x ﹣4.(2)如图甲中,连接OP .设P (m ,12m 2﹣m ﹣4).由题意,A (﹣2,0),C (0,﹣4),∵S △P AC =S △AOC +S △OPC ﹣S △AOP ,∴152=12×2×4+12×4×m −12×2×(−12m 2+m +4), 整理得,m 2+2m ﹣15=0,解得m =3或﹣5(舍弃),∴P (3,−52).(3)结论:点P 在运动过程中线段DE 的长是定值,DE =2.理由:如图乙中,连接AM ,PM ,EM ,设M (1,t ),P [m ,12(m +2)(m ﹣4)],E (m ,n ).由题意A (﹣2,0),AM =PM ,∴32+t 2=(m ﹣1)2+[12(m +2)(m ﹣4)﹣t ]2, 解得t =1+14(m +2)(m ﹣4),∵ME =PM ,PE ⊥AB ,∴t =n+12(m+2)(m−4)2,∴n=2t−12(m+2)(m﹣4)=2[1+14(m+2)(m﹣4)]−12(m+2)(m﹣4)=2,∴DE=2,另解:∵PD•DE=AD•DB,∴DE=AD⋅DBPD=(m+2)(4−m)4+m−m2=2,为定值.∴点P在运动过程中线段DE的长是定值,DE=2.【点评】本题属于二次函数综合题,考查了三角形的面积,三角形的外接圆,三角形的外心等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.【例5】(2020•宜宾)如图,已知二次函数的图象顶点在原点,且点(2,1)在二次函数的图象上,过点F(0,1)作x轴的平行线交二次函数的图象于M、N两点.(1)求二次函数的表达式;(2)P为平面内一点,当△PMN是等边三角形时,求点P的坐标;(3)在二次函数的图象上是否存在一点E,使得以点E为圆心的圆过点F和点N,且与直线y=﹣1相切.若存在,求出点E的坐标,并求⊙E的半径;若不存在,说明理由.【分析】(1)设二次函数表达式为:y=ax2,将(2,1)代入上式,即可求解;(2)△PMN是等边三角形,则点P在y轴上且PM=4,故PF=2√3,即可求解;(3)在Rt△FQE中,EN=√(2−1)2+(1−14)2=54,EF=√(1−0)2+(1−14)2=54,即可求解.【解答】解:(1)∵二次函数的图象顶点在原点,故设二次函数表达式为:y=ax2,将(2,1)代入上式并解得:a=1 4,故二次函数表达式为:y=14x 2;(2)将y=1代入y=14x2并解得:x=±2,故点M、N的坐标分别为(﹣2,1)、(2,1),则MN=4,∵△PMN是等边三角形,∴点P在y轴上且PM=4,∴PF=2√3;∵点F (0,1),∴点P 的坐标为(0,1+2√3)或(0,1﹣2√3);(3)假设二次函数的图象上存在一点E 满足条件,设点Q 是FN 的中点,则点Q (1,1),故点E 在FN 的中垂线上.∴点E 是FN 的中垂线与y =14x 2图象的交点,∴y =14×12=14,则点E (1,14), EN =√(2−1)2+(1−14)2=54,同理EF =√(1−0)2+(1−14)2=54,点E 到直线y =﹣1的距离为|14−(﹣1)|=54, 故存在点E ,使得以点E 为圆心半径为54的圆过点F ,N 且与直线y =﹣1相切. 【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本的性质、等边三角形的性质等,综合性强,难度适中.【例6】(2021•嘉兴二模)定义:平面直角坐标系xOy 中,过二次函数图象与坐标轴交点的圆,称为该二次函数的坐标圆.(1)已知点P (2,2),以P 为圆心,为半径作圆.请判断⊙P 是不是二次函数y =x 2﹣4x +3的坐标圆,并说明理由;(2)已知二次函数y =x 2﹣4x +4图象的顶点为A ,坐标圆的圆心为P ,如图1,求△POA 周长的最小值;(3)已知二次函数y =ax 2﹣4x +4(0<a <1)图象交x 轴于点A ,B ,交y 轴于点C ,与坐标圆的第四个交点为D ,连结PC ,PD ,如图2.若∠CPD =120°,求a 的值.【分析】(1)先求出二次函数y=x2﹣4x+3图象与x轴、y轴的交点,再计算这三个交点是否在以P(2,2)为圆心,为半径的圆上,即可作出判断.(2)由题意可得,二次函数y=x2﹣4x+4图象的顶点A(2,0),与y轴的交点H(0,4),所以△POA周长=PO+P A+OA=PO+PH+2≥OH+2,即可得出最小值.(3)连接CD,P A,设二次函数y=ax2﹣4x+4图象的对称轴l与CD交于点E,与x轴交于点F,由对称性知,对称轴l经过点P,且l⊥CD,设PE=m,由∠CPD=120°,可得P A=PC=2m,CE=m,PF=4﹣m,因为二次函数y=ax2﹣4x+4图象的对称轴l 为,AB=,所以AF=BF=,,在Rt△P AF中,利用勾股定理建立方程,求得m的值,进而得出a的值.【解答】解:(1)对于二次函数y=x2﹣4x+3,当x=0时,y=3;当y=0时,解得x=1或x=3,∴二次函数图象与x轴交点为A(1,0),B(3,0),与y轴交点为C(0,3),∵点P(2,2),∴P A=PB=PC=,∴⊙P是二次函数y=x2﹣4x+3的坐标圆.(2)如图1,连接PH,∵二次函数y=x2﹣4x+4图象的顶点为A,坐标圆的圆心为P,∴A(2,0),与y轴的交点H(0,4),∴△POA周长=PO+P A+OA=PO+PH+2≥OH+2=6,∴△POA周长的最小值为6.(3)如图2,连接CD,P A,设二次函数y=ax2﹣4x+4图象的对称轴l与CD交于点E,与x轴交于点F,由对称性知,对称轴l经过点P,且l⊥CD,∵AB=,∴AF=BF=,∵∠CPD=120°,PC=PD,C(0,4),∴∠PCD=∠PDC=30°,设PE=m,则P A=PC=2m,CE=m,PF=4﹣m,∵二次函数y=ax2﹣4x+4图象的对称轴l为,∴,即,在Rt△P AF中,P A2=PF2+AF2,∴,即,化简,得,解得,∴.【题组一】1.(2020•雨花区校级一模)如图1,已知抛物线y=ax2﹣12ax+32a(a>0)与x轴交于A,B两点(A在B的左侧),与y轴交于点C.(1)连接BC,若∠ABC=30°,求a的值.(2)如图2,已知M为△ABC的外心,试判断弦AB的弦心距d是否有最小值,若有,求出此时a的值,若没有,请说明理由;(3)如图3,已知动点P(t,t)在第一象限,t为常数.问:是否存在一点P,使得∠APB达到最大,若存在,求出此时∠APB的正弦值,若不存在,也请说明理由.【分析】(1)令y=0,求得抛物线与x轴的交点A、B的坐标,令x=0,用a表示C点的坐标,再由三角函数列出a的方程,便可求得a的值;(2)过M点作MH⊥AB于点H,连接MA、MC,用d表示出M的坐标,根据MA=MC,列出a、d的关系式,再通过关系式求得结果;(3)取AB的中点T,过T作MT⊥AB,以M为圆心,MA为半径作⊙M,MT与直线y =x交于点S,P′为直线y=x上异于P的任意一点,连接AP′,交⊙M于点K,连接BK,MP,AP,BP,MB,MA,当P为直线y=x与⊙M的切点时,∠APB达到最大,利用圆圆周角性质和解直角三角形的知识求得结果便可.【解答】解:(1)连接BC,令y=0,得y=ax2﹣12ax+32a=0,解得,x=4或8,∴A(4,0),B(8,0),令x=0,得y=ax2﹣12ax+32a=32a,∴C(0,32a),又∠ABC=30°,∴tan∠ABC=OCOB=32a8=√33,解得,a=√3 12;(2)过M点作MH⊥AB于点H,连接MA、MC,如图2,∴AH=BH=12AB=2,∴OH=6,设M(6,d),∵MA=MC,∴4+d2=36+(d﹣32a)2,得2ad=32a2+1,∴d=16a+12a=(4√a√2a)2+4√2,∴当4√a=1√2a时,有d最小=4√2,即当a=√28时,有d最小=4√2;(3)∵P(t,t),∴点P在直线y=x上,如图3,取AB的中点T,过T作MT⊥AB,以M为圆心,MA为半径作⊙M,MT与直线y=x交于点S,P′为直线y=x上异于P的任意一点,连接AP′,交⊙M于点K,连接BK,MP,AP,BP,MB,MA,当⊙M与直线y=x相切时,有∠APB=∠AKB>∠AP′B,∴∠APB最大,此时相切点为P,设M(6,d),而T(6,0),∴S(6,6),∴∠PSM=90°﹣∠SOT=45°,又MP=MB=√4+d2,∴MS=√2MP=√2d2+8,∵MS+MT=ST=6,∴√2d2+8+d=6,解得,d=2(负根舍去),经检验,d=2是原方程的解,也符合题意,∴M(6,2),∴MB=2√2,∵∠AMB=2∠APB,MT⊥AB,MA=MB,∴∠AMT=∠BMT=12∠AMB=∠APB,∴sin∠APB=sin∠BMT=BTMB=√22.【点评】本题是二次函数的综合题,主要考查了二次函数的图象与性质,解直角三角形,圆周角定理和圆与直线切线性质,难度较大,第(3)题的关键是构造辅助圆确定当∠APB 达到最大时的P点位置.2.(2020•汇川区三模)如图,在平面直角坐标系上,一条抛物线y=ax2+bx+c(a≠0)经过A(1,0)、B(3,0)、C(0,3)三点,连接BC并延长.(1)求抛物线的解析式;(2)点M是直线BC在第一象限部分上的一个动点,过M作MN∥y轴交抛物线于点N.1°求线段MN的最大值;2°当MN取最大值时,在线段MN右侧的抛物线上有一个动点P,连接PM、PN,当△PMN的外接圆圆心Q在△PMN的边上时,求点P的坐标.【分析】(1)将三个已知点坐标代入抛物线的解析式中列出方程组求得a 、b 、c ,便可得抛物线的解析式;(2)1°用待定系数法求出直线BC 的解析式,再设M 的横坐标为t ,用t 表示MN 的距离,再根据二次函数的性质求得MN 的最大值;2°分三种情况:当∠PMN =90°时;当∠PNM =90°时;当∠MPN =90°时.分别求出符合条件的P 点坐标便可.【解答】解:(1)把A 、B 、C 三点的坐标代入抛物线y =ax 2+bx +c (a ≠0)中,得 {a +b +c =09a +3b +c =0c =3, 解得,{a =1b =−4c =3,∴抛物线的解析式为:y =x 2﹣4x +3;(2)1°设直线BC 的解析式为y =mx +n (m ≠0),则 {3m +n =0n =3, 解得,{m =−1n =3,∴直线BC 的解析式为:y =﹣x +3,设M (t ,﹣t +3)(0<t <3),则N (t ,t 2﹣4t +3), ∴MN =﹣t 2+3t =−(t −32)2+94,∴当t =32时,MN 的值最大,其最大值为94;2°∵△PMN 的外接圆圆心Q 在△PMN 的边上, ∴△PMN 为直角三角形,由1°知,当MN 取最大值时,M (32,32),N (32,−34),①当∠PMN =90°时,PM ∥x 轴,则P 点与M 点的纵坐标相等, ∴P 点的纵坐标为32,当y =32时,y =x 2﹣4x +3=32, 解得,x =4+√102,或x =4−√102<32(舍去), ∴P (4+√102,32);②当∠PNM =90°时,PN ∥x 轴,则P 点与N 点的纵坐标相等, ∴P 点的纵坐标为−34,当y =−34时,y =x 2﹣4x +3=−34, 解得,x =52,或x =32(舍去), ∴P (52,−34);③当∠MPN =90°时,则MN 为△PMN 的外接圆的直径, ∴△PMN 的外接圆的圆心Q 为MN 的中点, ∴Q (32,38),半径为12MN =98,过Q 作QK ∥x 轴,与在MN 右边的抛物线图象交于点K ,如图②,令y =38,得y =x 2﹣4x +3=38, 解得,x =8−√224<32(舍),或x =8+√224, ∴K (8+√224,38),∴QK =2+√224>98,即K 点在以MN 为直径的⊙Q 外, 设抛物线y =x 2﹣4x +3的顶点为点L ,则l (2,﹣1), 连接LK ,如图②,则L 到QK 的距离为38+1=118,LK =(8+√224−2)2+(38+1)2=√2098, 设Q 点到LK 的距离为h ,则12QK ⋅118=12LK ⋅ℎ,∴ℎ=118QKLK =118×2+√224√2098=22√209+11√209×224×209≈1.27>98, ∴直线LK 下方的抛物线与⊙Q 没有公共点,∵抛物线中NL 部分(除N 点外)在过N 点与x 轴平行的直线下方,∴抛物线中NL 部分(除N 点外)与⊙Q 没有公共点, ∵抛物线K 点右边部分,在过K 点与y 轴平行的直线的右边,∴抛物线K 点右边部分与⊙Q 没有公共点,综上,⊙Q 与MN 右边的抛物线没有交点, ∴在线段MN 右侧的抛物线上不存在点P ,使△PMN 的外接圆圆心Q 在MN 边上; 综上,点P 的坐标为(4+√102,32)或(52,−34). 【点评】本题是二次函数的综合题,主要考查了待定系数法,二次函数的最值的应用,直角三角形的存在性质的探究,圆的性质,第(2)题的1°题关键是把MN 表示成t 二次函数,用二次函数求最值的方法解决问题;第(2)2°小题关键是分情况讨论.难度较大.3.(2020•望城区模拟)如图,在平面直角坐标系中,抛物线y =12x 2﹣bx +c 交x 轴于点A ,B ,点B 的坐标为(4,0),与y 轴于交于点C (0,﹣2).(1)求此抛物线的解析式;(2)在抛物线上取点D ,若点D 的横坐标为5,求点D 的坐标及∠ADB 的度数; (3)在(2)的条件下,设抛物线对称轴l 交x 轴于点H ,△ABD 的外接圆圆心为M (如图1),①求点M 的坐标及⊙M 的半径;②过点B 作⊙M 的切线交于点P (如图2),设Q 为⊙M 上一动点,则在点运动过程中QH QP的值是否变化?若不变,求出其值;若变化,请说明理由.【分析】(1)c =﹣2,将点B 的坐标代入抛物线表达式得:0=12×16−4b ﹣2,解得:b =−32,即可求解; (2)S △ABD =5×32=3√5×BN 2,则BN =√5,sin ∠BDH =BH BD=√22,即可求解; (3)①∠ADB =45°,则∠AMB =2∠ADB =90°,MA =MB ,MH ⊥AB ,AH =BH =HM =52,点M 的坐标为(32,52)⊙M 的半径为√5; ②PH =HB =5,则MH MQ=525√22=√22,MQ MP=5√2252=√22,故△HMQ ∽△QMP ,则QH QP=MH MQ=√22,即可求解. 【解答】解:(1)c =﹣2,将点B 的坐标代入抛物线表达式得:0=12×16−4b ﹣2,解得:b =−32,∴抛物线的解析式为y =12x 2−32x ﹣2;(2)当x =5时,y =12x 2−32x ﹣2=3,故D 的坐标为(5,3), 令y =0,则x =4(舍去)或﹣1,故点A (﹣1,0), 如图①,连结BD ,作BN ⊥AD 于N ,∵A (﹣1,0),B (4,0),C (0,﹣2), ∴AD =3√5,BD =√10, ∵S △ABD =5×32=3√5×BN2, ∴BN =√5,∴sin ∠BDH =BHBD =√22, ∴∠BDH =45°;(3)①如图②,连接MA ,MB ,∵∠ADB =45°,∴∠AMB =2∠ADB =90°, ∵MA =MB ,MH ⊥AB , ∴AH =BH =HM =52,∴点M 的坐标为(32,52)⊙M 的半径为5√22; ②如图③,连接MQ ,MB ,∵过点B 作⊙M 的切线交1于点P , ∴∠MBP =90°, ∵∠MBO =45°, ∴∠PBH =45°, ∴PH =HB =5, ∵MH MQ=525√22=√22,MQ MP=5√2252=√22, ∵∠HMQ =∠QMP , ∴△HMQ ∽△QMP , ∴QH QP=MH MQ=√22, ∴在点Q 运动过程中QH QP的值不变,其值为√22.【点评】本题考查用待定系数法求二次函数解析式,锐角三角函数的定义,相似三角形的判定与性质.圆的基本性质.解决(3)问的关键是构造相似三角形实现比的转换.4.(2020•天桥区二模)如图,抛物线y=ax2+bx+c(a≠0),与x轴交于A(4,0)、O两点,点D(2,﹣2)为抛物线的顶点.(1)求该抛物线的解析式;(2)点E为AO的中点,以点E为圆心、以1为半径作⊙E,交x轴于B、C两点,点M为⊙E上一点.①射线BM交抛物线于点P,设点P的横坐标为m,当tan∠MBC=2时,求m的值;②如图2,连接OM,取OM的中点N,连接DN,则线段DN的长度是否存在最大值或最小值?若存在,请求出DN的最值;若不存在,请说明理由.【分析】(1)用抛物线顶点式表达式得:y=a(x﹣2)2﹣2,将点A的坐标代入上式,即可求解;(2)分点P在x轴下方、点P在x轴上方两种情况,分别求解即可;(3)证明BN是△OEM的中位线,故BN=12EM=12,而BD=√(2−1)2+(0+2)2=√5,而BD﹣BN≤ND≤BD+BN,即可求解.【解答】解:(1)由抛物线顶点式表达式得:y=a(x﹣2)2﹣2,将点A的坐标代入上式并解得:a=1 2,故抛物线的表达式为:y=12(x﹣2)2﹣2=12x2﹣2x①;(2)点E是OA的中点,则点E(2,0),圆的半径为1,则点B(1,0),当点P在x轴下方时,如图1,∵tan∠MBC=2,故设直线BP的表达式为:y=﹣2x+s,将点B(1,0)的坐标代入上式并解得:s=2,故直线BP的表达式为:y=﹣2x+2②,联立①②并解得:x=±2(舍去﹣2),故m=2;当点P在x轴上方时,同理可得:m=4±2√3(舍去4﹣2√3);故m=2或4+2√3;(3)存在,理由:连接BN、BD、EM,则BN是△OEM的中位线,故BN=12EM=12,而BD=√(2−1)2+(0+2)2=√5,在△BND中,BD﹣BN≤ND≤BD+BN,即√5−0.5≤ND≤√5+0.5,故线段DN的长度最小值和最大值分别为√5−0.5和√5+0.5.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本知识、中位线的性质等,综合性强,难度适中.【题组二】5.(2021•乐山模拟)如图,抛物线y=ax2+bx+2与直线AB相交于A(﹣1,0),B(3,2),与x轴交于另一点C.(1)求抛物线的解析式;(2)在y上是否存在一点E,使四边形ABCE为矩形,若存在,请求出点E的坐标;若不存在,请说明理由;(3)以C为圆心,1为半径作⊙O,D为⊙O上一动点,求DA+DB的最小值【分析】(1)把A(﹣1,0)、B(3,2)代入y=ax2+bx+2,列方程组求a、b的值;(2)作AE⊥AB交y轴于点E,连结CE,作BF⊥x轴于点F,证明∠ABC=90°及△BCF≌△EAO,从而证明四边形ABCE是矩形且求出点E的坐标;(3)在(2)的基础上,作FL⊥BC于点L,证明△FCL∽△BCF及△DCL∽△BCD,得到LD=DB,再根据DA+LD≥AL,求出AL的长即为所求的最小值.【解答】解:(1)把A(﹣1,0)、B(3,2)代入y=ax2+bx+2,得,解得,∴抛物线的解析式为y=x2+x+2.(2)存在.如图1,作AE⊥AB交y轴于点E,连结CE;作BF⊥x轴于点F,则F(3,0).当y=0时,由x2+x+2=0,得x1=1,x2=4,∴C(4,0),∴CF=AO=1,AF=3﹣(﹣1)=4;又∵BF=2,∴,∵∠BFC=∠AFB=90°,∴△BFC∽△AFB,∴∠CBF=∠BAF,∴∠ABC=∠CBF+∠ABF=∠BAF+∠ABF=90°,∴BC∥AE,∵∠BCF=90°﹣∠BAC=∠EAO,∠BFC=∠EOA=90°,∴△BCF≌△EAO(ASA),∴BC=EA,∴四边形ABCE是矩形;∵OE=FB=2,∴E(0,﹣2).(3)如图2,作FL⊥BC于点L,连结AL、CD.由(2)得∠BFC=90°,BF=2,CF=1,∴CF=CD,CB==.∵∠FLC=∠BFC=90°,∠FCL=∠BCF(公共角),∴△FCL∽△BCF,∴=,∴=,∵∠DCL=∠BCD(公共角),∴△DCL∽△BCD,∴=,∴LD=DB;∵DA+LD≥AL,∴当DA+LD=AL,即点D落在线段AL上时,DA+DB=DA+LD=AL最小.∵CL=CF=,∴BL==,∴BL2=()2=,又∵AB2=22+42=20,∴AL===,DA+DB的最小值为.6.(2021•河北区二模)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+3的对称轴是直线x=2,与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点C.(Ⅰ)求抛物线的解析式及顶点坐标;(Ⅱ)M为第一象限内抛物线上的一个点,过点M作MN⊥x轴于点N,交BC于点D,连接CM,当线段CM=CD时,求点M的坐标;(Ⅲ)以原点O为圆心,AO长为半径作⊙O,点P为⊙O上的一点,连接BP,CP,求2PC+3PB的最小值.【分析】(Ⅰ)由x=2=﹣=﹣,解得b=1,即可求解;(Ⅱ)当线段CM=CD时,则点C在MD的中垂线上,即y C=(y M+y D),即可求解;(Ⅲ)在OC上取点G,使=,即,则△POG∽△COP,故2PC+3PB =2(PB+PC)=2(BP+PG),故当B、P、G三点共线时,2PC+3PB最小,最小值为3BG,进而求解.【解答】解:(Ⅰ)∵对称轴是直线x=2,故x=2=﹣=﹣,解得b=1,故抛物线的表达式为y=﹣x2+x+3=﹣(x﹣2)2+4,∴抛物线的顶点为(2,4);(Ⅱ)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=6或﹣2,令x=0,则y=3,故点A、B、C的坐标分别为(﹣2,0)、(6,0)、(0,3),设直线BC的表达式为y=mx+n,则,解得,故直线BC的表达式为y=﹣x+3,设点M的坐标为(x,﹣x2+x+3),则点D的坐标为(x,﹣x+3),当线段CM=CD时,则点C在MD的中垂线上,即y C=(y M+y D),即3=(﹣x2+x+3﹣x+3),解得x=0(舍去)或2,故点M的坐标为(2,4);(Ⅲ)在OC上取点G,使=,即,则OG=,则点G(0,),∵,∠GOP=∠COP,∴△POG∽△COP,∴,故PG=PC,则2PC+3PB=3(PB+PC)=3(BP+PG),故当B、P、G三点共线时,2PC+3PB最小,最小值为3BG,则2PC+3PB的最小值3BG=3=2.7.(2021•长沙模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a>0)的顶点为M,经过C(1,1),且与x轴正半轴交于A,B两点.(1)如图1,连接OC,将线段OC绕点O顺时针旋转,使得C落在y轴的负半轴上,求点C的路径长;(2)如图2,延长线段OC至N,使得ON=,若∠OBN=∠ONA,且,求抛物线的解析式;(3)如图3,抛物线y=ax2+bx+c的对称轴为直线,与y轴交于(0,5),经过点C 的直线l:y=kx+m(k>0)与抛物线交于点C、D,若在x轴上存在P1、P2,使∠CP1D =∠CP2D=90°,求k的取值范围.【分析】(1)由点C的路径长=,即可求解;(2)证明△ONA∽△OBN,则OA•OB=ON2=3,即,得到c=3a,而a+b+c=1,tan∠ABM=,得到(1﹣4a)2﹣4a•3a=13,即可求解;(3)由点D、C的坐标得到k==t﹣4,若在x轴上有且仅有一点P,使∠CPD=90°,则过CD中点的圆R与x轴相切,设切点为P,得到(﹣1)2+(﹣1)2=()2,求出t=3+,进而求解.【解答】解:(1)点C的路径长==;(2)∵∠ONA=∠OBN,∠AON=∠NOB,∴△ONA∽△OBN,∴,即OA•OB=ON2=3,即,故c=3a,∵a+b+c=1,在△ABM中,tan∠ABM===,∴b2﹣4ac=13,即(1﹣4a)2﹣4a•3a=13,解得a=﹣1(舍去)或3,∴抛物线的表达式为y=3x2﹣11x+9;(3)由题意得:,解得,故抛物线的表达式为:y=x2﹣5x+5;设点D(t,n),n=t2﹣5t+5,而点C(1,1),将点D、C的坐标代入函数表达式得,则k==t﹣4,若在x轴上有且仅有一点P,使∠CPD=90°,则过CD中点的圆R与x轴相切,设切点为P,则点H(,),则HP=HC,即(﹣1)2+(﹣1)2=()2,化简得:3t2﹣18t+19=0,解得:t=3+(不合题意的值已舍去),k=t﹣4=.若在x轴上存在P1、P2,使∠CP1D=∠CP2D=90°,则以DC为直径的圆H和x轴相交,∴0<k<.8.(2020•东海县二模)如图,△AOB的三个顶点A、O、B分别落在抛物线C1:y=x2+ x上,点A的坐标为(﹣4,m),点B的坐标为(n,﹣2).(点A在点B的左侧)(1)则m=﹣4,n=﹣1.(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线C2:y=ax2+bx+4经过A'、B'两点,延长OB'交抛物线C2于点C,连接A'C.设△OA'C的外接圆为⊙M.①求圆心M的坐标;②试直接写出△OA'C的外接圆⊙M与抛物线C2的交点坐标(A'、C除外).【分析】(1)把x=﹣4代入抛物线C1解析式求得y即得到点A坐标;把y=﹣2代入抛物线C1解析式,解方程并判断大于﹣4的解为点B横坐标.(2)①根据旋转90°的性质特点可求点A'、B'坐标(过点作x轴垂线,构造全等得到对应边相等)及OA'的长,用待定系数法求抛物线F2的解析式,求出直线OC的解析式,构建方程组确定点C的坐标,求出线段OA′,线段A′C的垂直平分线的解析式,构建方程组解决问题即可.②设⊙M与抛物线C2的交点为P(m,m2﹣3m+4).根据PM=OM,构建方程求解即可.【解答】解:(1)当x=﹣4时,y=×(﹣4)2+×(﹣4)=﹣4,∴点A坐标为(﹣4,﹣4),当y=﹣2时,x2+x=﹣2,解得:x1=﹣1,x2=﹣6,∵点A在点B的左侧,∴点B坐标为(﹣1,﹣2),∴m=﹣4,n=﹣1.故答案为﹣4,﹣1.(2)①如图1,过点B作BE⊥x轴于点E,过点B'作B'G⊥x轴于点G.∴∠BEO=∠OGB'=90°,OE=1,BE=2,∵将△AOB绕点O逆时针旋转90°得到△A'OB′,∴OB=OB',∠BOB'=90°,∴∠BOE+∠B'OG=∠BOE+∠OBE=90°,∴∠B'OG=∠OBE,在△B'OG与△OBE中,,∴△B'OG≌△OBE(AAS),∴OG=BE=2,B'G=OE=1,∵点B'在第四象限,∴B'(2,﹣1),同理可求得:A'(4,﹣4),∴OA=OA'==4,∵抛物线F2:y=ax2+bx+4经过点A'、B',∴,解得:,∴抛物线F2解析式为:y=x2﹣3x+4,∵直线OB′的解析式为y=﹣x,由,解得或,∴点C(8,﹣4),∵A′(4,﹣4),∴A′C∥x轴,∵线段OA′的垂直平分线的解析式为y=x﹣4,线段A′C的垂直平分线为x=6,∴直线y=x﹣4与x=6的交点为(6,2),∴△OA′C的外接圆的圆心M的坐标为(6,2).②设⊙M与抛物线C2的交点为P(m,m2﹣3m+4).则有(m﹣6)2+(m2﹣3m+2)2=62+22,解得m=0或12或4或8,∵A'、C除外,∴P (0,4),或(12,4).9.(2019•鄂尔多斯)如图,抛物线y =ax 2+bx ﹣2(a ≠0)与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C ,直线y =﹣x 与该抛物线交于E ,F 两点.(1)求抛物线的解析式.(2)P 是直线EF 下方抛物线上的一个动点,作PH ⊥EF 于点H ,求PH 的最大值.(3)以点C 为圆心,1为半径作圆,⊙C 上是否存在点M ,使得△BCM 是以CM 为直角边的直角三角形?若存在,直接写出M 点坐标;若不存在,说明理由.【分析】(1)直接利用待定系数法即可得出结论;(2)先判断出过点P 平行于直线EF 的直线与抛物线只有一个交点时,PH 最大,再求出此直线l 的解析式,即可得出结论;(3)分两种情况:①当∠BMC =90°时,先求出BM 的长,进而求出BD ,DM 1的长,再构造出相似三角形即可得出结论;②当∠BCM =90°时,利用锐角三角函数求出点M 3的坐标,最后用对称的性质得出点M 4的坐标,即可得出结论.【解答】解:(1)∵抛物线y =ax 2+bx ﹣2(a ≠0)与x 轴交于A (﹣3,0),B (1,0)两点,∴{9a −3b −2=0a +b −2=0,∴{a =23b =43, ∴抛物线的解析式为y =23x 2+43x ﹣2;(2)如图1,过点P 作直线l ,使l ∥EF ,过点O 作OP '⊥l , 当直线l 与抛物线只有一个交点时,PH 最大,等于OP ', ∵直线EF 的解析式为y =﹣x ,设直线l 的解析式为y =﹣x +m ①,∵抛物线的解析式为y =23x 2+43x ﹣2②,联立①②化简得,23x 2+73x ﹣2﹣m =0, ∴△=499−4×23×(﹣2﹣m )=0, ∴m =−9724, ∴直线l 的解析式为y =﹣x −9724,令y =0,则x =−9724, ∴M (−9724,0),∴OM =9724,在Rt △OP 'M 中,OP '=OM √2=97√248, ∴PH 最大=97√248.(3)①当∠CMB =90°时,如图2,∴BM 是⊙O 的切线,∵⊙C 半径为1,B (1,0),∴BM 2∥y 轴,∴∠CBM 2=∠BCO ,M 2(1,﹣2),∴BM 2=2,∵BM 1与BM 2是⊙C 的切线,∴BM 1=BM 2=2,∠CBM 1=∠CBM 2,∴∠CBM 1=∠BCO ,∴BD =CD ,在Rt △BOD 中,OD 2+OB 2=BD 2,∴OD2+1=(2﹣OD)2,∴OD=3 4,∴BD=5 4,∴DM1=3 4过点M1作M1Q⊥y轴,∴M1Q∥x轴,∴△BOD∽△M1QD,∴OBM1Q =ODDQ=BDDM1,∴1M1Q =34DQ=5434,∴M1Q=35,DQ=920,∴OQ=34+920=65,∴M1(−35,−65),②当∠BCM=90°时,如图3,∴∠OCM3+∠OCB=90°,∵∠OCB+∠OBC=90°,∴∠OCM3=∠OBC,在Rt△BOC中,OB=1,OC=2,∴tan∠OBC=OCOB=2,∴tan∠OCM3=2,过点M3作M3H⊥y轴于H,在Rt△CHM3中,CM3=1,设CH=m,则M3H=2m,根据勾股定理得,m2+(2m)2=1,∴m=√5 5,∴M3H=2m=2√55,OH=OC﹣CH=2−√55,∴M3(−2√55,√55−2),而点M4与M3关于点C对称,∴M 4(2√55,−√55−2), 即:满足条件的点M 的坐标为(−35,−65)或(1,﹣2)或(−2√55,√55−2)或(2√55,−√55−2).【点评】此题是二次函数综合题,主要考查了待定系数法,平行线的性质,勾股定理,切线的性质,相似三角形的判定和性质,构造出相似三角形是解本题的关键. 10.(2019•日照)如图1,在平面直角坐标系中,直线y =﹣5x +5与x 轴,y 轴分别交于A ,C 两点,抛物线y =x 2+bx +c 经过A ,C 两点,与x 轴的另一交点为B . (1)求抛物线解析式及B 点坐标;(2)若点M 为x 轴下方抛物线上一动点,连接MA 、MB 、BC ,当点M 运动到某一位置时,四边形AMBC 面积最大,求此时点M 的坐标及四边形AMBC 的面积;(3)如图2,若P 点是半径为2的⊙B 上一动点,连接PC 、P A ,当点P 运动到某一位置时,PC +12P A 的值最小,请求出这个最小值,并说明理由.【分析】(1)由直线y =﹣5x +5求点A 、C 坐标,用待定系数法求抛物线解析式,进而求得点B 坐标.(2)从x 轴把四边形AMBC 分成△ABC 与△ABM ;由点A 、B 、C 坐标求△ABC 面积;设点M 横坐标为m ,过点M 作x 轴的垂线段MH ,则能用m 表示MH 的长,进而求△ABM 的面积,得到△ABM 面积与m 的二次函数关系式,且对应的a 值小于0,配方即求得m 为何值时取得最大值,进而求点M 坐标和四边形AMBC 的面积最大值. (3)作点D 坐标为(4,0),可得BD =1,进而有BD BP=BP AB=12,再加上公共角∠PBD=∠ABP ,根据两边对应成比例且夹角相等可证△PBD ∽△ABP ,得PD PA等于相似比12,进而得PD =12AP ,所以当C 、P 、D 在同一直线上时,PC +12P A =PC +PD =CD 最小.用两点间距离公式即求得CD 的长.【解答】解:(1)直线y =﹣5x +5,x =0时,y =5 ∴C (0,5)y =﹣5x +5=0时,解得:x =1 ∴A (1,0)∵抛物线y =x 2+bx +c 经过A ,C 两点 ∴{1+b +c =00+0+c =5 解得:{b =−6c =5 ∴抛物线解析式为y =x 2﹣6x +5。

2020中考复习数学提分微课(04)构造辅助圆

2020中考复习数学提分微课(04)构造辅助圆
.
图W4-4
考点聚焦
[答案]3 3-3
[解析]易知点 P 在以点 C 为圆心,以 CB 的长为半径的圆上,
当点 P 在 AC 上时,AP 的值最小,由于 BC=3,由勾股定理,得 AC= 62 -32 =3 3,
所以 AP 的最小值为 3 3-3.
考点聚焦
5.在平面直角坐标系xOy中,已知点A(2,3),
考点聚焦
类型二 定弦定角或张角互补
【直角】
7.如图W4-6,三角板ACD,BCE中,△ACD是等腰直角三角形
,∠CAD=∠CBE=90°,直线a∥CD,则∠BCF=
.
[答案] 45°
[解析]由题意可得C,B,A,F四点在同一个圆上.
∴∠BFC=∠BAC.∵直线a∥CD,∴∠BAC=∠ACD.
又∵△ACD是等腰直角三角形,∴∠ACD=45°.
提分微课(四 )
构造辅助圆
提分微课·思维与方法
2020年中考复习
考点聚焦
“隐圆”一般有如下呈现方式:①定点定长:当遇到同一个端点出发的等长线段时,通常
以这个端点为圆心,等线段长为半径构造辅助圆;②定弦定角:当遇到动点对定线段所张
的角为定值时,通常把张角转化为圆周角构造辅助圆.当遇到直角时,通常以斜边为直径
∴∠BFC=45°.∵∠CBF=90°,∴∠BCF=45°.
图W4-6
考点聚焦
8. [2016·宁波考纲]如图W4-7,在等腰直角三角形ABC中,AB=BC=2,点P为等
腰直角三角形ABC所在平面内一点,且满足PA⊥PB,则PC的取值范围为
图W4-7
.
考点聚焦
[答案] 5-1≤PC≤ 5+1
[解析]根据条件可知线段 AB 是定值,且 AB 所对的张角∠APB 是定值.根据同弧所
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.24专题9:构造辅助圆2-定弦定角
一.【知识要点】
1.利用定弦定角构造辅助圆:已知定弦定角,可以构造辅助圆解决几何最值。

结论1:如图所示,在△ABP中,A,B均为定点,点P为平面内一动点,且∠APB=a为定值,则点p在弦AB所对的圆弧上运动。

结论2:如图所示,在△ABP中,A,B均为定点,点P为平面内一动点,且∠APB=90°,则点p在以AB为直径的圆上运动。

结论3:如图所示,在△ABP中,A,B均为定点,点P为平面内一动点,且∠APB=a°,0°<a<90°,则点p在以AB为弦,圆心和点P在AB同侧,2a°为圆心角的圆上运动。

结论4:如图所示,在△ABP中,A,B均为定点,点P为平面内一动点,且∠APB=a°,90°<a<180°,则点p在以AB为弦,,圆心和点P在两侧,360°-2a为圆心角的圆上运动。

特殊情况:
1.如图所示,在△ABP中,A,B均为定点,点P为平面内一动点,且∠APB=30°(或∠APB=150°),则点p在以AB为边构造的等边△ABC的顶点C为圆心的圆上运动。

2.如图所示,在△ABP中,A,B均为定点,点P为平面内一动点,且∠APB=45°(或∠
AB为腰构造的等腰直角△ABC的顶点C为APB=135°),则点p在以AB为底,以
2
圆心的圆上运动。

3.如图所示,在△ABP中,A,B均为定点,点P为平面内一动点,且∠APB=60°(或∠
APB=120°),则点p在以AB为腰构造的等腰直角△ABC的顶点C为
圆心的圆上运动。

二.【经典例题】
1.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为()
A.B.2﹣2C.2﹣2D.4
2.如图,在平面直角坐标系中,A(﹣3,0),B(3,0),C(3,4),点P为任意一点,已知PA⊥PB,则线段PC的最大值为()
A.3B.5C.8D.10
3.如图,Rt△ABC中,AB⊥BC,AB=10,BC=12,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()
A.7B.8C.D.
4.(5❤)如图,在△ABC中,AC=4,BC=6,∠ACB=30°,D是△ABC内一动点,⊙O 为△ACD的外接圆,⊙O交直线BD于点P,交边BC于点E,若=,则AD的最小值为()
A.1B.2C.2﹣6D.﹣3
【分析】根据=得∠ACB=∠CDP.再由∠ACB=30°可得到∠BDC=150°,于是点D在以BC为弦,∠BDC=150°的圆弧上运动,再由∠BMC=60°可证明∠ACM =90°,从而算出AM=2,再由当A、D、M三点共线时,AD最小,求出此时AD 的长即可.
【解答】解:∵=,
∴∠ACB=∠CDP.
∵∠ACB=30°,
∴∠CDP=30°,
∴∠BDC=180°﹣30°=150°,
∴点D在以BC为弦,∠BDC=150°的圆弧上运动,
如图,设D点运动的圆弧圆心为M,取优弧BC上一点N,
连接MB,MC,NB,NC,AM,MD,
则∠BNC=180°﹣∠BDC=30°,
∴∠BMC=60°,
∵BM=CM,
∴△BMC为等边三角形,
∴∠MCB=60°,MC=BC=6,
∵∠ACB=30°,
∴∠ACM=90°,
∴AM===2,
∴当A、D、M三点共线时,AD最小,
此时,AD=AM﹣MD=2﹣6.
故选:C.
【点评】此题主要考查了圆周角定理、等边三角形的性质、勾股定理、三角形三边关系,解决此题的关键是证明出∠BDC=150°,分析出D在以BC为弦,∠BDC=150°的圆弧上运动.
5.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE 于点G,点P是AB边上另一动点,则PD+PG的最小值为.
三.【题库】
【A】
1.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠P AB=∠PBC,则线段CP长的最小值为()
A.B.2C.D.
【B】
1.如图,四边形ABCD是正方形,点E,F分别是边AD,CD上的动点,且AE=DF,AF和BE相交于点H,若正方形的边长为4,那么HD的最小值是_____________________.
【C】
1.在直角坐标系xOy中,点O(0,0),动点A(t,t)在第一象限,动点B(0,m)在y轴上.当AB=4时,△OAB面积的最大值为()
A.8B.C.D.
2.如图,△ABC中,AB=AC=2,BC=2,D点是△ABC所在平面上的一个动点,且∠BDC=60°,则△DBC面积的最大值是()
A.3B.3C.D.2
3.如图,在△ABC中,∠C=90°,AC=BC=1,P为△ABC内一个动点,∠PAB=∠PBC,则CP的最小值为.
4.在△ABC中,若AB=6,∠ACB=45°,则△ABC的面积的最大值为__________.
5.如图,AC为边长为的菱形ABCD的对角线,∠ABC=60°,点M,N分别从点B,C同时出发,以相同的速度沿BC,CA向终点C和A运动,连接AM和BN,求△APB面积的最大值是()
A.B.C.D.
【D】
1.如图,在△ABC中,AC=3,BC=4,∠ACB=45°,AM∥BC,点P在射线AM上运动,连BP交△APC的外接圆于D,则AD的最小值为()
A.1B.2C.D.4﹣3
2.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2
2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上。

(1)小明发现DG⊥BE,请你帮他说明理由。

(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长。

(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出ΔGHE与ΔBHD面积之和的最大值,并简要说明理由.。

相关文档
最新文档