圆柱,圆锥,圆台和球(高考题)

合集下载

04 圆柱、圆锥、圆台的表面积和体积(原卷版)

04  圆柱、圆锥、圆台的表面积和体积(原卷版)

专题04圆柱、圆锥、圆台的表面积和体积题型一圆柱的表面积【例1】已知圆柱的底面半径r=1,母线长l与底面的直径相等,则该圆柱的表面积为( )A.6π B.8π C.9π D.10π【变式1-1】一个高为2的圆柱,底面周长为2π.该圆柱的表面积为.【变式1-2】一个圆柱的侧面展开图是一个正方形,则这个圆柱的表面积与侧面积的比值是()A.142ππ+B.122ππ+C.12ππ+D.142ππ+【变式1-3】已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.122π B.12π C.82π D.10π题型二圆锥的表面积【例2】若圆锥的轴截面是顶角为120的等腰三角形,且圆锥的母线长为2,则该圆锥的侧面积为()A.B.2πC.D.【变式2-1】把一个半径为20的半圆卷成圆锥的侧面,则这个圆锥的高为()A.10 B.C.D.【变式2-2】已知某圆锥的底面半径为8,高为6,则该圆锥的表面积为_________.【变式2-3】圆锥的高和底面半径相等,它的一个内接圆柱的高和圆柱底面半径也相等.求圆柱的表面积和圆锥的表面积之比;【变式2-4】一个圆柱内接于一个底面半径为2,高为4的圆锥,则内接圆柱侧面积的最大值是()A.32πB.3πC.5πD.4π题型三圆台的表面积【例3】圆台的上下底面半径分别为1、2,母线与底面的夹角为60°,则圆台的侧面积...为________.【变式3-1】圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的表面积为574π,则圆台较小的底面半径为____________.【变式3-2】圆台的上、下底面半径和高的比为1∶4∶4,若母线长为10,求圆台的表面积.【变式3-3】已知圆台的上、下底面的面积之比为9∶25,那么它的中截面截得的上、下两台体的侧面积之比是____________.【变式3-4】圆台的母线长为8 cm,母线与底面成60°角,轴截面的两条对角线互相垂直,求圆台的表面积.题型四圆柱的体积【例4】如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( )A.π B.2π C.4π D.8π【变式4-1】(多选)圆柱的侧面展开图是长12cm,宽8cm的矩形,则这个圆柱的体积可能是( )A.288πcm3B.192πcm3C.288π cm3D.192π cm3【变式4-2】周长为20cm的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为_____3cm.【变式4-3】如图,已知底面半径为r的圆柱被一个平面所截,剩下部分母线长的最大值为a,最小值为b,那么圆柱被截后剩下部分的体积是________.题型五圆锥的体积【例5】已知圆锥的母线长为5,底面周长为6π,则它的体积为()A.10πB.12πC.15πD.36π【变式5-1】将半径为3,圆心角为23π的扇形作为侧面围成一个圆锥,则该圆锥的体积为()A.πB.C.3πD.3【变式5-2】已知圆锥的表面积为9π,它的侧面展开图是一个半圆,则此圆锥的体积为()A.3 B.3πC.9 D.9π【变式5-3】若一个圆柱与圆锥的高相等,且轴截面面积也相等,那么圆柱与圆锥的体积之比是( )A.1 B.1∶2 C.3∶2 D.3∶4题型六圆台的体积方法概要:台体的体积转化为求锥体的体积.根据台体的定义进行“补形”,还原为锥体,采用“大锥体”减去“小锥体”的方法求台体的体积.【例6】已知某圆台的上、下底面面积分别是π,4π,侧面积是6π,则这个圆台的体积是_______.【变式6-1】圆台上底半径为2,下底半径为6,母线长为5,则圆台的体积为()A.40πB.52πC.50πD.212 3π【变式6-2】古代将圆台称为“圆亭”,《九章算术》中“今有圆亭,下周三丈,上周二丈,高一丈,问积几何?”即一圆台形建筑物,下底周长3丈,上底周长2丈,高1丈,则它的体积为()A.198π立方丈B.1912π立方丈C.198π立方丈D.19π12立方丈【变式6-3】设圆台的高为3,如图,在轴截面A1B1BA中,∠A1AB=60°,AA1⊥A1B,则圆台的体积为____________.题型七球的表面积和体积【例7】(1)已知球的直径为6 cm,求它的表面积和体积;(2)已知球的表面积为64π,求它的体积;(3)已知球的体积为500π3,求它的表面积.【变式7-1】若一个球的直径为2,则此球的表面积为()A.2πB.16πC.8πD.4π【变式7-2】两个球的半径相差1,表面积之差为28π,则它们的体积和为____________.【变式7-3】三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A.1倍B.2倍C.95倍D.74倍题型八球的截面问题【例8】一平面截球O的球面所得圆的半径为1,球心O到平面α的距离为2,则此球的体积为( )A.6π B.43π C.46π D.63π【变式8-1】如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,若不计容器厚度,则球的体积为( )A.500π3cm3B.866π3cm3C.1372π3cm3D.2048π3cm3【变式8-2】球的表面积为400π,一个截面的面积为64π,则球心到截面的距离为____________.【变式8-3】一个距离球心为3的平面截球所得的圆面面积为π,则球的体积为____________。

1.1.3 圆柱 圆锥 圆台和球

1.1.3 圆柱 圆锥 圆台和球

张喜林制§1.1.3 圆柱、圆锥、圆台和球教材知识检索考点知识清单基本概念1.以矩形一边所在的直线为旋转轴,其余三边旋转一周而形成的曲面所围成的几何体叫做____,旋转轴叫做____,垂直于轴的边旋转形成的圆面叫做圆柱的____,平行于轴的边旋转形成的曲面叫做圆柱的____,无论旋转到什么位置都不垂直于轴的这条边叫做____.2.以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转一周而形成的曲面所围成的几何体叫做____,斜边旋转形成的曲面叫做____,无论旋转到什么位置,这条边都叫做 ,另一条直角边旋转形成的面叫做____.3.以直角梯形的直角腰所在的直线为旋转轴,其余三边旋转一周而形成的曲面所围成的几何体叫做 ,垂直于轴的边旋转形成的圆面叫做圆台的 ,另一条斜腰旋转形成的曲面叫做圆台的 ,这条边无论旋转到什么位置都叫做____.4.一个半圆绕着它的直径所在的直线旋转一周所形成的曲面叫做 ;球面围成的几何体,叫做 ;形成球的半圆的圆心叫做 ;连接球面上的点和球心的线段,叫做 ;连接球面上两点且通过球心的线段叫做____,球面也可以看作 的点的集合.要点核心解读1.圆柱、圆锥、圆台的性质(1)对于圆柱的性质,要注意以下两点:一是轴线垂直于圆柱的底面;二是三个截面的性质——平行于底面的截面是与底面全等的圆,轴截面是一个由上、下底面圆的直径和母线组成的矩形,平行于轴线的截面是一个由上、下底面圆的弦和母线组成的矩形.(2)对于圆锥的性质,要注意以下两点:一是两类截面——平行于底面的截面是与底面相似的圆,过圆锥的顶点且与底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形;二是圆锥的母线l 、高h 和底面圆的半径R 组成一个直角三角形,有关圆锥的计算一般归结为解这个直角三角形,往往会用到关系式.222R h l +=(3)对于圆台的性质,要注意以下两点:一是圆台的母线共点,所以由任意两条母线确定的截面为一等腰梯形,但是与上、下底面都相交的截面不一定是梯形;二是圆台的母线l 、高h 和上底面圆的半径r 、下底面的半径R 组成一个直角梯形,且有222)(r R h l -+=成立,有关圆台的计算问题,常归结为解这个直角梯形:2.球的截面性质(1)球心和截面圆心的连线垂直于截面;(2)如图1-1-3 -1所示,球心到截面的距离d 与球的半径R 及截面圆的半径r ,有如下关系:.22d R r -=球面被经过球心的平面截得的圆叫做球的大圆;被不经过球心的平面截得的圆叫做球的小圆.由于球的大圆含有球的全部元素,所以在解答有关球的计算问题时,常作出球的一个大圆,化“球”为“圆”,利用平面几何的有关定理来解决.3.圆柱、圆锥和圆台的轴截面及侧面展开图(1)圆柱的轴截面及侧面展开图(如图1-1-3 -2所示).(2)圆锥的轴截面及侧面展开图(如图1-1-3 -3所示).(3)圆台的轴截面及侧面展开图(如图1-1-3 -4所示)4.球面距离(1)球面距离的概念.在球面上,两点之间的最短距离,就是经过这两点的大圆在这两点间的-段劣弧的长度,我们把这段弧长叫做两点的球面距离.(2)地球的经度和纬度.当把地球看作—个球时,经线是球面上从北极到南极的半个大圆.00经线(本初子午线)、东经180。

1. 1.2 圆柱,圆锥.圆台和球

1. 1.2 圆柱,圆锥.圆台和球

1.1.2圆柱、圆锥、圆台和球在我们生活的世界中,从土木建筑到家居装潢,从机械设计到商品包装,从航空测绘到零件视图……无不存在着形状各异的物体,它们蕴含着形状各异的圆柱、圆锥、圆台和球等空间图形.每种空间图形各自具有不同的几何结构特征,与我们的生活息息相关,因此对空间图形的研究和应用非常重要.1.以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面,过轴的截面是全等矩形.2.以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥.旋转轴叫做圆锥的轴;垂直于轴的直角边旋转而成的圆面叫做圆锥的底面;斜边旋转而成的曲面叫做圆锥的侧面;斜边叫做圆锥的母线,过轴的截面是全等的等腰三角形.3.用一个平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.原圆锥的底面和截面分别叫做圆台的下底面和上底面.4.以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,简称球.半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.5.由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体.6.柱体:棱柱、圆柱;锥体:棱锥、圆锥;台体:棱台、圆台;球体是七种最基本的简单几何体,日常生活中见到的各种几何体则是由它们所组合成的简单组合体.7.由一些简单的几何体组合而成的几何体叫做简单组合体.简单组合体的构成有两种基本形式:一种是由简单几何体拼接而成;一种是由简单几何体截去或挖去一部分而成.8.简单组合体包括:多面体与多面体的组合、多面体与旋转体的组合、旋转体与旋转体的组合;在画简单组合体时,要把遮住的部分用虚线来表示或不画.,圆柱、圆锥、圆台、球的结构特征圆柱的结构特征:①两底面是全等的圆面;②所有母线长相等且互相平行;③过圆柱的轴截面都是全等矩形;④圆柱沿着它的一条母线剪开后的侧面展开图是矩形.圆锥的结构特征:①平行于底面的截面都是相似的圆;②所有母线长相等且相交于一点;③过圆锥的轴截面都是全等的等腰三角形;④圆锥沿它的一条母线剪开的侧面展开图是扇形.圆台的结构特征:①平行于底面的截面都是相似的圆;②所有母线长相等且延长线相交于一点;③过圆台的轴截面都是全等的等腰梯形;④圆台沿它的一条母线剪开后的侧面展开圆是扇环.球的结构特征:①过球心的截面都是全等的圆;②球的直径垂直截面,所截得的都是相似的圆.理解和掌握圆柱、圆锥、圆台、球的结构特征,要学会从直观感受空间旋转体的形成过程,从实物中概括出圆柱、圆锥、圆台和球的定义,以定义展开,多进行类比、归纳和整理,通过比较四者间的异同点加强记忆.圆柱、圆锥、圆台的截面包括平行于底面的截面和过轴的截面(简称轴截面)两类,球的截面有大圆和小圆之分,谨记其截面的形状是关键.基础巩固知识点一圆柱、圆锥和圆台的结构特征1.在几何体:①圆柱;②圆锥;③圆台;④球中,轴截面一定是圆面的有________(填序号).解析:根据结构特征判断.2.下列命题中说法错误的是________(填序号).①以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体叫做圆柱;②以直角三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面围成的几何体叫做圆锥;③以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的曲面围成的几何体叫做圆锥;④以等腰三角形的底边上的高所在直线为旋转轴,其余各边旋转形成的曲面围成的几何体叫做圆锥.解析:根据圆锥定义知②中应改为以一条直角边旋转.答案:②3.以下命题正确的是________(填序号).①通过圆台侧面上一点有无数条母线;②夹在圆柱的两个平行截面间的几何体还是圆柱;③圆锥截去一个小圆锥后剩余部分是圆台;④棱锥截去一个小棱锥后剩余部分是棱台.解析:根据定义判定③正确;①中只有一条母线;②中两个平行截面应与底面平行;④中小棱锥底面应与大棱锥底面平行.答案:③知识点二球的结构特征4.半圆绕着直径旋转一周所得的几何图形是________.解析:注意球与球面、半圆与半圆面的区别.5.已知半径为5的球的两个平行截面的周长分别为6π和8π,则两平行平面间的距离为________.解析:由截面的周长分别为6π和8π得两个截面半径分别为3和4,又球的半径为5,故圆心到两个截面的距离分别为4和3.故当两个截面在球心同一侧时,平行平面间的距离为4-3=1,当两个截面在球心两侧时,平行平面间的距离为4+3=7.答案:1或7知识点三组合体的有关问题6.一个正方体内接于一个球,过球心作一截面,如下图所示,则截面的可能图形是________(填序号).解析:当截面平行于正方体的一个侧面时得③,当截面过正方体对角线时得②,当截面不平行于任何侧面也不过对角线时得①,但无论如何都不能得出④.答案:①②③7.如下图,一个圆环面绕着过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.试着说出它的名称为________.解析:旋转形成的几何体是由两个同心球构成的,即大球中挖去一个同心的小球.答案:空心球8.描述下列几何体的结构特征.解析:(1)两个圆台组合而成的组合体;(2)圆台挖去一个等高圆锥而成的组合体;(3)圆锥挖去一个等高三棱锥而成的组合体.能力升级综合点一空间旋转体的组合与分割9.作一个圆柱的内接正三棱柱,又作这个三棱柱的内切圆柱,那么两个圆柱的底面半径之比为________.解析:两个圆柱的底面半径之比即为正三角形的外接圆与内切圆半径之比.答案:2∶1综合点二 旋转体中的简单计算10.用平行于圆锥的底面的平面截圆锥,所得截面面积与底面面积的比是1:3,这个截面把圆锥的母线分为两段的比是________.解析:面积比为相似比的平方.答案:1(3-1)11.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是________.解析:设底面半径为r ,母线为l ,则2πr =πl ,∴l =2r .答案:60°综合点三 相切球的空间想象12.把四个半径为R 的小球放在桌面上,使下层三个,上层一个,两两相切,求上层小球最高处离桌面的距离.解析:如右图,由于四个半径为R 的球两两相切,故四个球的球心构成一个棱长为2R 的正四面体O 4O 1O 2O 3,因为底面等边三角形O 1O 2O 3的高为32×2R ,∴该棱锥的高OO 4=(2R )2-⎝ ⎛⎭⎪⎫233R 2=263R .∴上层小球最高处离桌面的距离d =263R +R +R =⎝⎛⎭⎪⎫2+263R .。

高考球类型及例题

高考球类型及例题

高考球类型及例题 Prepared on 22 November 2020高考球类型及例题1、球定义2、球面距离经度纬度:此类题主要目的在于明确经度和纬度概念,注意及利用圆的有关性质,弧长公式,球的截面的性质等球截面:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两 个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.3、球内接多面体:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题4、多面体内切球、:解决有关几何体接切的问题,如何选取截面是个关键.5、球与球外切:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比总之:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.类型例题一球定义例1 过球面上两点作球的大圆,可能的个数是( ).A .有且只有一个B .一个或无穷多个C .无数个D .以上均不正确分析:对球面上两点及球心这三点的位置关系进行讨论.当三点不共线时,可以作一个大圆;当三点共线时,可作无数个大圆,故选B .答案:B 说明:解此易选出错误判断A .其原因是忽视球心的位置. 类型例题二球面距离经度纬度例1.已知地球的半径为R ,球面上B A ,两点都在北纬45 圈上,它们的球面距离为R 3π,A 点在东经30 上,求B 点的位置及B A ,两点所在其纬线圈上所对应的劣弧的长度.分析:求点B 的位置,如图就是求B AO 1∠的大小,只需求出弦AB 的长度.对于AB 应把它放在OAB ∆中求解,根据球面距离概念计算即可.解:如图,设球心为O ,北纬45 圈的中心为1O ,由B A ,两点的球面距离为R 3π,所以AOB ∠=3π, ∴OAB ∆为等边三角形.于是R AB =.由R R B O A O 2245cos 11=⋅== , 22121AB B O A O =+∴.即B AO 1∠=2π. 又A 点在东经30 上,故B 的位置在东经120 ,北纬45 或者西经60 ,北纬45 .B A ,∴两点在其纬线圈上所对应的劣弧R A O ππ4221=⋅. 说明:此题主要目的在于明确经度和纬度概念,及利用球的截面的性质和圆的有关性质设计计算方案.类型例题三球截面例1 在球心同侧有相距cm 9的两个平行截面,它们的面积分别为249cm π和2400cm π.求球的表面积.分析:可画出球的轴截面,利用球的截面性质,求球的半径.解:如图为球的轴截面,由球的截面性质知,21//BO AO ,且若1O 、2O 分别为两截面圆的圆心,则11AO OO ⊥,22BO OO ⊥.设球的半径为R .∵ππ4922=⋅B O ,∴)(72cm B O =同理ππ40021=⋅A O ,∴)(201cm A O =设xcm OO =1,则cm x OO )9(2+=.在A OO Rt 1∆中,22220+=x R ;在B OO Rt 2∆中,2227)9(++=x R ,∴222)9(720++=+x x ,解得15=x ,∴22222520=+=x R ,∴25=R∴)(2500422cm R S ππ==球.∴球的表面积为22500cm π.例2.用两个平行平面去截半径为R 的球面,两个截面圆的半径为cm r 241=,cm r 152=.两截面间的距离为cm d 27=,求球的表面积.分析:此类题目的求解是首先做出截面图,再根据条件和截面性质做出与球的半径有关的三角形等图形,利用方程思想计算可得.解:设垂直于截面的大圆面交两截面圆于2211,B A B A ,上述大圆的垂直于11B A 的直径交2211,B A B A 于21,O O ,如图2.设2211,d OO d OO ==,则⎪⎩⎪⎨⎧=+=+=+2222222121152427R d R d d d ,解得25=R .)(2500422cm R S ππ==∴圆.说明:通过此类题目,明确球的有关计算问题需先将立体问题转化为平面问题,进一步熟悉有关圆的基础知识,熟练使用方程思想,合理设元,列式,求解.例3 A 、B 是半径为R 的球O 的球面上两点,它们的球面距离为R 2π,求过A 、B 的平面中,与球心的最大距离是多少分析:A 、B 是球面上两点,球面距离为R 2π,转化为球心角2π=∠AOB ,从而R AB 2=,由关系式222d R r -=,r 越小,d 越大,r 是过A 、B 的球的截面圆的半径,所以AB 为圆的直径,r 最小.解:∵球面上A 、B 两点的球面的距离为R 2π. ∴2π=∠AOB ,∴R AB 2=.当AB 成为圆的直径时,r 取最小值,此时R AB r 2221==,d 取最大值, R r R d 2222=-=, 即球心与过A 、B 的截面圆距离最大值为R 22. 说明:利用关系式222d R r -=不仅可以知二求一,而且可以借此分析截面的半径r 与球心到截面的距离d 之间的变化规律.此外本题还涉及到球面距离的使用,球面距离直接与两点的球心角AOB ∠有关,而球心角AOB ∠又直接与AB 长度发生联系,这是使用或者求球面距离的一条基本线索,继续看下面的例子.例4 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过3个点的小圆的周长为π4,那么这个球的半径为( ).A .34B .32C .2D .3 分析:利用球的概念性质和球面距离的知识求解.设球的半径为R ,小圆的半径为r ,则ππ42=r ,∴2=r .如图所示,设三点A 、B 、C ,O 为球心,362ππ==∠=∠=∠COA BOC AOB .又∵OB OA =,∴AOB ∆是等边三角形,同样,BOC ∆、COA ∆都是等边三角形,得ABC ∆为等边三角形,边长等于球半径R .r 为ABC ∆的外接圆半径,R AB r 3333==,3233==r R . 答案:B 说明:本题是近年来球这部分所出的最为综合全面的一道题,除了考查常规的与多面体综合外,还考查了球面距离,几乎涵盖了球这部分所有的主要知识点,是一道不可多得的好题.类型例题四球内接例1.自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求222MC MB MA ++的值.分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.解:以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径.∴222MC MB MA ++=224)2(R R =.说明:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算.例2 半径为R 的球内接一个各棱长都相等的四棱锥.求该四棱锥的体积.分析:四棱锥的体积由它的底面积和高确定,只需找到底面、高与球半径的关系即可,解决这个问题的关键是如何选取截面,如图所示.解:∵棱锥底面各边相等,∴底面是菱形.∵棱锥侧棱都相等,∴侧棱在底面上射影都相等,即底面有外接圆.∴底面是正方形,且顶点在底面上的射影是底面中心,此棱锥是正棱锥.过该棱锥对角面作截面,设棱长为a ,则底面对角线a AC 2=,故截面SAC 是等腰直角三角形.又因为SAC 是球的大圆的内接三角形,所以R AC 2=,即R a 2=.∴高R SO =,体积33231R SO S V =⋅=底. 说明:在作四棱锥的截面时,容易误认为截面是正三角形,如果作平等于底面一边的对称截面(过棱锥顶点,底面中心,且与底面一边平行),可得一个腰长为斜高、底为底面边长的等腰三角形,但这一等腰三角形并不是外接球大圆的内接三角形.可见,解决有关几何体接切的问题,如何选取截面是个关键.解决此类问题的方法通常是先确定多面体的棱长(或高或某个截面内的元素)与球半径的关系,再进一步求解.例3 在球面上有四个点P 、A 、B 、C ,如果PA 、PB 、PC 两两互相垂直,且a PC PB PA ===.求这个球的表面积.分析:24R S π=球面,因而求球的表面关键在于求出球的半径R .解:设过A 、B 、C 三点的球的截面半径为r ,球心到该圆面的距离为d ,则222d r R +=.由题意知P 、A 、B 、C 四点不共面,因而是以这四个点为顶点的三棱锥ABC P -(如图所示).ABC ∆的外接圆是球的截面圆.由PA 、PB 、PC 互相垂直知,P 在ABC 面上的射影'O 是ABC ∆的垂心,又a PC PB PA ===,所以'O 也是ABC ∆的外心,所以ABC ∆为等边三角形, 且边长为a 2,'O 是其中心,从而也是截面圆的圆心.据球的截面的性质,有'OO 垂直于⊙'O 所在平面,因此P 、'O 、O 共线,三棱锥ABC P -是高为'PO 的球内接正三棱锥,从而'PO R d -=.由已知得a r 36=,a PO 33'=,所以2'2222)(PO R r d r R -+=+=,可求得a R 23=,∴2234a R S ππ==球面. 说明:涉及到球与圆柱、圆锥、圆台切接问题,一般作其轴截面;涉及到球与棱柱、棱锥、棱台的切接问题,一般过球心及多面体中特殊点或线作截面,把空间问题化为平面问题,进而利用平面几何的知识寻找几何体元素间的关系.例4 球面上有三点A 、B 、C 组成这个球的一个截面的内接三角形三个顶点,其中18=AB ,24=BC 、30=AC ,球心到这个截面的距离为球半径的一半,求球的表面积.分析:求球的表面积的关键是求球的半径,本题的条件涉及球的截面,ABC ∆是截面的内接三角形,由此可利用三角形求截面圆的半径,球心到截面的距离为球半径的一半,从而可由关系式222d R r -=求出球半径R .解:∵18=AB ,24=BC ,30=AC ,∴222AC BC AB =+,ABC ∆是以AC 为斜边的直角三角形.∴ABC ∆的外接圆的半径为15,即截面圆的半径15=r , 又球心到截面的距离为R d 21=, ∴22215)21(=-R R ,得310=R . ∴球的表面积为πππ1200)310(4422===R S .说明:涉及到球的截面的问题,总是使用关系式22d R r -=解题,我们可以通过两个量求第三个量,也可能是抓三个量之间的其它关系,求三个量.例如,过球O 表面上一点A 引三条长度相等的弦AB 、AC 、AD ,且两两夹角都为︒60,若球半径为R ,求弦AB 的长度.由条件可抓住BCD A -是正四面体,A 、B 、C 、D 为球上四点,则球心在正四面体中心,设a AB =,则截面BCD 与球心的距离R a d -=36,过点B 、C 、D 的截面圆半径a r 33=,所以222)36()33(R a R a --=得R a 362=. 例5 正三棱锥ABC P -的侧棱长为l ,两侧棱的夹角为α2,求它的外接球的体积.分析:求球半径,是解本题的关键.解:如图,作⊥PD 底面ABC 于D ,则D 为正ABC ∆的中心.∵⊥OD 底面ABC ,∴O 、P 、D 三点共线. ∵l PC PB PA ===,α2=∠APB .∴ααsin 22cos 2222l l l AB =-=.∴αsin 33233==AB AD , 设β=∠APD ,作PA OE ⊥于E ,在APD Rt ∆中,∵αβsin 332sin ==PA AD , 又R OA OP ==,∴l PA PE 2121==. 在POE Rt ∆中,∵αβ2sin 3412cos -===lPE PO R , ∴)sin 43(2sin 433sin 34123422332ααπαπ--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=l l V 球. 说明:解决与球有关的接、切问题时,一般作一个适当的截面,将问题转化为平面问题解决,这类截面通常指圆锥的轴截面、球的大圆、多面体的对角面等,在这个截面中应包括每个几何体的主要元素,且这个截面必须能反映出体和体之间的主要位置关系和数量关系.类型例题五球外切例1.如图1所示,在棱长为1的正方体内有两个球相外切且又分别与正方体内切.(1)求两球半径之和;(2)球的半径为多少时,两球体积之和最小.分析:此题的关键在于作截面,一个球在正方体内,学生一般知道作对角面,而两个球的球心连线也应在正方体的体对角线上,故仍需作正方体的对角面 ,得如图2的截面图,在图2中,观察R 与r 和棱长间的关系即可. 解:如图2,球心1O 和2O 在AC 上,过1O ,2O 分别作BC AD ,的垂线交于F E ,. 则由3,1==AC AB 得R CO r AO 3,321==.3)(3=+++∴R r R r ,233133-=+=+∴r R . (1)设两球体积之和为V ,则))((34)(342233r Rr R R r r R V +-+=+=ππ =[]=-+rR r R 3)(233342π⎥⎦⎤⎢⎣⎡--)233(3)233(233342R R π =⎥⎦⎤⎢⎣⎡-+--22)233(2)33(3323334R R π 当433-=R 时,V 有最小值.∴当433-==r R 时,体积之和有最小值. 例2.设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.解:如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.设R OA r OO ==,1,正四面体的一个面的面积为S .图2依题意得)(31r R S V BCD A +=-, 又S r V V BCD O BCD A ⋅⨯==--3144 r r R 4=+∴即r R 3=. 所以914422==R r ππ外接球的表面积内切球的表面积.271343433==R r ππ外接球的体积内切球的体积. 说明:正四面体与球的接切问题,可通过线面关系证出,内切球和外接球的两个球心是重合的,为正四面体高的四等分点,即定有内切球的半径h r 41=(h 为正四面体的高),且外接球的半径r R 3=.例3 已知棱长为3的正四面体ABCD ,E 、F 是棱AB 、AC 上的点,且FC AF 2=,AE BE 2=.求四面体AEFD 的内切球半径和外接球半径.分析:可用何种法求内切球半径,把AEF D V -分成4个小体积(如图).解:设四面体AEFD 内切球半径为r ,球心N ,外接球半径R ,球心M ,连结NA 、NE 、NF 、ND ,则EFD N ADE N AFD N AEF N AEFD V V V V V ----+++=.四面体AEFD 各面的面积为2392==∆∆ABC AEF S S ,23332==∆∆ABC AFD S S ,43331==∆∆ABC AED S S . DEF ∆各边边长分别为3=EF ,7==DE DF , ∴345=∆DEF S . ∵2292==ABCD ADEF V V , )(31DEF AED AFD AEF AEFD S S S S r V ∆∆∆∆+++=, ∴)43543323323(3122+++=r ,∴86=r . 如图,AEF ∆是直角三角形,其个心是斜边AF 的中点G .设ABC ∆中心为1O ,连结1DO ,过G 作平面AEF 的垂线,M 必在此垂线上, 连结1GO 、MD .∵ABC MG 平面⊥,ABC DO 平面⊥1,∴1//DO MG ,1GO MG ⊥.在直角梯形DM GO 1中,11=GO ,61=DO ,R MD =,1222-=-=R AG AM MG ,又∵22121)(MD GO MG DO =+-,∴2221)16(R R =+--, 解得:210=R . 综上,四面体AEFD 的内切球半径为86,外接球半径为210. 说明:求四面体外接半径的关键是确定其球心.对此多数同学束手无策,而这主要是因本题图形的背景较复杂.若把该四面体单独移出,则不参发现其球心在过各面三角形外心且与该三角形所在平面垂直的直线上,另还须注意其球心不一定在四面体内部.本题在求四面体内切球半径时,将该四面体分割为以球心为顶点,各面为底面的四个三棱锥,通过其体积关系求得半径.这样分割的思想方法应给予重视.例4 一个倒圆锥形容器,它的轴截面是正三角形,在容器内注入水,并放入一个半径为r 的铁球,这时水面恰好和球面相切.问将球从圆锥内取出后,圆锥内水平面的高是多少分析:先作出轴截面,弄清楚圆锥和球相切时的位置特征,利用铁球取出后,锥内下降部分(圆台)的体积等于球的体积,列式求解.解:如图,作轴截面,设球未取出时,水面高h PC =,球取出后,水面高x PH =. ∵r AC 3=,r PC 3=,则以AB 为底面直径的圆锥容积为3233)3(31r r r ππ=⋅=, 334r V π=球. 球取出后,水面下降到EF ,水的体积为32291)30tan (3131x PH PH PH EH V πππ=︒=⋅⋅=水. 又球圆锥水V V V -=,则33334391r r x πππ-=, 解得r x 315=. 答:球取出后,圆锥内水平面高为r 315.说明:抓住水的何种不变这个关键,本题迅速获解.例5 正三棱锥的高为1,底面边长为62,正三棱锥内有一个球与其四个面相切.求球的表面积与体积.分析:球与正三棱锥四个面相切,实际上,球是正三棱锥的内切球,球心到正三棱锥的四个面的距离相等,都为球半径R .这样求球的半径可转化为球球心到三棱锥面的距离,而点面距离常可以用等体积法解决.解:如图,球O 是正三棱锥ABC P -的内切球,O 到正三棱锥四个面的距离都是球的半径R .PH 是正三棱锥的高,即1=PH .E 是BC 边中点,H 在AE 上,ABC ∆的边长为62,∴26263=⨯=HE . ∴3=PE 可以得到2321=⋅===∆∆∆PE BC S S S PBC PAC PAB . 由等体积法,ABC O PBC O PAC O PAB O ABC P V V V V V -----+++= ∴R R ⨯⨯+⨯⨯⨯=⨯⨯363132******** 得:2633232-=+=R , ∴πππ)625(8)26(4422-=-==R S 球. ∴33)26(3434-==ππR V 球. 说明:球心是决定球的位置关键点,本题利用球心到正三棱锥四个面的距离相等且为球半径R 来求出R ,以球心的位置特点来抓球的基本量,这是解决球有关问题常用的方法.比如:四个半径为R 的球两两外切,其中三个放在桌面上,第四个球放在这三个球之上,则第四个球离开桌面的高度为多少这里,四个球的球心这间的距离都是R 2,四个球心构成一个棱长为R 2的正四面体,可以计算正四面体的高为R R 362236=⨯,从而上面球离开桌面的高度为R R 3622+. 例6求球与它的外切圆柱、外切等边圆锥的体积之比.分析:首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系.解:如图,等边SAB ∆为圆锥的轴截面,此截面截圆柱得正方形11CDD C ,截球面得球的大圆圆1O .设球的半径R OO =1,则它的外切圆柱的高为R 2,底面半径为R ; R O O OB 330cot 1=︒⋅=,R R OB SO 33360tan =⋅=︒⋅=, ∴334R V π=球,3222R R R V ππ=⋅=柱,3233)3(31R R R V ππ=⋅⋅=锥,∴964∶∶∶∶锥柱球=V V V .。

高一数学圆柱、圆锥、圆台和球的表面积与体积

高一数学圆柱、圆锥、圆台和球的表面积与体积

1.若圆锥的底面半径为1,高为3,则圆锥的表面积为(
)
A.π
B.2π
C.3π
D.4π
2.圆台的体积为7π,上、下底面的半径分别为1和2,则圆台的高为( )
A.3
B.4
C.5
D.6
3.若球的体积与其表面积数值相等,则球的半径等于( )
A.12
B.1
C.2
D.3 4.用与球心距离为2的平面去截球,所得的截面面积为π,则球的体积为( ) A.20π3
B.
205π3 C.205π D.100π3 5.两个半径为1的实心铁球,熔化成一个大球,这个大球的半径是________.
6.设甲、乙两个圆柱的底面积分别为S 1,S 2,体积分别为V 1,V 2.若它们的侧面积
相等,且S 1S 2=94,则V 1V 2
的值是________. 7.圆柱有一个内接长方体AC 1,长方体体对角线长是10 2 cm ,圆柱的侧面展开平面图为矩形,此矩形的面积是100π cm 2,求圆柱的体积.
参考答案:1. C 2. A 3. D 4. B 5. 32 6.32
7. 解 设圆柱底面半径为r cm ,高为h cm.
如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,
则⎩
⎨⎧(2r )2+h 2=(102)2,2πrh =100π,∴⎩⎨⎧r =5,h =10. ∴V 圆柱=Sh =πr 2h =π×52×10
=250π(cm 3).
∴圆柱体积为250π cm 3.。

高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

高中数学第八章立体几何初步8.3.圆柱圆锥圆台球的表面积和体积习题含解析第二册

8.3。

2圆柱、圆锥、圆台、球的表面积和体积课后篇巩固提升基础达标练1。

(多选题)一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,下列结论正确的是()A。

圆柱的侧面积为2πR2B.圆锥的侧面积为2πR2C。

圆柱的侧面积与球的表面积相等D.圆柱、圆锥、球的体积之比为3∶1∶2R,则圆柱的侧面积为2πR×2R=4πR2,∴A错误;圆锥的侧面积为πR×R=πR2,∴B错误;球的表面积为4πR2,∵圆柱的侧面积为4πR2,∴C正确;∵V圆柱=πR2·2R=2πR3,V圆锥=πR2·2R=πR3,V球=πR3,∴V圆柱∶V圆锥∶V球=2πR3∶πR3∶πR3=3∶1∶2,∴D正确.2.若一个正方体内接于表面积为4π的球,则正方体的表面积等于()A.4 B。

8 C。

8 D.8x,球半径为R,则S球=4πR2=4π,∴R=1。

∵正方体内接于球,∴x=2R=2,∴x=,∴S正=6x2=6×=8。

3。

(2019广东高二期末)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9,则三棱锥D—ABC体积的最大值为()A。

12 B.18C.24D.54点M为三角形ABC的中心,E为AC的中点,当DM⊥平面ABC时,三棱锥D—ABC的体积最大,此时,OD=OB=R=4.∵S△ABC=AB2=9,∴AB=6.∵点M为△ABC的中心,∴BM=BE=2。

∴Rt△OMB中,有OM==2。

∴DM=OD+OM=4+2=6。

∴(V D—ABC)max=×9×6=18。

故选B。

4。

《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A。

高中数学 必修2(人教版)8.3.2圆柱、圆锥、圆台、球的表面积和体积

高中数学 必修2(人教版)8.3.2圆柱、圆锥、圆台、球的表面积和体积

圆 台
上底半径为r,下底半径为R,高为h,V=
1 3
π(r2+rR+R2)h

V=43πR3
状元随笔 (1)求旋转体的表面积时,要清楚常见旋转体的侧 面展开图是什么,关键是求其母线长与上、下底面的半径.
(2)柱体、锥体、台体体积之间的关系 柱体、锥体、台体的关系如下:
(3)两个结论 ①两个球的体积之比等于这两个球的半径之比的立方. ②两个球的表面积之比等于这两个球的半径之比的平方.
易错警示
易错原因
纠错心得
球心所在的截面位置判断错误, 对多面体及外接球的几何特点理
解模糊,基本量之间的关系不 清.
解决此类问题要确定球心的位置 及其所在的截面,在截面中寻找 球半径与多面体基本量的关系.
×2×1×r×2+
ห้องสมุดไป่ตู้
1 3
×
1 2
×1×1×r+
1 3
×12× 2× 答案:4π
5-12×r,解得r=14. 故内切球的表面积为4πr2=π4.
方法归纳
对于正四面体,有以下结论:
(1)正四面体的外接球与内切球的球心重合;
(2)棱长为a的正四面体的高为
6 3
a,其外接球的半径为
6 4
a,
内切球的半径为
解析:设球的半径为R,则圆柱的底面半径为R,高为2R. ∵V球=43πR3,V圆柱=πR2·2R=2πR3, ∴V球:V圆柱=43πR3:2πR3=23. 答案:2:3
易错辨析 对球的“切、接”的结构特点认识模糊致错 例5 设三棱柱的侧棱垂直于底面,所有棱长都为a,顶点在 一个球面上,则该球的表面积为( ) A.πa2 B.73πa2 C.74πa2 D.5πa2
解析:在三棱锥P - ABC中,PA,PB,PC两两垂直,则以 PA,PB,PC为邻边作一长方体,所以三棱锥P - ABC的外接球即

高中数学必修2 1.1.3圆柱、圆锥、圆台和球

高中数学必修2  1.1.3圆柱、圆锥、圆台和球

1.1.3圆柱、圆锥、圆台和球学习目标1. 能概述圆柱、圆锥、圆台台体、球的结构特征;2.能在几何体中进行相关的简单运算;3. 能描述一些简单组合体的结构.学法指导自学教材P11~ P12,弄清楚圆柱、圆锥、圆台的结构特征探究1:圆柱的结构特征问题:观察下面的旋转体,你能说出它们是什么平面图形通过怎样的旋转得到的吗?1;以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的几何体,叫做旋转轴叫做圆柱的;垂直于轴的边旋转而成的圆面叫做圆柱的;平行于轴的边旋转而成的曲面叫做圆柱的;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的,如图所示:圆柱用表示它的轴的字母表示,图中的圆柱可表示为OO .探究2:圆锥的结构特征问题:下图的实物是一个圆锥,与圆柱一样也是平面图形旋转而成的. 仿照圆柱的有关定义,你能定义什么是圆锥以及圆锥的轴、底面、侧面、母线吗?试在旁边的图中标出来.新知2:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫圆锥.圆锥也用表示它的轴的字母表示.棱锥与圆锥统称为锥体.探究3:圆台的结构特征问题:下图中的物体叫做圆台,也是旋转体.它是什么图形通过怎样的旋转得到的呢?除了旋转得到以外,对比棱台,圆台还可以怎样得到呢?新知3;直角梯形以垂直于底边的腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫圆台(frustum of a cone).用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分也是圆台.圆台和圆柱、圆锥一样,也有轴、底面、侧面、母线,请你在上图中标出它们,并把圆台用字母表示出来. 棱台与圆台统称为台体.反思:结合结构特征,从变化的角度思考,圆台、圆柱、圆锥三者之间有什么关系?探究4:球的结构特征问题:球也是旋转体,怎么得到的?新知4:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体叫做球体(solid sphere),简称球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径;球通常用表示球心的字母O表示,如球O.探究5:简单组合体的结构特征问题:矿泉水塑料瓶由哪些几何体构成?灯管呢?新知5:由具有柱、锥、台、球等简单几何体组合而成的几何体叫简单组合体.现实生活中的物体大多是简单组合体.简单组合体的构成有两种方式:由简单几何体拼接而成;由简单几何体截去或挖去一部分而成.※典型例题例将下列几何体按结构特征分类填空:⑴集装箱⑵运油车的油罐⑶排球⑷羽毛球⑸魔方⑹金字塔⑺三棱镜⑻滤纸卷成的漏斗⑼量筒⑽量杯⑾地球⑿一桶方便面⒀一个四棱锥形的建筑物被飓风挂走了一个顶,剩下的上底面与地面平行;①棱柱结构特征的有________________________;②棱锥结构特征的有________________________;③圆柱结构特征的有________________________;④圆锥结构特征的有________________________;⑤棱台结构特征的有________________________;⑥圆台结构特征的有________________________;⑦球的结构特征的有________________________;⑧简单组合体______________________________.※动手试试'',剩下的几何体是什么?截去的几何体是什练.如图,长方体被截去一部分,其中EH‖A D么?三、总结提升※学习小结1. 圆柱、圆锥、圆台、球的几何特征及有关概念;2. 简单组合体的结构特征.※知识拓展圆柱、圆锥的轴截面:过圆柱或圆锥轴的平面与圆柱或圆锥相交得到的平面形状,通常圆柱的轴截面是矩形,圆锥的轴截面是三角形.学习评价※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. Rt ABC∆三边长分别为3、4、5,绕着其中一边旋转得到圆锥,对所有可能描述不对的是().A.是底面半径3的圆锥B.是底面半径为4的圆锥C.是底面半径5的圆锥D.是母线长为5的圆锥2. 下列命题中正确的是().A.直角三角形绕一边旋转得到的旋转体是圆锥B.夹在圆柱的两个平行截面间的几何体是旋转体C.圆锥截去一个小圆锥后剩余部分是圆台D.通过圆台侧面上一点,有无数条母线3. 一个球内有一内接长方体,其长、宽、高分别为5、4、3,则球的直径为().A. B.4. 已知,ABCD为等腰梯形,两底边为AB,CD.且AB>CD,绕AB所在的直线旋转一周所得的几何体中是由、、的几何体构成的组合体.5. 圆锥母线长为R__________.课后作业1.如图,是由等腰梯形、矩形、半圆、倒形三角对接形成的轴对称平面图形,若将180后形成一个组合体,下面它绕轴旋转0说法不正确的是___________A.该组合体可以分割成圆台、圆柱、圆锥和两个球体B.该组合体仍然关于轴l对称C.该组合体中的圆锥和球只有一个公共点D.该组合体中的球和半球只有一个公共点,则球心到截面的距离为多少?2. 用一个平面截半径为25cm的球,截面面积是249cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆柱,圆锥,圆台和球
链接高考
1. (2016广东佛山一中月考,★☆☆)设A、B、C、D是球面上的四点,AB、AC、AD两两互相垂直,且AB=5,AC=4,AD=,则球的半径为( )
2. (2015山西大同一中期中,★★☆)已知矩形ABCD的顶点在半径为13的球O的球面上,且AB=8,BC=6,则棱锥O-ABCD的高为( )
3. (2015广西桂林第十八中学月考,★★☆)已知各顶点都在一个球面上的正方体的体积为8,则这个球的半径是( )
B.
4. (2015山西康杰中学期中,★★☆)如图,在三棱锥P-ABC中,三条侧棱PA,PB,PC两两互相垂直,且△PAB,△PAC,△PBC的面积依次为1,1,2,则三棱锥P-ABC的外接球的半径为( )
A.
5. (2014陕西,5改编,★☆☆)已知底面边长为1,侧棱长为的正四棱柱的各顶点均在同一个球面上,则该球的半径为________.
6. (2014大纲全国,8改编,★☆☆)正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的半径为________.
7. (2016四川雅安中学月考,★★☆)已知三棱锥P-ABC中,PA=PB=PC=4 cm,且PA、PB、PC两两垂直,若此三棱锥的四个顶点都在球面上,则这个球的半径为________cm.
8. (2015浙江杭州西湖高中月考,★★☆)已知一圆柱内接于球O,且圆柱的底面直径与母线长均为2,则球O的半径为________.
三年模拟
1. (2016吉林一中月考,★☆☆)如图所示的四个几何体,其中判断正确的是( )
A.(1)不是棱柱
B.(2)是棱柱
C.(3)是圆台
D.(4)是棱锥
2. (2016辽宁师大附中月考,★☆☆)一个直角三角形绕斜边旋转360°形成的空间几何体为( )
A.一个圆锥
B.一个圆锥和一个圆柱
C.两个圆锥
D.一个圆锥和一个圆台
3. (2016辽宁抚顺一中一模,★★☆)已知直三棱柱ABC-A
1B
1
C
1
的六个顶点
都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA
1
=12,则球O的半径为( )
A. C.
4. (2014辽宁大连教育学院期末,★☆☆)圆柱底面圆的半径和圆柱的高都为2,则圆柱侧面展开图的面积为( )
ππππ
5. (2016辽宁实验中学月考,★★☆)用一个半径为10厘米的半圆纸片卷成一个最大的无底圆锥,放在水平桌面上,被一阵风吹倒,如图,则它的最高点到桌面的距离为________.
6. (2016辽宁师大附中月考,★★★)已知正△ABC的三个顶点都在半径为2的球面上,球心O到平面ABC的距离为1,点E是线段BC的中点,过点E作球O 的截面,则截面面积的最小值是________.
7. (2015江西吉安一中期中,★★☆)中心角为135°,面积为B的扇形围成一个圆锥,若圆锥的全面积为A,则A∶B=________.。

相关文档
最新文档