点电荷的电场 电场的叠加 微解题
高中物理电场叠加问题的几种解题技巧

2019第2期中(总第291期)例1:某绝缘球壳均匀带电+Q ,半径为R ,其球心处有一带电量为+q 的点电荷,其受力为零。
当于球壳上挖去一半径为r (r<<R )的圆时,受力平衡被打破,试求此时点电荷的受力大小。
(静电力衡量为k )解法1:该解法的思路我们称之为‘补偿法’,题干中说在球壳上挖掉一个圆孔,其作用相当于在圆孔处放置了一个带电量相当的负电荷,经过求解可以知道负电荷q ’的值为q ’=Q πr 2/4πR 2。
通过补偿法我们知道,挖去圆孔之前受力平衡,挖去之后所受力相当于在圆孔处放置等量异种电荷时点电荷所受的力,通过公式求解可得:F=KqQr 2/4R 2X1/R 2=KqQr 2/4R 4因为点电荷为正电荷,补偿小球带负电荷,所以力的方向是由圆心指向小孔。
解法2:另外的一种解法的思路是在球壳上挖去一个圆孔,其作用等效于在与小孔原点对称位置处放置一同性等量电荷,大小为:q ’=Q πr 2/4πR 2=Qr 2/4R 2,由此可求镜像电荷对点电荷的库仑力为F=KqQr 2/4R 4,方向由虚拟电荷指向点电荷,也就是由点电荷指向小圆孔。
例2:如下图所示:有一均匀带电圆环,带电量为+Q ,已知圆环半径为R ,现过圆形O 做圆环平面的垂线,于垂线上距原点O 长度为L 处取一点P ,试问P 点场强。
解法:该题可以使用微元法进行求解,微元法顾名思义,就是把整体拆分成微小的单元进行分析,使用微元法的前提是圆环形状规则,电荷分布均匀,这样假设圆环上的电荷密度为ρ,这样取圆环上一小段长度为Δ1,那么这个小段的带电量就是Δq=ρX Δl ,该小段近似看成一个点电荷,那么这段在P 处的场强E=k Δq/r 2,这个场强可以分为垂直圆环方向和平行圆环方向两个场强,圆环上的电荷对于P 点产生的场强在垂直方向互相抵消,水平方向叠加,所以这里只要求出水平方向的场强Ex 即可。
E x =Ecos θ=cos θk Δq/r 2。
电场强度叠加原理

电场强度叠加原理电场是物质带电粒子相互作用的结果,它是一种物质的属性。
电场强度是描述电场在空间中的分布情况和大小的物理量。
在实际应用中,我们经常会遇到多个电荷或电场同时存在的情况,这时就需要用到电场强度叠加原理来进行分析。
电场强度叠加原理是指当空间中存在多个电荷或电场时,各个电荷或电场产生的电场强度矢量在同一点的电场强度矢量之和等于该点的合成电场强度矢量。
这一原理在电场的叠加计算中具有重要的应用价值。
首先,我们来看一种简单的情况,即两个点电荷产生的电场强度叠加。
设有两个点电荷q1和q2,它们在空间中的位置分别为r1和r2,那么在某一点P处的合成电场强度E为E1和E2的矢量和,即E=E1+E2。
这里E1和E2分别是点电荷q1和q2在点P处产生的电场强度,它们的大小和方向分别由库仑定律给出。
接下来,我们考虑更为复杂的情况,即连续分布电荷产生的电场强度叠加。
在这种情况下,我们可以利用积分来描述叠加过程。
对于分布在空间中的电荷密度ρ(r),在某一点P处产生的电场强度E可以表示为对整个电荷分布的积分,即E=∫(kρ(r)/r^2)dr。
这里k是库仑常数,r是点P到电荷密度ρ(r)所在位置的矢量,积分是对整个电荷分布进行的。
通过电场强度叠加原理,我们可以更加方便地计算复杂电荷分布产生的电场强度。
在实际工程和科学研究中,电场强度叠加原理为我们提供了重要的计算方法,例如在电磁场分析、电子设备设计等方面都有广泛的应用。
总之,电场强度叠加原理是电场理论中的重要概念,它描述了电场在空间中的叠加规律。
通过对不同电荷或电场产生的电场强度进行叠加,我们可以得到空间中任意点的合成电场强度,从而更好地理解和应用电场理论。
在实际问题中,我们可以利用这一原理来解决各种复杂的电场分析和计算,为电磁学领域的研究和应用提供重要的理论基础。
电场叠加原理

电场叠加原理
电场叠加原理是电学中的一个重要概念,它描述了当存在多个电荷或电场时,它们对某一点的作用效果等于各个电荷或电场分别作用时的效果之和。
这一原理在电学领域有着广泛的应用,对于理解和分析电场的行为具有重要意义。
首先,我们来看一下电场叠加原理的基本表达式。
设有n个点电荷q1、q2、
q3...qn,分别位于r1、r2、r3...rn处,那么在某一点P处的电场强度E等于各个点电荷对该点产生的电场强度之和,即E=E1+E2+E3...+En。
其中Ei表示第i个点电荷对点P产生的电场强度。
这就是电场叠加原理的数学表达形式。
接下来,我们来看一些电场叠加原理的应用。
在实际问题中,往往会存在多个电荷或电场对某一点产生作用的情况,这时就可以利用电场叠加原理来求解问题。
比如,当有多个点电荷分布在空间中时,我们可以通过叠加原理来计算某一点的电场强度,从而分析该点的受力情况。
又如,在电容器中,如果存在多个电荷,我们也可以利用叠加原理来计算电容器的总电荷或总电场强度。
此外,电场叠加原理还可以帮助我们理解电场的叠加规律。
在空间中,如果存在多个电场,它们会相互叠加,形成一个合成的电场分布。
这时,我们可以利用叠加原理来分析合成电场的性质,从而更好地理解电场的行为。
总的来说,电场叠加原理是电学中一个非常重要的概念,它对于理解和分析电场问题具有重要意义。
通过对叠加原理的理解和运用,我们可以更好地解决电场问题,提高对电场行为的认识,为实际问题的分析和应用提供有力的支持。
因此,在学习电学知识的过程中,我们应该深入理解电场叠加原理,并灵活运用它来解决问题。
电场强度的叠加典型例题

电场强度的叠加典型例题电场强度的叠加是电场叠加原理中的一个重要内容,它是指在同一空间内同时存在多个电荷时,每个电荷所产生的电场强度矢量可以分别求得,然后将它们矢量相加得到总的电场强度。
下面我们通过一些典型例题来详细介绍电场强度的叠加方法。
例题1:求解两个等量异号点电荷的电场强度叠加已知空间中有两个等量异号点电荷,一个正电荷q1=2μC位于坐标原点O,一个负电荷q2=-2μC位于坐标(2,0,0)处。
求点P(3,4,0)处的电场强度。
解析:首先根据库仑定律,可以求得q1点电荷在P点产生的电场强度为E1=k*q1/r1^2,其中k为电场常量,r1为q1到P的距离,即√(3^2+4^2+0^2)=5。
代入数据可得E1=9x10^9*(2x10^-6)/25=1.44x10^3N/C,而E1的方向与P点到q1连线的方向相同。
然后求解q2点电荷在P点产生的电场强度E2,由于电荷q2与P点不共线,需要按照矢量加法规则进行计算。
首先求出r2=q2到P的矢量r2=rP-r2=(3-2,4-0,0-0)=(1,4,0),然后根据库仑定律得到E2=k*q2/r2^2,其中k为电场常量,r2为q2到P的距离,即√(1^2+4^2+0^2)=√17。
代入数据可得E2=9x10^9*(-2x10^-6)/17=-0.949x10^3N/C。
最后,将E1和E2相加,即E=E1+E2=(1.44x10^3+(-0.949x10^3))N/C=0.491x10^3N/C,而E的方向与E1和E2的方向相同,即沿着P点到q1和q2连线的方向。
所以,P点处的电场强度大小为0.491x10^3N/C,方向沿着P点到q1和q2连线的方向。
例题2:求解多个点电荷的电场强度叠加已知空间中有三个等量同号点电荷,分别位于坐标原点O、点A(2,0,0)和点B(0,3,0)处,其电荷量分别为q1=q2=q3=2μC。
求点P(1,1,5)处的电场强度。
高中物理考点:电场强度的叠加与计算方法

k
的单位为: N· m2· C- 2=
kg·m·s-2·m2·(A·s)-2=kg·m3·A-2·s-4,故 B 正确。答案 B
解析显隐
2.(2015·山东理综,18)直角坐标系 xOy 中,M、N 两点位于 x 轴上,G、H 两
点坐标如图 12。M、N 两点各固定一负点电荷,一电荷量为 Q 的正点电荷置
易
错
不会选择(或没有掌握)常用的物理思维方法
点
.如极限法、单位分析法、微元法、特殊
值法、补偿法、对称法等.
1.电场强度三个公式的比较
表达式 比较
公式 意义
适用 条件
E=F/q
电场强度 定义式 一切电场
E=kQ1Q2/r2
真空中点电荷电场强度 的决定式
①真空 ②点电荷
E=U/d
匀强电场中E与 U的关系式 匀强电场
C. a32kq,方向由 C 指向 O
D. a32kq,方向由 O 指向 C
EB EC
思维方法:叠加合成法
解析 各点电荷在 O 点处的场强大小都是 E
kq 3kq = 3a/3 2= a2 ,画出矢量叠加的示意图,
如图示,由图可得 O 点处的合场强为 E0=2E
6kq = a2 ,方向由
O
指向
C.B
目录页
Contents Page
考点强化: 电场强度的叠加与计算方法
1.考点精讲
2.典例剖析
3.规律方法
4.备选训练 5.高考模拟演练
基础课
1.考点精讲
考情分析:对电场强度概念的理解、点电荷的电场及电场的叠加是高考 的高频考点.
高考题型:选择题
不能准确的理解电场强度这个概念.
高中物理基础知识及例题(学案) 电场的叠加 等量点电荷的电场线

第2课时电场的叠加等量点电荷的电场线[学习目标] 1.熟练进行电场的叠加计算.2.知道等量同种(异种)点电荷电场线分布以及连线中垂线上场强特点.一、电场强度的叠加电场强度是矢量,对于同一直线上电场强度的合成,可先规定正方向,进而把矢量运算转化成代数运算,对于互成角度的电场强度的叠加,合成时遵循平行四边形定则.例1(2021·黔西南州高二上期中)如图所示,两个点电荷分别固定在A、B两处,A处点电荷带正电、电荷量为+Q1(Q1>0),B处点电荷带负电、电荷量为-3Q1,A、B两点连线上C 点到A、B两点的距离关系为BC=3AC,则下列说法正确的是()A.在直线AB上A点左侧的某处有一点电场强度为零B.在直线AB上B点右侧的某处有一点电场强度为零C.C点的电场强度为零D.A、B两点连线的中点为连线上电场强度最大的点例2如图所示,真空中,带电荷量分别为+Q和-Q的点电荷A、B相距r,求:(1)两点电荷连线的中点O的场强大小和方向.(2)在两点电荷连线的中垂线上,距A、B两点都为r的O′点的场强大小和方向.针对训练1(2021·平冈中学高二上月考)如图所示,M、N和P是以MN为直径的半圆弧上的三点,O点为半圆弧的圆心,∠MOP=60°.电荷量相等、电性相反的两个点电荷分别置于M、N两点,这时O点电场强度的大小为E1;若将N点处的点电荷移至P点,此时O点的场强大小为E2,则E1与E2之比为()A.1∶2 B.2∶1 C.2∶ 3 D.4∶ 3二、两等量点电荷周围的电场导学探究1.等量异种点电荷(1)在图中画出等量异种点电荷周围的电场线.(2)完成下列填空:①两点电荷连线之间的场强大小变化情况是:从左向右场强大小变化情况为________;在O 点左侧场强方向________,在O点右侧场强方向________.②从两点电荷连线中点O沿中垂线到无限远,场强大小变化情况是________;在O点上方场强方向________,在O点下方场强方向________.③连线或中垂线上关于O点对称的两点场强大小________(填“相等”或“不相等”),方向________(填“相同”或“相反”).2.等量同种点电荷(1)在图中画出等量同种点电荷周围的电场线.(2)完成下列填空①两点电荷连线之间的场强大小变化情况是从左向右场强大小变化情况是________;在O点左侧场强方向________,在O点右侧场强方向________.②从两点电荷连线中点O沿中垂线到无限远,场强大小变化情况是________;在O点上方场强方向________,在O点下方场强方向________.③连线或中垂线上关于O点对称的两点场强大小________(填“相等”或“不相等”),方向________(填“相同”或“相反”).例3(多选)(2021·荔城区高二上期中)如图甲是等量异种点电荷形成电场的电场线,图乙是电场中的一些点;O是电荷连线的中点,E、F是连线中垂线上关于O对称的两点,B、C和A、D也关于O对称.则()A.B、C两点场强大小相等,方向相同B.A、D两点场强大小相等,方向相反C.E、O、F三点比较,O点场强最强D.B、O、C三点比较,O点场强最强针对训练2(2021·赣州市高二上期中)如图所示,一电子沿等量异种点电荷连线的中垂线由A→O→B匀速运动,电子重力不计,则电子除受静电力外,所受的另一个力的大小和方向变化情况是()A.先变大后变小,方向水平向左B.先变大后变小,方向水平向右C.先变小后变大,方向水平向左D.先变小后变大,方向水平向右例4(多选)两个带等量正电荷的点电荷,O点为两电荷连线的中点,a点在连线的中垂线上,若在a点由静止释放一个电子,如图所示,仅在静电力作用下,关于电子的运动,下列说法正确的是()A.电子在从a点向O点运动的过程中,加速度越来越大,速度越来越大B.电子运动到O点时,加速度为零,速度最大C.电子通过O点后,速度越来越小,一直到速度为零D.若在a点给电子一垂直于纸面向外的初速度,电子可能绕O点做匀速圆周运动第2课时电场的叠加等量点电荷的电场线探究重点提升素养一、例1 A [因B 带负电,A 带正电,且B 的电荷量大于A 的电荷量,则根据E =kQr 2结合场强叠加可知,场强为零的点必在A 点左侧,故A 正确,B 错误;因为A 、B 两电荷在C 点的场强方向均向右,可知C 点的电场强度不为零,故C 错误;根据电场线分布可知,越靠近两点电荷的位置场强越大,可知A 、B 两点连线的中点不是连线上电场强度最大的点,故D 错误.] 例2 (1)8kQr 2 方向由A →B(2)kQr2 方向平行于AB 向右 解析 (1)如图甲所示,A 、B 两点电荷在O 点产生的场强方向相同,均由A →B .A 、B 两点电荷分别在O 点的电场强度大小E A =E B =kQ (r 2)2=4kQr 2.O 点的场强大小为:E O =E A +E B =8kQr 2,方向由A →B . (2)如图乙所示,E A ′=E B ′=kQr 2,由矢量图结合几何关系可知,O ′点的场强大小E O ′=E A ′=E B ′=kQr2,方向平行于AB 向右.针对训练1 B [依题意,两点电荷在O 点产生的场强大小均为E 12,当N 点处的点电荷移至P 点时,O 点场强如图所示,则合场强大小E 2=E 12,故E 1E 2=21,选项B 正确.]二、导学探究1.(1)如图所示(2)①先变小后变大向右向右②逐渐减小向右向右③相等相同2.(1)(2)①先变小后变大向右向左②先变大后变小向上向下③相等相反例3AC[根据等量异种点电荷电场的分布情况可知,B、C两点对称分布,场强大小相等,方向相同,A选项正确;根据对称性可知,A、D两处电场线疏密程度相同,A、D两点场强大小相同,方向相同,B选项错误;E、O、F三点中O点场强最强,C选项正确;B、O、C 三点比较,O点场强最弱,D选项错误.]针对训练2 B例4BCD[电子从a点到O点运动的过程中,所受静电力方向由a→O,故加速度方向向下,与速度同向,故速度越来越大;但电场线的疏密情况不确定,O点上方的电场强度最大点位置不确定,故电场强度大小变化情况不确定,则电子所受静电力大小变化情况不确定,加速度变化情况无法判断,故A错误;越过O点后,电子做减速运动,则电子运动到O点时速度最大,静电力为零,加速度为零,故B正确;根据电场线的对称性可知,通过O点后,电子做减速运动,速度越来越小,一直到速度为零,故C正确.电子受到的电场力总是指向圆心,且大小不变,故在a点给电子一垂直于纸面的初速度,电子可能做匀速圆周运动,D 正确.]。
电场的叠加原理例题
电场的叠加原理例题1. 两个点电荷叠加的电场设有两个点电荷q1和q2分别位于点A和点B,距离为r。
根据电场的叠加原理,两点的电场可以叠加为:E = E1 + E2其中E1是点电荷q1在点A处产生的电场,E2是点电荷q2在点B处产生的电场。
根据库仑定律,可以求得各个电场分量的数值:E1 = k * q1 / r^2E2 = k * q2 / r^2所以两点的电场叠加为:E = k * q1 / r^2 + k * q2 / r^22. 线电荷产生的电场考虑一个长度为L的直线带电体,电量为Q,位于直线上的任意一点P处。
根据电场叠加原理,可以将线电荷分解为无数个微小电荷dq,并叠加它们所产生的电场。
设dq位于离P 处的距离为r。
由于电荷dq的电场是等距离的,而且线电荷上各点电荷数量密度相同,所以可以计算dq在点P处产生的电场为:dE = k * dq / r^2对于整个线电荷,可以将其分解为无数个微小线段dl,并对每个微小线段应用上述公式。
然后将所有微小线段的电场矢量相加,即可得到整个线电荷带来的总电场。
3. 均匀带电平面产生的电场考虑一个无限大的均匀带电平面,电荷密度为σ,位于平面上的任意一点P处。
根据电场叠加原理,可以将平面分解为无数个微小面元dA,并叠加它们所产生的电场。
根据库仑定律,可以计算微小面元dA在点P处产生的电场为:dE = (k * σ * dA) / r^2对于整个平面,可以将其分解为无数个微小面元dA,并对每个微小面元应用上述公式。
然后将所有微小面元的电场矢量相加,即可得到整个平面带来的总电场。
电场叠加原理
电场叠加原理
电场叠加原理是指在某个空间中,如果有多个电荷或电荷分布存在,那么在该空间中任一点的电场强度等于每个电荷或电荷分布所产生的电场强度的矢量和。
简言之,电场的叠加是线性的。
具体来说,如果在某一点P处有n个电荷qi(i=1,2,...,n),它们与该点的距离分别为ri,则该点处的电场强度可以表示为:
E=k*(q1/r1^2)*r1̂+k*(q2/r2^2)*r2̂+...+k*(qn/rn^2)*rn̂
其中,k为电场常数,r1̂、r2̂、...、rn̂分别为从电荷qi到点P的矢量方向,r1、r2、...、rn为它们的长度。
这一原理可以用于计算任意分布的电荷所产生的电场分布。
在实际应用中,我们可以将电荷分布离散化为若干小电荷,然后对每个小电荷的电场进行计算,并将结果进行叠加得到总电场分布。
需要注意的是,在考虑电场叠加时,应该同时考虑静电场和电磁场的叠加。
对于静电场,叠加原理适用于任意空间,而对于电磁场,则需要考虑相对论效应和场的传播特性等因素,可能会导致电磁场的非线性叠加。
总之,电场叠加原理是电学中的基本概念之一,它为我们计算和描述电场提供了重要的方法和工具。
在实际应用中,我们可以利用这一原理进行诸如电场分析、电场测量、电场模拟等方面的研究和设计。
电场的叠加计算方法解析
电场的叠加计算方法解析电场是物理学研究中的一个重要概念,广泛应用于各个领域。
在复杂的情况下,我们需要了解如何计算不同电场的叠加效应。
本文将详细解析电场的叠加计算方法,并举例说明。
首先,我们要明确电场的定义:电场是指电荷周围空间中存在的力场。
在电场中,任何带电粒子都会受到电场力的作用。
电场的叠加是指当多个电荷或电场同时存在时,各个电场对某一点的电场强度的综合效应。
为了计算电场的叠加,我们需要了解叠加原理和电场强度的计算方法。
叠加原理是指当有多个电场同时作用于某一点时,由于电场是矢量量,可以按照矢量相加的法则进行叠加。
即将各个电场的矢量相加,得出叠加后的电场强度。
这里要注意,叠加原理只适用于符合线性叠加性质的电场。
电场强度的计算方法有两种常用的方式:由点电荷产生的电场强度计算和由电荷分布产生的电场强度计算。
下面将分别介绍这两种方法。
1. 由点电荷产生的电场强度计算:当电荷为点电荷时,电场强度可以通过库仑定律计算。
库仑定律表明,点电荷对距离为R的点产生的电场强度为E = k*q/R^2 ,其中k为库仑常数,q为电荷量。
2. 由电荷分布产生的电场强度计算:当电荷不再是一个点电荷,而是分布在一定空间范围内时,可以通过积分的方法来计算电场强度。
具体做法是将电荷分布划分成无穷小的元电荷,并对每个元电荷计算其产生的电场强度,然后将这些电场强度进行叠加。
这个过程涉及到积分计算和对称性的处理,需要一定的数学知识支持。
接下来,我们来看一个实际的例子,来说明电场叠加计算的应用。
假设有两个点电荷:一个带电量为q1的正电荷在坐标原点,另一个带电量为q2的负电荷在坐标轴上的点A。
我们要计算在点B处的电场强度。
根据叠加原理,我们可以把这两个点电荷的电场强度相加。
点B离原点距离为R1,离点A距离为R2。
根据库仑定律,电场强度E1由第一个点电荷产生,大小为k*q1/R1^2;电场强度E2由第二个点电荷产生,大小为-k*q2/R2^2,方向相反。
点电荷的电场及叠加
力的大小。
【解析】(1)设小球在圆形管道最低点 B 处分别受到+Q 和
-Q 的库仑力分别为 F1 和 F2,则
F1
F2
k
qQ L2
小球沿水平方向受到的电场力为 F1 和 F2 的合力,由平行
四边形定则得
F 2F1cos600
qQ 联立求得 F k L2
(2)管道所在的竖直平面是+Q 和-Q 形成的合电场的一 个等势面,小球在管道中运动时,小球受到的电场力和管
2.(多选) 在绝缘光滑的水平面上相距为 6L 的 A、B 两处分别固定正电荷 QA、 QB,两电荷的位置坐标如图甲所示。图乙是 AB 连线之间的电势φ与位置 x 之间 的关系图像,图中 x=L 点为图线的最低点,若在 x=2L 的 C 点由静止释放一个质 量为 m、电量为+q 的带电小球(可视为质点),下列有关说法正确的是( )
【答案】ABC
4. 如图所示,ABCD 竖直放置的光滑绝缘细管道,其
1
中 AB 部分是半径为 R 的 4 圆弧形管道,BCD 部分是 固定的水平管道,两部分管道恰好相切于 B。水平面 内的 M、N、B 三点连线构成边长为 L 等边三角形, MN 连线过 C 点且垂直于 BCD。两个带等量异种电荷 的点电荷分别固定 在 M、N 两点,电荷量分别为+Q 和-Q。现把质量为 m、电荷 量为+q 的小球(小球直 径略小于管道内径,小球可视为点电荷),由管道的 A 处静止释放,已知静电力常量为 k,重力加速度为 g。 求:
A.在从 A 点至 B 点的过程中,M 先
做匀加速运动,后做匀减速运动
B.在从 A 点至 C 点和从 C 点至 B 点 的过程中,前一过程 M 的电势能的增加量较小