大学物理实验傅里叶分析实验报告
傅里叶实验报告

一、实验目的1. 了解傅里叶变换的基本原理和方法。
2. 掌握傅里叶变换在信号处理中的应用。
3. 通过实验验证傅里叶变换在信号处理中的效果。
二、实验原理傅里叶变换是一种将信号从时域转换为频域的方法,它可以将一个复杂的信号分解为一系列不同频率的正弦波和余弦波的叠加。
傅里叶变换的基本原理是:任何周期信号都可以表示为一系列不同频率的正弦波和余弦波的叠加。
三、实验仪器与材料1. 实验箱2. 信号发生器3. 示波器4. 计算机及傅里叶变换软件四、实验步骤1. 设置信号发生器,产生一个正弦信号,频率为f1,幅度为A1。
2. 将信号发生器输出的信号输入到实验箱,通过示波器观察该信号。
3. 利用傅里叶变换软件对观察到的信号进行傅里叶变换,得到频谱图。
4. 改变信号发生器的频率,分别产生频率为f2、f3、f4的正弦信号,重复步骤2-3。
5. 分析不同频率信号的频谱图,观察傅里叶变换在信号处理中的应用。
五、实验数据与结果1. 当信号发生器频率为f1时,示波器显示的信号波形如图1所示。
图1:频率为f1的正弦信号波形2. 对频率为f1的正弦信号进行傅里叶变换,得到的频谱图如图2所示。
图2:频率为f1的正弦信号的频谱图从图2可以看出,频率为f1的正弦信号在频域中只有一个频率成分,即f1。
3. 重复步骤4,分别对频率为f2、f3、f4的正弦信号进行傅里叶变换,得到的频谱图分别如图3、图4、图5所示。
图3:频率为f2的正弦信号的频谱图图4:频率为f3的正弦信号的频谱图图5:频率为f4的正弦信号的频谱图从图3、图4、图5可以看出,不同频率的正弦信号在频域中分别只有一个频率成分,即对应的f2、f3、f4。
六、实验分析与讨论1. 傅里叶变换可以将信号从时域转换为频域,方便我们分析信号的频率成分。
2. 通过傅里叶变换,我们可以得到信号的频谱图,直观地观察信号的频率成分。
3. 实验结果表明,傅里叶变换在信号处理中具有重要作用,可以应用于信号分解、滤波、调制等领域。
大学物理实验傅里叶分析实验报告

脉搏、语音及图像信号的傅里叶分析一、实验简介任何波形的周期信号均可用傅里叶级数来表示。
傅里叶级数的各项代表了不同频率的正弦或余弦信号,即任何波形的周期信号都可以看作是这些信号(谐波)的叠加。
利用不同的方法,可以从周期信号中分解出它的各次谐波的幅值和相位。
也可依据信号的傅里叶级数表达式,将各次谐波按表达式的要求叠加得到所期望的信号。
二、实验目的1、了解常用周期信号的傅里叶级数表示。
2、了解周期脉搏信号、语音信号及图像信号的傅里叶分析过程3、理解体会傅里叶分析的理论及现实意义三、实验仪器脉搏语音实验仪器,数字信号发生器,示波器四、实验原理1、周期信号傅里叶分析的数学基础任意一个周期为T的函数f(t)都可以表示为傅里叶级数:其中为角频率,称为基频,为常数,和称为第n次谐波的幅值。
任何周期性非简谐交变信号均可用上述傅里叶级数进行展开,即分解为一系列不同次谐波的叠加。
对于如图1所示的方波,一个周期内的函数表达式为:其傅里叶级数展开为:同理:对于如图2所示的三角波,函数表达式为:其傅里叶级数展开为:图1 方波图2 三角波从以上各式可知,任何周期信号都可以表示为无限多次谐波的叠加,谐波次数越高,振幅越小,它对叠加波的贡献就越小,当小至一定程度时(谐波振幅小于基波振幅的5%),则高次的谐波就可以忽略而变成有限次数谐波的叠加,这对设计仪器电路是很有意义的。
实验内容1、傅里叶级数的合成(1)利用数字信号发生器产生频率分别为100Hz、300Hz、500Hz的正弦信号,并使其位相相同,振幅比为:1:1/3: 1/5,将上述三个信号,分别通过加法器输入到傅里叶分析仪,观察并记录其波形。
(2)利用数字信号发生器产生方波,输入到傅里叶分析仪,并将其与上述合成后的信号相比较。
两者有何差异?试分析引起的原因,应如何消除?(3)利用数字信号发生器产生频率分别为200Hz、600Hz、1000Hz的正弦信号,振幅比为:1:1/32:1/52,并且保证其相位相差180°,然后通过加法器输入到傅里叶分析仪,观察并记录其波形,并与数字信号发生器产生的三角波相比较。
信号与系统的傅立叶分析实验报告(共10篇)

信号与系统的傅立叶分析实验报告(共10篇)信号与系统实验报告周期信号的傅立叶级数分析信号与系统实验报告实验名称:姓学班时一、实验目的周期信号的傅立叶级数分析名:号:级:间:2013.4.191、掌握周期信号的频谱分析;2、学会对一般周期信号在时域上进行合成;二、实验基本原理在“信号与系统”中,任何周期信号只要满足狄利赫利条件就可以用傅立叶级数表示,即可分解成直流分量及一系列谐波分量之和。
以周期矩形脉冲信号为例,设周期矩形脉冲信号f~(t)的脉冲宽带为?,脉冲幅度为E,周期为T1,如图1.1所示。
图1.1 周期矩形脉冲信号的波形它可以展开成如下三角形式的傅立叶级数:E?2E?f(t)??T1T1~n?1?Sa()cosn?1t ?2n?1从上式可得出直流分量、基波及各次谐波分量的幅度:E?T12E?n??c?Sa()T2c0?1n1根据式(1-2)、(1-3)可以分别画出周期矩形脉冲信号三角形式表示的幅度谱和相位谱,如图1.2所示。
(a)(b)图1.2 周期矩形脉冲信号的频谱从上图中可以看出,周期矩形脉冲信号可以分解成无穷多个频率分量,也就是说,周期信号是由多个单一频率的正弦信号合成的,各正弦信号的频率n?1是周期信号频率?1的整数倍。
同样,任一周期信号也可以由一系列单一的频率分量按式(1-1)式所定的频率、幅度和相位进行合成。
理论上需要谐波个数为无限,但由于谐波幅度随着谐波次数的增加信号幅度减少,因而只需取一定数目的谐波数即可。
三、实验内容及结果1、周期方波信号的傅里叶级数分析(1)五路谐波分量的幅值1)一次谐波的波形(2)2)一、二次谐波合成的波形3)一、二、三次谐波合成的波形4)一、二、三、四次谐波合成的波形5)一、二、三、四、五次谐(3)画出周期方波信号的幅度谱波合成的波形篇二:实验一信号与系统的傅立叶分析实验一信号与系统的傅立叶分析一. 实验目的用傅立叶变换对信号和系统进行频域分析。
二.实验仪器装有matlab软件的计算机三.实验内容及步骤(1)已知系统用下面差分方程描述:y(n)?x(n)?ay(n?1)试在a?0.95和a?0.5两种情况下用傅立叶变换分析系统的频率特性。
傅立叶光学实验报告

傅立叶光学实验报告
一、实验目的
本实验旨在引导学生了解傅立叶光学,并通过实验验证物质特征的光学折射特性,观察、测量及分析物质的光学折射指数分布,验证物质的光学特性,以此加强对光学知识的理解和掌握。
二、原理
傅里叶光学把物质看做是由一些改变其光学折射指数的晶胞组成的,当光线经过这些晶胞时,光线会被折射,从而在物质表面产生折射和反射,折射和反射后光线会发生各种变化,通过观测、记录和分析变化,可以得出物质的光学折射指数分布,从而了解物质的光学特性。
三、实验步骤
1.将实验仪器、光台、准直仪、探测器准备好
2.对光台进行准直
3.将样品放置在准直仪上,调整样品到光路中心
4.调整物质折射指数,调整换算物质折射指数
5.记录、计算光路折射指数变化
6.观察物质的变化和反射现象
四、实验结果
折射率随温度的变化:
温度(℃):20 30 40 50
折射率(n):1.6 1.7 1.8 1.9
反射率随温度的变化:
温度(℃):20 30 40 50
反射率(R/%):8.1 8.5 9.2 10.1
五、实验结论
1. 通过本次实验,可以得出物质折射指数随温度变化的规律,从而更深刻地了解物质的光学特性。
2. 可以观察到折射率随温度增加而增加,而反射率随温度增加而减少。
傅里叶光学的实验报告(3篇)

第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。
2. 通过实验验证傅里叶变换在光学系统中的应用。
3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。
4. 理解透镜的成像过程及其与傅里叶变换的关系。
二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。
根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。
透镜可以将这些平面波聚焦成一个点,从而实现成像。
本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。
2. 光学系统:利用透镜实现傅里叶变换。
3. 空间滤波:在频域中去除不需要的频率成分。
4. 图像重建:根据傅里叶变换的结果恢复原始图像。
三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。
(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。
(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。
(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。
3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。
(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。
(4)观察频谱图像的变化,分析透镜的成像过程。
4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。
(3)观察滤波后的频谱图像,分析滤波器对图像的影响。
五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。
大学物理仿真实验傅里叶光学

⼤学物理仿真实验傅⾥叶光学⼤学物理仿真实验——傅⾥叶光学实验实验报告姓名:班级:学号:实验名称傅⾥叶光学实验⼀、实验⽬的1.学会利⽤光学元件观察傅⽴叶光学现象。
2.掌握傅⽴叶光学变换的原理,加深对傅⽴叶光学中的⼀些基本概念和基本理论的理解,如空间频率、空间频谱、空间滤波和卷积等。
⼆、实验所⽤仪器及使⽤⽅法防震实验台,He-Ne激光器,扩束系统(包括显微物镜,针孔(30µm),⽔平移动调整器),全反射镜,透镜及架(f=+150mm,f=+100mm),50线/mm光栅滤波器,⽩屏三、实验原理平⾯波Ee(x,y)⼊射到p平⾯(透过率为)在p平⾯后Z=0处的光场分布为:E(x,y)= Ee(x,y)图根据惠更斯原理(Huygens’ Principle),在p平⾯后任意⼀个平⾯p’处光场的分布可看成p平⾯上每⼀个点发出的球⾯波的组合,也就是基尔霍夫衍射积分(Kirchhoff’s diffraction integral)。
(1)这⾥:=球⾯波波长;n=p平⾯(x,y)的法线⽮量;K=(波数)是位相和振幅因⼦;cos(n,r)是倾斜因⼦;在⼀般的观察成像系统中,cos(n,r)1。
r=Z+,分母项中r z;(1)式可⽤菲涅尔衍射积分表⽰:(菲涅尔近似 Fresnel approximation)(2)当z更⼤时,即z>>时,公式(2)进⼀步简化为夫琅和费衍射积分:(Fraunhofer Approximation)这⾥:位相弯曲因⼦。
如果⽤空间频率做为新的坐标有:,若傅⽴叶变换为(4)(3)式的傅⽴叶变换表⽰如下:E(x’,y’,z)=F[E(x,y)]=c图2 空间频率和光线衍射⾓的关系tg==,tg===,=可见空间频率越⾼对应的衍射⾓也越⼤,当z越⼤时,衍射频谱也展的越宽;由于感光⽚和⼈眼等都只能记录光的强度(也叫做功率谱),所以位相弯曲因⼦(5)理论上可以证明,如果在焦距为f的汇聚透镜的前焦⾯上放⼀振幅透过率为g(x,y)的图象作为物,并⽤波长为的单⾊平⾯波垂直照明图象,则在透镜后焦⾯上的复振幅分布就是g(x,y)的傅⽴叶变换,其中空间频率,与坐标,的关系为:,。
傅里叶变换光学系统-实验报告

实验10傅里叶变换光学系统实验时间:2014年3月20日星期四一、实验目的1. 了解透镜对入射波前的相位调制原理。
2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。
4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。
二、实验原理1. 透镜的FT 性质及常用函数与图形的关学频谱分析透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。
假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。
设原复振幅分布为U(x,y)的L光通过透镜后,其复振幅分布受到透镜的位相调制后变为U '(x,y ):LU '(x,y)=U (x,y)exp[j (x,y)]LL (1)假设对于任意一点〔x ,y 〕透镜的厚度为D (x ,y ),透镜的中心厚度为。
光线由 该点通过透镜时在透镜中的距离为D (x ,y ),空气空的距离为D -D(x,y),透镜折射率 为n ,则该点的位相延迟因子t (x ,y )为:t(x,y)=exp(jkD 0)exp[jk(n -1)D(x,y)]由此可见只要知道透镜的厚度函数D (x ,y )就可得出其相位调制。
在球面镜傍轴 区域,用抛物面近似球面,并引入焦距f ,有:111 D(x,y)=D —(x 2+y 2)(-) 02RR12 111 —=(n -1)(—-一)fRR 12 kt (x ,y )=eXP(jkn D o )eXP[-j (x 2+y 2)] 第一项位相因子exp(jknD)仅表示入射光波的常量位相延迟,不影响位相的空间0分布,即波面形状,所以在运算过程中可以略去。
当考虑透镜孔径后,有:(2) (3) (4)(5)k t(x,y)=exp[-j(x 2+y 2)]p(x,y)其中的p (x ,y )为透镜的光瞳函数,表达式为: 2.透镜的傅立叶变换性质中包含很多不同的频率成分。
傅里叶变换光学系统实验报告

傅里叶变换光学系统-实验报告————————————————————————————————作者: ————————————————————————————————日期:实验10 傅里叶变换光学系统实验时间:2014年3月20日 星期四一、 实验目的1. 了解透镜对入射波前的相位调制原理。
2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。
3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。
4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。
二、 实验原理1. 透镜的F T性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。
假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。
设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制后变为(,)L U x y ':(,)(,)exp[(,)]L L U x y U x y j x y ϕ'= (1)若对于任意一点(x,y)透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。
光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0(,)D D x y -,透镜折射率为n,则该点的位相延迟因子(,)t x y 为:0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (2)由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。
在球面镜傍轴区域,用抛物面近似球面,并引入焦距f,有: 22012111(,)()()2D x y D x y R R =-+- (3)12111(1)()n f R R =-- (4) 220(,)exp()exp[()]2kt x y jknD jx y f=-+ (5) 第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉搏、语音及图像信号的傅里叶分析
一、实验简介
任何波形的周期信号均可用傅里叶级数来表示。
傅里叶级数的各项代表了不同频率的正弦或余弦信号,即任何波形的周期信号都可以看作是这些信号(谐波)的叠加。
利用不同的方法,可以从周期信号中分解出它的各次谐波的幅值和相位。
也可依据信号的傅里叶级数表达式,将各次谐波按表达式的要求叠加得到所期望的信号。
二、实验目的
1、了解常用周期信号的傅里叶级数表示。
2、了解周期脉搏信号、语音信号及图像信号的傅里叶分析过程
3、理解体会傅里叶分析的理论及现实意义 三、实验仪器
脉搏语音实验仪器,数字信号发生器,示波器 四、实验原理
1、周期信号傅里叶分析的数学基础
任意一个周期为T 的函数f(t)都可以表示为傅里叶级数:
00010000000
1
()(cos sin )
21()()
1
()cos()()
1
()sin()()n n n n n f t a a n t b n t a f t d t a f t n t d t b f t n t d t π
π
π
π
π
πωωωωπ
ωωωπ
ωωωπ
∞
=--
-
=++===
∑⎰⎰⎰
其中0ω为角频率,称为基频,0a 为常数,n a 和n b 称为第n 次谐波的幅值。
任何周期性非简谐交变信号均可用上述傅里叶级数进行展开,即分解为一系列不同
次谐波的叠加。
对于如图1所示的方波,一个周期内的函数表达式为:
(0t<)2() (-t 0)
2
h f t h ππ⎧
≤⎪⎪=⎨
⎪-≤<⎪⎩ 其傅里叶级数展开为:
0100041
()(
)sin(21)21411(sin sin 3sin 5)
35n h
f t n t
n h t t t ωπωωωπ∞
==
--=+++∑ 同理:对于如图2所示的三角波,函数表达式为:
4t (-t<)44
()232(1) (t )
44
h
T T f t t T T h T π⎧≤⎪⎪=⎨⎪-≤<⎪⎩
其傅里叶级数展开为:
1
2
021********()(1)()sin(21)21811
(sin sin 3sin 5)
35
n n h
f t n t
n h t t t ωπωωωπ∞
-==---=-++∑
图1 方波 图2 三角波
从以上各式可知,任何周期信号都可以表示为无限多次谐波的叠加,谐波次数越高,振幅越小,它对叠加波的贡献就越小,当小至一定程度时(谐波振幅小于基波振幅的5%),则高次的谐波就可以忽略而变成有限次数谐波的叠加,这对设计仪器电路是很有意义的。
实验内容
1、傅里叶级数的合成
(1)利用数字信号发生器产生频率分别为100Hz、300Hz、500Hz的正弦信号,并使其位相相同,振幅比为:1:1/3: 1/5,将上述三个信号,分别通过加法器输入到傅里叶分析仪,观察并记录其波形。
(2)利用数字信号发生器产生方波,输入到傅里叶分析仪,并将其与上述合成后的信号相比较。
两者有何差异?试分析引起的原因,应如何消除?
(3)利用数字信号发生器产生频率分别为200Hz、600Hz、1000Hz的正弦信号,振幅比为:1:1/32:1/52,并且保证其相位相差180°,然后通过加法器输入到傅里叶分析仪,观察并记录其波形,并与数字信号发生器产生的三角波相比较。
(4)利用傅里叶分析仪分别产生方波与三角波,进行傅里叶分析,记录各正弦波频率以及相对的幅度之间的关系,并与上述加法器输入信号相比较。
2.滤波与选频分析:
对上述(4)傅里叶分析的频谱,分别选择低频段和高频段信号通过傅里叶反变换,观察它们图像并导出保存,试分析低通滤波和高通滤波图像的区别
3.周期信号傅里叶分析的应用:
(1)“脉搏信号”的傅里叶分析
1)用傅里叶分析仪软件中提供的“脉搏信号”模块和压电晶体测试自己脉搏波的信号,观察你的脉搏信号。
2)选择完整的周期信号进行频谱分析,并选择合适的频段,测量其中心频率。
3)你深呼吸后,重复上述实验,请比较两次中心频率的变化。
(2)图像信号的傅里叶分析
1)用傅里叶分析仪软件提供的“图片分析”模块,分别选择图片“双缝干涉”、“彩色十字”、“光字”以及“箭头”进行空域的傅里叶频谱分析。
2)分别选择低通和高通滤波器进行滤波,记录所用滤波器的参数并将滤波后的图片导出保存。
3)将滤波后的图像与原图像作对比,你能作何结论?
(3)语音信号的傅里叶分析与识别
1)用傅里叶分析仪软件提供的“语音信号”模块,通过外置麦克风采集语音信号,并选择合适的频段,记录该频段语音信号的傅里叶分析频谱。
2)利用“选择频谱”功能,滤除噪声频率后,进行频率合成;将合成后的结果与1)中采集的原语音信号对比,为语音识别打下基础。
3)利用软件提供的“语音识别”模块,通过麦克风采集两次相同或不同元音的信号,重复上述过程,分别记录两次频谱的分布,并利用“语音识别”模块体验语音识别功能。
7、利用软件中提供的“长时语音”模块,通过外置麦克风采集一段语音信
号,并观察傅里叶分析频谱实时频谱变化。
六.实验结果及分析
1、傅里叶级数的合成(1)合成方波
(2)合成方波低频段
(1)(2)对比可以看出低频波主要决定了叠加波的大致形状,而高频波主要修饰边界,让边界趋于平直。
(3)标准方波
对比(1)(3),两者波形大体相似,但标准波的边界平直,是无限多次谐波的
叠加的结果,而(1)中叠加次数过少。
上述结论同样适用于三角波。
(4)合成三角波
(5)合成三角波低频
(6)标准三角波
下面用傅里叶分析仪输入波形(7)方波低频
(8)方波高频
(7)(8)对比得出,在叠加正弦波中,频率越大,对应的相对振幅就越小,对波形的贡献率就越小。
上述结论同样适用于三角波
(9)三角波低频
(10)三角波高频
2.“脉搏信号”的傅里叶分析(11)脉搏信号
由上图可以看出脉搏信号具有中心频率为7.7Hz
(12)深呼吸后的脉搏信号
由上图可以看出深呼吸后的脉搏信号具有中心频率为4.1Hz
对比上两幅图,第二次中心频率比第一次变低
3.图像信号的傅里叶分析
(13)彩十字低通
(14)彩十字高通
(16)光字低通
(17)光字高通
(18)箭头低频
(19)箭头高通
(20)双缝低频
(21)双缝高频
将滤波后的图像与原图像作对比得出结论:
低频波主要决定了图形的形状,高频波主要决定了图形的轮廓边界。
这是由于在边界处颜色突变,频率大;而在同一色块上,频率小。
4.语音信号的傅里叶分析与识别
(22)语音信号
(23)语音识别之同一声音相同音节
(24)语音识别之同一声音不同音节
(25)长时语音。