5初中数学最值系列之辅助圆教案

合集下载

中考数学复习讲义课件 中考考点全攻略 第六单元 圆 小专题5 辅助圆问题

中考数学复习讲义课件 中考考点全攻略 第六单元 圆 小专题5 辅助圆问题

2.圆内接四边形对角互补,因此遇到四边形 ABCD中的动点问题,若满足其中一组对角角度之 和等于180°,可考虑作它的外接圆解题.如图3, 在四边形ABCD中,满足∠ABC+∠ADC=180°, 可知四边形ABCD有外接圆⊙O,其圆心O为任意 一组邻边的垂直平分线的交点(点O为AB和BC垂直 平分线的交点).
【经典母题】 如图,△ABC为等边三角形,AB=2.若P为△ABC内 一动点,且满足∠PAB=∠ACP,则线段PB长度 的最小值为_______.
[解析] ∵△ABC是等边三角形, ∴∠ABC=∠BAC=60°,AC=AB=2. ∵∠PAB=∠ACP, ∴∠PAC+∠ACP=60°,∴∠APC=120°,
[思维方法] 根据线段BA与线段BQ关于线段BP所 在的直线对称可知,点Q在以点B为圆心,AB长为 半径的圆上运动,即点Q的运动轨迹是一段圆弧, 然后画出草图,再矩形的性质求出∠ABQ=120°, 再由矩形的性质和轴对称性可知,△BOQ≌△DOC, 最后根据S阴影部分=S四边形ABQD-S扇形ABQ =S四边形ABOD+S△BOQ-S扇形ABQ可求出答 案.
小专题5辅助圆问题
类型一 定点定长作圆 方法解
读 平面内,点A为定点,点B为动点,且AB长度固定, 则点B的轨迹在以点A为圆心,AB长为半径的圆上 (如图1).依据的是圆的定义:圆是所有到定点的 距离等于定长的点的集合.
推广:如图2,点E为定点,点F为线段BD上的动 点(不含点B),将△BEF沿EF折叠得到△B′EF,则点 B′的运动轨迹为以点E为圆心,以线段BE为半径的 一段圆弧.若遇到求最值问题,可利用两点间线段 最短或垂线段最短解决。
12.如图,正方形ABCD的边长为4,等边△EFG内 接于此正方形,且E,F,G分别在边AB,AD, BC上,若AE=3,求EF的长.

2017年中考专题复习—辅助圆教学设计

2017年中考专题复习—辅助圆教学设计

2017年中考专题复习—辅助圆教学设计学生情况分析:作为专题复习,初三的学生已经学习了圆的基本知识,掌握了圆的一些有关性质,并对辅助圆有了初步的认识.对于直线形中常见的几何问题形成了一些基本的解题策略,但从辅助圆这个新的视角解决问题还显得弱了很多.学生对于一些数学问题容易产生想法,但欠缺的是归纳总结提升,而本节课想要达到的目的,就是引导学生学会归纳总结,将以前学过的一些知识从一个新的视角研究,简化证明过程.初步形成构造曲线形辅助线的意识. 设计意图:对于平面几何问题,学生常常想到的是构造直线形辅助线来转化条件,从而利用三角形、四边形的知识来解决问题.但辅助线的添加就被局限在直线形,而实际上曲线形辅助线在一些特定条件下,更有利于条件的集中,辅助圆是曲线形辅助线的代表,利用圆,就会让图形的条件更丰富,而学生对此又很少了解,故想借此节课,和学生一起探究,来感受辅助圆的独特.本节课想以一种学生探究,老师引领学生作归纳总结的形式呈现,通过学生思想的碰撞,最终达成共识.教学目标:1.进一步巩固圆的定义和性质,能够正确利用圆找到符合条件的点所在的位置;2.通过对例题条件和结论的分析,体会利用圆解决点的轨迹问题,进而掌握利用作圆解决分类讨论问题的方法;3.逐步建立从圆的观点看问题的意识,能够多角度认识事物,全面还原事物的本质.教学重点:利用辅助圆解决有关问题教学难点:建立用圆的观点看问题的意识,能够判断出构造圆的条件教学过程:画辅助圆即“四点共圆”这类问题一般有两形式:一是要证明某四点共圆(;二是通过某四点共圆来得到一些重要的结果,进而解决问题,下面是与画辅助圆有关的一些基本知识。

1、若干个点与某定点的距离相等,则这些点在同一圆周上(证明多个点到同一个定点的距离相等即可)2、在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆。

(共斜边的两个直角三角形顶点共圆)3、若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆4、若点C,D在线段AB的同侧,且∠ACB=∠ADB,则A,B,C,D四点共圆探究11、如图所示,在四边形ABCD中,AB=AC=AD,∠BAC=20°∠CAD=80°,则∠BDC=______度,∠DBC=______度练习:如图所示,四边形ABCD中,DC∥AB,BC=1,AB=AC=AD=2.则BD的长为()A、错误!未找到引用源。

探究辅助圆的基本模型教学设计及点评(获奖版)

探究辅助圆的基本模型教学设计及点评(获奖版)

《“圆”来如此简单—探究辅助圆的基本模型》教学设计【一、内容和内容解析】(一)内容探究辅助圆的基本模型(二)内容解析在初中数学中,圆是我们常见的一个数学问题,也是初中教材中一个重要内容,但是有些题目明明题中和图中都没有圆的出现,但是在解题的过程中却要借助圆,这样的圆就是“辅助圆”。

这类“辅助圆”的出现也是有迹可循的:第一类当出现定点和定长时,可根据圆的定义构造圆;第二类当出现定线和定角时,可根据同弧(弦)所对的圆周角构造圆,或是90o的圆周角所对的弦是直径构造圆;第三类对角互补的四边形可构造圆。

三类模型的出现都需要进行探究,而这个探究过程是从特殊到一般的过程。

通过模型的探究,便可以利用圆的性质解决问题。

基于以上的分析,确定本节课的教学重点是:探究辅助圆的基本模型。

【二、教学目标及解析】(一)目标1.利用所学的知识对辅助圆模型进行探究.并在探究的过程中培养学生从数学角度发现和提出问题的能力、分析和解决问题的能力;用数学的眼光观察世界,用数学的思维分析世界,用数学的语言表达现实世界.2.能将所探究的辅助圆模型应用到生活实际问题和数学问题中,并进一步体会数学建模思想、分类讨论思想、化归思想和数形结合思想,养成良好的数学学习习惯.(二)目标解析达成目标1的标志是:能够通过小组讨论得到辅助圆出现的条件,并通过小组合作的形式利用图像、几何语言及文字语言总结出模型的特点,以及模型出现所需要具备的条件。

达成目标2的标志是:能够利用所探究的模型应用到生活实际问题和数学问题中去,并独立找到生活实际问题和数学问题的解决办法。

【三、教学问题诊断分析】九年级的学生抽象思维趋于成熟,而且具有独立思考,合作交流,逻辑推理,归纳概括的能力。

本节课是探究辅助圆的基本模型,在已有知识的基础之上,利用条件得到辅助圆并不困难,但是根据条件确定圆心和半径,进一步画出辅助圆对于学生会有一定的困难。

因此在本节课的教学中,可以让学生从已有的知识出发,通过实践操作,自主探究、合作交流,归纳总结等数学活动中,理解和掌握数学知识技能,形成数学思想方法。

「解题策略」最值系列之辅助圆(一)

「解题策略」最值系列之辅助圆(一)

「解题策略」最值系列之辅助圆(一)姓名:__________指导:__________日期:__________最值问题的必要条件是至少有一个动点,因为是动态问题,所以才会有最值.在将军饮马问题中,折点P就是那个必须存在的动点.并且它的运动轨迹是一条直线,解题策略就是作端点关于折点所在直线的对称即可.当然,动点的运动轨迹是可以变的,比如P点轨迹也可以是一个圆,就有了第二类最值问题——辅助圆.在这类题目中,题目很少直接告诉我们动点轨迹是个圆,也很少把这个圆画出来,因此,结合题目给的条件,分析出动点的轨迹图形,将是我们面临的最大的问题.若已经确定了动点的轨迹圆,接下来求最最值的问题就会变得简单了,比如:如下图,A为圆外一点,在圆上找一点P使得PA最小.已知圆轨迹类【2017四川德阳】如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线l上有两点A、B,且OA=OB,∠APB=90°,直线l不经过点C,则AB的最小值为________.【分析】连接OP,根据△APB为直角三角形且O是斜边AB中点,可得OP是AB的一半,若AB最小,则OP最小即可.连接OC,与圆C交点即为所求点P,此时OP最小,AB也取到最小值.由定义构造辅助圆圆的定义:平面内到定点的距离等于定值的所有点构成的集合.构造思路:若动点到平面内某定点的距离始终为定值,则其轨迹是以定点为圆心、定值为半径的圆或圆弧.【2014成都中考】如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB 边上的一动点,将△AMN沿MN所在直线翻折得到△A’MN,连接A’C,则A’C 长度的最小值是________.【分析】考虑△AMN沿MN所在直线翻折得到△A’MN,可得MA’=MA=1,所以A’轨迹是以M点为圆心,MA为半径的圆弧.连接CM,与圆的交点即为所求的A’,此时A’C的值最小.构造直角△MHC,勾股定理求CM,再减去A’M即可.【2016淮安中考】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_______.【分析】考虑到将△FCE沿EF翻折得到△FPE,可得P点轨迹是以F点为圆心,FC为半径的圆弧.过F点作FH⊥AB,与圆的交点即为所求P点,此时点P到AB的距离最小.由相似先求FH,再减去FP,即可得到PH.【2019扬州中考】如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.【分析】考虑l是经过点P的直线,且△ABC沿直线l折叠,所以B’轨迹是以点P为圆心,PB为半径的圆弧.考虑△ACB’面积最大,因为AC是定值,只需B’到AC距离最大即可.过P 作作PH⊥AC交AC于H点,与圆的交点即为所求B’点,先求HB’,再求面积.【2018相城区一模】如图,矩形ABCD中,AB=4,BC=8,P、Q分别是直线BC、AB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PF、PD,则PF+PD的最小值是_________.【分析】F点轨迹是以E点为圆心,EA为半径的圆,作点D关于BC对称点D’,连接PD’,PF+PD化为P F+PD’.连接ED’,与圆的交点为所求F点,与BC交点为所求P点,勾股定理先求ED’,再减去EF即可.动态问题抓不变量,从不变量出发探寻解决问题方案!。

辅助圆公开课教案

辅助圆公开课教案
归纳1:当遇有公共端点的等线段长时,通常以公共端点为圆心,等线段长为半径,构造辅助圆.
尝试1:如图所示,在凸四边形ABCD中,AB=BC=BD, ,
则 的度数为.
问题2:若Rt△ABC中,∠C=90°,AC=6,BC=8,则△ABC的外接圆半径
为_____.
什么条件让你想到可以构造圆,可以构造圆的依据是什么?
(1)∠APB=;
(2)当E从点A运动到点C时,试求点P经过的路径长;
(3)连结CP,CP长度的最小值为。
五、总结提升
1.数学方法:构造辅助圆
(1)当遇有公共端点的等线段长时,通常以公共端点为圆心,等线段长为半径,构造辅助圆.
(2)可以利用直径所对的圆周角是直角,以斜边为直径,构造辅助圆.
2.数学思想:转化思想
利用构造辅助圆解决分类讨论问题,可以很快找到符合条件的点,并可以将问题转化为圆中求线段、求角度的问题.
3.辅助线的构造可以是直线形,也可以是曲线形.
六、布置作业
课题:《构造辅助圆》(简案)
教学目标:1.进一步巩固圆的定义和性质,能够正确利用圆找到符合条件的点所在的位置;2.通过对例题条件和结论的分析,体会利用圆解决点的轨迹问题,进而掌握利用
作圆解决分类讨论问题的方法;
3.逐步建立从圆的观点看问题的意识,能够多角度认识事物,全面还原事物的本质.
教学重点:利用辅助圆解决有关问题
三、学以致用
问题3:如图,锐角△ABC中,BD、CE是高线,DG⊥CE于G, EF⊥BD于F。
四、拓展提升
问题4:如图,在边长为6的正方形ABCD中,点E、F、G分别在边AB、AD、CD上,EG与BF交于点I,AE=2,BF=EG,DG>AE,则DI的最小值等于

“辅助圆”求线段最值问题(叶红)

“辅助圆”求线段最值问题(叶红)
你能描述这些角的共同 特征吗?
“辅助圆”求线段最值问题
富平中学 叶红
学习目标:
1、理解圆外一点到圆上的最小距离 和最大距离;
2、准确寻找隐藏的辅助圆; 3、“定边(弦)定角圆上找”
重难点:
1、准确寻找隐藏的辅助圆; 2、理解变化过程中线段的大小关系。
模型分析“一箭穿心”
1、平面内有一个定点M和⊙O上一动点P
的连线中,当连线过圆心O时,线段PM有最 大值和最小值
2、理解“定边定角”问题中的线段最值, “定边(弦)定角圆上找” ;
3、准确寻找隐藏的辅助圆。
问题1 平面内一点P和⊙O上动点A的连线PA
的最大值和最小值分别是多少?
A
r
P
d
O
当O、P、A三点共线时,对应有最值, 其和d+r为最大值,其差d-r为最小值.
A
P
d O
辅助圆问题
方法突破精 讲练
1. 如图,已知⊙O及其外一点C,请在⊙O上找一点P,
使其到点C的距离最近.
解:如图,连接OC交圆O于点P,则点P 即为所求.在圆O上任取异于P点的点P′, ∵OP′+P′C>OP+PC 又∵OP′=OP ∴CP′>CP
第1题图
第1题解图
辅助圆问题
方法突破精 讲练
2. 如图,已知正方形ABCD的边长为4.点M和N分别从B、
C同时出发,以相同的速度沿BC、CD方向向终点C和D
运动.连接AM和BN,交于点P,则PC长的最小值为
___2_5__-2__.(请在图中画出点P的运动路径)
第2题图
【解析】如图连接AC、BD交于点E
依题意,易得BM=CN,∠ABM=∠BCN,AB=BC,
∴PC=O3C-OP= 4 3

初数-构造辅助圆解题教法解析

初数-构造辅助圆解题教法解析
(2)如图2,当/历(C=100° ,a=20。时,求NCW的大小; (60=<w< 1205 ),若/C3D的大小与(2)中的结果相
■七 口工 思路: .1 ADCB^AFCB ADAB^ADAF InllSlll FD=BD=FB zDBF=60° zCBD=30° izUlE^ Example
在平面直角坐标系中,已知A (-3, 0) , B (1, 0),点P
在y轴上,且4ABP为直角三角形,NAPB=90° .请问满
足条件的点P有几个?并求出它们的坐标.
思路:作以AB为直径的圆,P在圆 与y轴的交点上,根据圆的定义和 勾股定理即可求P坐标
例题 Example
二、作三角形的外接 园
总结:直角三角形斜边即为直角三 角形外接圆半径
求证:ZCPO=ZDPO.
思路:切线长定理可知,OA^AP,
AM±OP,可得AM2=OM・MP,由
相交弦定理可知CM.MD=AM. MB, 因此可得CM.MD=OM.MP,所以C、
圆,由CO=BO即
Example
三、运用四点共圆的判定方法构造辅助 国 (不在11月月考范围内)
总结:若四边形A5CD的一组对边A3、DC的延长线相交于居
LilI心角关系定理:同B0或等国中, “知一推二”
周角定理及推论
1 .圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.
2 .推论1:同弧或等弧所对的圆周角相等.
3 .推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
4 .推论3:如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角
思路:连DF, EF,寻找PD、PE、PF之间的
・关系,证明△PDF-Z\PFE,而发现P、D、B、

初三辅助圆教学设计

初三辅助圆教学设计

构造辅助圆教学设计一、教学内容分析:对于平面几何问题,学生常常想到的是构造直线形辅助线来转化条件,从而利用三角形、四边形的知识来解决问题,但辅助线的添加就被局限在直线形,而实际上曲线形辅助线在一些特定条件下,更有利于条件的集中,辅助圆是曲线形辅助线的代表,利用圆,就会让图形的条件更丰富,而学生对此又很少了解,故想借此节课,和学生一起探究,通过对构造辅助圆方法的分类,典型题的讲解.二、学情分析:1. 教学对象:初三学生;2. 已具备知识和技能:掌握了圆的相关性质和应用,并对辅助圆有了初步认识.三、教学目标:1. 知识目标:(1)进一步巩固圆的定义和性质;(2)体会利用圆解决点的轨迹问题;(3)初步形成从圆的观点看问题的意识,能够多角度认识事物.2. 能力目标:(1)提升转化能力,分类讨论能力;(2)同类型题目的总结归纳能力.3. 情感目标:(1)学生通过观察,发现构造辅助圆的条件,并且选择适合的方法做出辅助圆;(2)注重学生参与,联系实际,丰富学生的感性认识.四、教学重难点:1.教学重点:利用辅助圆解决有关问题.2.教学难点:初步形成用圆的观点看问题的意识,能够判断出构造圆的条件.五、教学策略:教学内容在公校少有涉及,但在很多时候是个实用工具和方法,所以本堂课采用讲练结合进行教学,注重与学生已有知识的联系,引导学生与原有的知识联系、比较,经历对知识拓展、归纳、更新的过程.六、课时安排:2小时七、教学过程:类型一:有公共端点的等线段(如下图)例1.如图,在四边形ABCD中,AB=AC=AD,若∠BAC=25°,∠CAD=75°,求∠BDC的度数.变式练习:1.如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,点N是AB边上一动点,将∠AMN沿MN所在的直线翻折得到∠A′MN,连结A′C,求A′C长度的最小值.2.问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使∠APD为等腰三角形,那么请画出满足条件的一个等腰三角形∠APD,并求出此时BP的长;(2)如图②,在∠ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M 安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5初中数学最值系列之辅助圆教案
教学目标:
1.熟练掌握辅助圆在数学中的概念和性质;
2.能够运用辅助圆解决初中数学中的最值问题;
3.培养学生观察问题、提出问题和解决问题的能力。

教学重难点:
1.学习掌握辅助圆在求解最值问题中的应用方法;
2.培养学生运用辅助圆解决问题的思维能力。

教学准备:
1.教师准备好黑板、彩色粉笔和辅助圆的相关课件;
2.提前准备好一些与辅助圆相关的练习题。

教学过程:
一、引入新知
1.教师简单介绍辅助圆的概念和作用,提出辅助圆在数学中的应用意义。

2.教师通过示意图向学生展示辅助圆的基本构造,帮助学生理解辅助圆的含义和作用。

二、辅助圆的性质
1.教师向学生介绍辅助圆的性质,如辅助圆的半径等于问题中的其中
一边的一半,辅助圆上的弦等于问题中的其中一边等等。

2.教师通过具体例子向学生展示辅助圆的性质,在黑板上进行解释和
分析。

三、辅助圆在求解最值问题中的应用
1.教师给学生出几个最值问题,如一张长方形纸片的四个角各剪去一
块正方形纸片,求剩下的纸片所能构成的最大面积。

2.教师引导学生观察问题,提出问题,并运用辅助圆解决问题。

3.学生们根据教师的引导,利用辅助圆来求解最值问题。

四、练习巩固
1.教师提供一些与辅助圆相关的练习题,让学生独立解答并进行讨论。

2.学生们互相交流,共同解决练习题,教师及时给予指导和帮助。

3.教师对学生的答题情况进行点评和总结,对错误的解答进行纠正和
解释。

五、拓展思考
1.教师鼓励学生进一步思考,提出一个新的问题,如圆的直径与圆的
面积有何关系?
2.学生们积极思考,讨论并提出自己的见解。

3.学生们将自己的思考结果与其他同学进行分享和讨论。

六、课堂总结
1.教师帮助学生总结今天学到的知识和方法,强调辅助圆在求解最值
问题中的重要作用。

2.学生们对今天的学习进行总结,并主动回答教师提出的问题,巩固
所学知识。

七、作业布置
1.教师布置一些与辅助圆相关的作业,例如写一篇关于辅助圆在求解
最值问题中的应用方法的小短文。

2.学生们积极完成作业,并在下节课上进行互相交流和评价。

教学反思:
通过本节课的教学,学生们对辅助圆的概念和性质有了更深入的了解,并能够运用辅助圆解决最值问题。

在教学过程中,通过教师的引导和提问,学生们积极思考,能够独立解答问题,并提出自己的见解。

教师及时给予
指导和帮助,加深学生对辅助圆的理解。

通过学生们的积极参与和讨论,
培养了他们的观察问题、提出问题和解决问题的能力。

相关文档
最新文档