高二数学知识点总结归纳2020

合集下载

2020高二数学最新复习知识点归纳5篇

2020高二数学最新复习知识点归纳5篇

2020高二数学最新复习知识点归纳5篇2020高二数学最新复习知识点归纳5篇
高中学习容量大,不但要掌握目前的知识,还要把高中的知识与初中的知识溶为一体才能学好。

在读书、听课、研习、总结这四个环节都比初中的学习有更高的要求。

下面就是给大家带来的高二数学知识点,希望对大家有所帮助!高二数学知识点1直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是
x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:。

高二数学知识点总结大全

高二数学知识点总结大全

高二数学知识点总结大全一、集合与函数1. 集合的概念和表示方法2. 集合的运算:交集、并集、差集、补集3. 集合的基本性质和运算规律4. 函数的概念和表示方法5. 函数的性质:定义域、值域、单调性、奇偶性6. 函数的图像、反函数和复合函数二、平面几何1. 直线与射线的性质与关系2. 角的概念、性质和分类:锐角、直角、钝角3. 举例说明平行线和垂直线的判定方法4. 三角形的分类:按角度分类、按边长分类5. 三角形的面积与周长的计算方法6. 三角形内角和、外角和的计算与性质7. 三角形相似性质与判定8. 三角形的中线、高线和垂心、重心的概念与性质三、数列与数列的极限1. 数列的概念与表示方法2. 等差数列与等比数列的性质3. 数列的通项公式与前n项和的公式4. 数列极限的定义与性质5. 数列极限的计算方法:夹逼定理、单调有界准则6. 数列极限存在的判定7. 数列极限与数列的收敛性和发散性的关系四、函数的导数与应用1. 函数的导数与导数的基本性质2. 基本初等函数的导数3. 导数的四则运算法则与复合函数的求导法则4. 高阶导数与隐函数求导5. 函数的单调性与极值点的判定6. 函数的凹凸性与拐点的判定7. 泰勒公式与函数图像的描绘8. 最值问题与最速下降问题的应用五、概率统计1. 随机事件与样本空间的概念2. 概率的定义、性质和计算方法3. 条件概率和乘法定理4. 全概率公式和贝叶斯定理5. 随机变量与概率密度函数的概念6. 二项分布、正态分布和泊松分布的性质与应用7. 抽样调查与统计推断的方法六、立体几何1. 空间几何体的基本概念与性质:点、线、面、体2. 空间几何体的投影、截面和旋转3. 圆柱体、圆锥体、棱锥体、棱柱体的特征与计算4. 球的性质与计算5. 空间向量的概念与基本运算法则6. 向量与几何体的应用:平面的方程、直线的方程七、三角函数1. 弧度与角度的转化关系2. 基本三角函数的定义与性质3. 三角函数图像的性质与变换4. 和差化积公式、倍角公式、半角公式的推导与应用5. 三角方程的解法与求解区间以上为高二数学知识点总结的大致内容,希望对你的学习有所帮助。

高二数学重点知识归纳

高二数学重点知识归纳

【导语】因为⾼⼆开始努⼒,所以前⾯的知识肯定有⼀定的⽋缺,这就要求⾃⼰要制定⼀定的计划,更要⽐别⼈付出更多的努⼒,相信付出的汗⽔不会⽩⽩流淌的,收获总是⾃⼰的。

®⽆忧考⽹⾼⼆频道为你整理了《⾼⼆数学重点知识归纳》,助你⾦榜题名!【篇⼀】⾼⼆数学重点知识归纳 函数的单调性、奇偶性、周期性 单调性:定义:注意定义是相对与某个具体的区间⽽⾔。

判定⽅法有:定义法(作差⽐较和作商⽐较) 导数法(适⽤于多项式函数) 复合函数法和图像法。

应⽤:⽐较⼤⼩,证明不等式,解不等式。

奇偶性:定义:注意区间是否关于原点对称,⽐较f(x)与f(-x)的关系。

f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数; f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。

判别⽅法:定义法,图像法,复合函数法 应⽤:把函数值进⾏转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满⾜:f(x+T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满⾜:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应⽤:求函数值和某个区间上的函数解析式。

【篇⼆】⾼⼆数学重点知识归纳 1.数列的定义 按⼀定次序排列的⼀列数叫做数列,数列中的每⼀个数都叫做数列的项 (1)从数列定义可以看出,数列的数是按⼀定次序排列的,如果组成数列的数相同⽽排列次序不同,那么它们就不是同⼀数列,例如数列1,2,3,4,5与数列5,4,3,2,1是不同的数列 (2)在数列的定义中并没有规定数列中的数必须不同,因此,在同⼀数列中可以出现多个相同的数字,如:-1的1次幂,2次幂,3次幂,4次幂,…构成数列:-1,1,-1,1,…. (4)数列的项与它的项数是不同的,数列的项是指这个数列中的某⼀个确定的数,是⼀个函数值,也就是相当于f(n),⽽项数是指这个数在数列中的位置序号,它是⾃变量的值,相当于f(n)中的n (5)次序对于数列来讲是⼗分重要的,有⼏个相同的数,由于它们的排列次序不同,构成的数列就不是⼀个相同的数列,显然数列与数集有本质的区别.如:2,3,4,5,6这5个数按不同的次序排列时,就会得到不同的数列,⽽{2,3,4,5,6}中元素不论按怎样的次序排列都是同⼀个集合 2.数列的分类 (1)根据数列的项数多少可以对数列进⾏分类,分为有穷数列和⽆穷数列.在写数列时,对于有穷数列,要把末项写出,例如数列1,3,5,7,9,…,2n-1表⽰有穷数列,如果把数列写成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表⽰⽆穷数列. (2)按照项与项之间的⼤⼩关系或数列的增减性可以分为以下⼏类:递增数列、递减数列、摆动数列、常数列. 3.数列的通项公式 数列是按⼀定次序排列的⼀列数,其内涵的本质属性是确定这⼀列数的规律,这个规律通常是⽤式⼦f(n)来表⽰的, 这两个通项公式形式上虽然不同,但表⽰同⼀个数列,正像每个函数关系不都能⽤解析式表达出来⼀样,也不是每个数列都能写出它的通项公式;有的数列虽然有通项公式,但在形式上,⼜不⼀定是的,仅仅知道⼀个数列前⾯的有限项,⽆其他说明,数列是不能确定的,通项公式更⾮.如:数列1,2,3,4,…, 由公式写出的后续项就不⼀样了,因此,通项公式的归纳不仅要看它的前⼏项,更要依据数列的构成规律,多观察分析,真正找到数列的内在规律,由数列前⼏项写出其通项公式,没有通⽤的⽅法可循. 再强调对于数列通项公式的理解注意以下⼏点: (1)数列的通项公式实际上是⼀个以正整数集N*或它的有限⼦集{1,2,…,n}为定义域的函数的表达式. (2)如果知道了数列的通项公式,那么依次⽤1,2,3,…去替代公式中的n就可以求出这个数列的各项;同时,⽤数列的通项公式也可判断某数是否是某数列中的⼀项,如果是的话,是第⼏项. (3)如所有的函数关系不⼀定都有解析式⼀样,并不是所有的数列都有通项公式. 如2的不⾜近似值,精确到1,0.1,0.01,0.001,0.0001,…所构成的数列1,1.4,1.41,1.414,1.4142,…就没有通项公式. (4)有的数列的通项公式,形式上不⼀定是的,正如举例中的: (5)有些数列,只给出它的前⼏项,并没有给出它的构成规律,那么仅由前⾯⼏项归纳出的数列通项公式并不. 4.数列的图象 对于数列4,5,6,7,8,9,10每⼀项的序号与这⼀项有下⾯的对应关系: 这就是说,上⾯可以看成是⼀个序号集合到另⼀个数的集合的映射.因此,从映射、函数的观点看,数列可以看作是⼀个定义域为正整集N*(或它的有限⼦集{1,2,3,…,n})的函数,当⾃变量从⼩到⼤依次取值时,对应的⼀列函数值.这⾥的函数是⼀种特殊的函数,它的⾃变量只能取正整数. 由于数列的项是函数值,序号是⾃变量,数列的通项公式也就是相应函数和解析式. 数列是⼀种特殊的函数,数列是可以⽤图象直观地表⽰的. 数列⽤图象来表⽰,可以以序号为横坐标,相应的项为纵坐标,描点画图来表⽰⼀个数列,在画图时,为⽅便起见,在平⾯直⾓坐标系两条坐标轴上取的单位长度可以不同,从数列的图象表⽰可以直观地看出数列的变化情况,但不精确. 把数列与函数⽐较,数列是特殊的函数,特殊在定义域是正整数集或由以1为⾸的有限连续正整数组成的集合,其图象是⽆限个或有限个孤⽴的点.。

高二数学知识点及公式总结5篇

高二数学知识点及公式总结5篇

高二数学知识点及公式总结5篇第一篇:高二数学必备知识点及公式总结1.函数的概念及其性质函数是一种特殊的关系,它将一组自变量的值映射到另一组因变量的值上。

函数的三要素为定义域、值域和对应关系。

常见的函数有一次函数、二次函数、指数函数、对数函数等,不同的函数具有不同的性质。

常见函数的公式:一次函数:y = kx + b二次函数:y = ax^2 + bx + c指数函数:y = a^x (a > 0, a ≠ 1)对数函数:y = loga(x) (a > 0, a ≠ 1)2.三角函数及其应用三角函数是指正弦函数、余弦函数、正切函数等。

由于三角函数具有周期性、奇偶性、单调性等特点,因此在物理、工程、数学等领域中被广泛应用。

三角函数的公式:正弦函数:y = sinx余弦函数:y = cosx正切函数:y = tanx割函数:y = secx余割函数:y = cotx3.微积分基础微积分是研究函数变化的过程的一门学科,包括导数和积分两个方面。

导数表示函数在某一点的变化率,积分则表示函数在一段区间内的累积变化量。

微积分在自然科学、社会科学、工程技术等领域中均有广泛应用。

微积分的公式:导数公式:f'(x) = lim├_(∆x→0) (f(x + ∆x) - f(x))/∆x积分公式:∫_a^b f(x)dx = lim├_n→∞ □(□(□(Δx )))Σ▒f(xi)Δx第二篇:高二数学解析几何知识点及公式总结1.向量及其运算向量是数学中的一种对象,具有大小和方向两个要素。

向量的运算包括加、减、数乘、点乘等,可以用来描述物体的运动、力的作用等。

向量运算的公式:向量加法: A + B = (Ax + Bx, Ay + By)向量减法: A - B = (Ax - Bx, Ay - By)向量数乘: kA = (kAx, kAy)向量点乘:A·B = |A||B|cosθ2.平面及直线的方程平面是空间内的一种二维图形,可以通过点和法向量来确定。

高二数学基础知识点全总结

高二数学基础知识点全总结

高二数学基础知识点全总结一、代数部分1. 一元二次方程一元二次方程是指形式为ax^2+bx+c=0的方程,其中a不等于0。

一元二次方程的求解方法有因式分解、配方法、公式法等,学生需要掌握这些方法,并且能够根据具体情况选择合适的方法来求解方程。

2. 多项式多项式是由一个或多个项相加或相减而成的代数表达式,其中每一项的指数都是非负整数。

多项式的加减乘除、因式分解、余式定理与因式定理都是需要掌握的基本知识点。

3. 不等式不等式是指带有不等关系的代数式,包括一元一次不等式、一元二次不等式以及多元不等式等。

解不等式需要利用代数运算法则,同时要注意代数表达式中不等关系的性质,并灵活应用这些性质来解决不等式问题。

4. 幂指数函数学生在高二阶段需要学习幂函数和指数函数的概念、性质及图像,同时要了解幂函数和指数函数的运算性质,包括指数函数的乘法和除法、指数律等。

5. 对数函数对数函数是指以某个正数作为底数,利用幂的运算法则引进的。

学生需要对对数函数的定义、性质,对数函数的图像以及对数函数的运算法则有一定的了解。

6. 绝对值绝对值的概念是非常重要的,学生需要了解绝对值的概念及性质,包括绝对值不等式、绝对值函数的图像等内容。

7. 排列组合与二项式定理排列组合是高中数学中的基础概念,学生需要了解排列组合的概念、性质以及运用。

而二项式定理则是指(a+b)^n的展开式,学生需要掌握二项式定理的应用,包括二项式系数、二项式展开式等。

8. 函数概念在高二数学中,学生需要掌握函数基本概念、函数的性质、函数的图像与性质等内容,同时要能够应用函数的知识解决实际问题。

二、几何部分1. 平面向量学生需要掌握平面向量的概念、平面向量的运算法则、平面向量的数量积与夹角的性质等。

2. 直线与圆直线与圆是高二数学中的重要几何概念,学生需要了解直线的方程、圆的方程、直线与圆的位置关系、直线与圆的切线与法线等内容。

3. 三角形学生需要掌握三角形的基本概念、三角形的性质、三角形的相似性与全等性、三角形的内心、外心、垂心、重心等特殊点的性质,以及利用这些性质解决相关问题。

高二数学知识点总结(8篇)

高二数学知识点总结(8篇)

高二数学知识点总结一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件。

二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例。

三、数列(12课时,5个)2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式。

四、三角函数(46课时,17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4.单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式;7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16.余弦定理;17.斜三角形解法举例。

五、平面向量(12课时,8个)2.向量的加法与减法;3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移。

六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式。

七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题;9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程。

八、圆锥曲线(18课时,7个)1.椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质。

高二数学基本公式和知识点

高二数学基本公式和知识点

高二数学基本公式和知识点1. 平面几何部分的知识点和公式:1.1 直线的斜率公式:设直线过点A(x₁,y₁)和B(x₂,y₂),则直线AB的斜率k为 k = (y₂ - y₁) / (x₂ - x₁)1.2 两点间的距离公式:设两点A(x₁,y₁)和B(x₂,y₂),则AB的距离为d = √((x₂ - x₁)² + (y₂ - y₁)²)1.3 圆的面积公式:设圆的半径为r,则圆的面积为S = πr²1.4 圆的周长公式:设圆的半径为r,则圆的周长为C = 2πr2. 三角函数部分的知识点和公式:2.1 正弦定理:在任意三角形ABC中,设∠A对应的边长为a,∠B对应的边长为b,∠C对应的边长为c,则有 a/sinA = b/sinB =c/sinC2.2 余弦定理:在任意三角形ABC中,设∠A对应的边长为a,∠B对应的边长为b,∠C对应的边长为c,则有 c² = a² + b² -2ab*cosC2.3 三角函数的和差化简公式:sin(A ± B) = sinA*cosB ± cosA*sinBcos(A ± B) = cosA*cosB ∓ sinA*sinBtan(A ± B) = (tanA ± tanB) / (1 ∓ tanA*tanB)3. 矩阵和向量部分的知识点和公式:3.1 矩阵的乘法规则:设A为m×n的矩阵,B为n×p的矩阵,则矩阵C = A*B为m×p的矩阵,其中C的元素C(i,j) = ∑(A(i,k) * B(k,j)),k的取值范围是从1到n3.2 向量的点积和叉积:3.2.1 向量的点积:设向量A = (a₁, a₂, a₃)和向量B = (b₁, b₂, b₃),则A·B = a₁*b₁ + a₂*b₂ + a₃*b₃3.2.2 向量的叉积:设向量A = (a₁, a₂, a₃)和向量B = (b₁, b₂, b₃),则A×B = (a₂*b₃ - a₃*b₂, a₃*b₁ - a₁*b₃, a₁*b₂ -a₂*b₁)4. 微积分部分的知识点和公式:4.1 导数的基本公式:4.1.1 常数函数导数公式:(C)' = 0,其中C为常数4.1.2 幂函数导数公式:(xⁿ)' = n*x^(n-1),其中n为常数4.1.3 指数函数和对数函数导数公式:(aˣ)' = ln(a) * aˣ,其中a为常数且a>0,(ln(x))' = 1/x,其中x>04.2 积分的基本公式:4.2.1 常数函数积分公式:∫C dx = Cx + C₁,其中C为常数,C₁为积分常数4.2.2 幂函数积分公式:∫xⁿ dx = (x^(n+1))/(n+1) + C,其中n不等于-1,C为积分常数4.2.3 指数函数和对数函数积分公式:∫aˣ dx = (1/ln(a)) * aˣ + C,其中a为常数且a>0,∫1/x dx = ln|x| + C,其中x不等于0,C为积分常数通过掌握以上的基本公式和知识点,可以在高二数学学习中更好地应用和理解各个概念和问题。

高二数学知识点总结_高二数学知识点

高二数学知识点总结_高二数学知识点

高二数学知识点总结_高二数学知识点高二数学是高中数学的重要阶段,主要学习内容包括函数、数列、三角函数、解析几何、概率论等。

以下是高二数学的主要知识点总结。

1. 函数(1) 函数及其表示:函数的定义、函数的自变量、因变量和函数值,函数的表示方法。

(2) 函数的性质:奇偶性、周期性、单调性、有界性等。

(3) 函数的运算:四则运算、复合函数、反函数等。

(4) 函数的图像:函数的平移、对称、伸缩等。

(5) 初等函数:指数函数、对数函数、幂函数、三角函数等。

(6) 函数的极值和最值:最大值、最小值、极值点、最值点等。

2. 数列(1) 定义和性质:数列的概念、数列的项、首项、公差、通项等。

(2) 常见数列:等差数列、等比数列、斐波那契数列等。

(3) 数列的运算:数列的加法、减法、数列的乘法和除法等。

(4) 数列的极限:数列的有界性、数列的单调性、数列的极限等。

3. 三角函数(1) 基本概念:角度、弧度、正弦、余弦、正切等。

(2) 基本关系式:正弦定理、余弦定理、正切定理等。

(3) 三角函数的图像与性质:正弦函数、余弦函数、正切函数等。

(4) 三角函数的运算:和差化积、积化和差等。

(5) 三角方程与三角不等式:解三角方程、解三角不等式、三角方程的应用等。

4. 解析几何(1) 平面直角坐标系:坐标轴、坐标、距离等。

(2) 直线与圆:直线的方程、直线的位置关系、圆的方程、圆的性质等。

(3) 曲线的方程与图像:二次函数、三次函数、指数函数、对数函数等的图像与性质。

(4) 平面向量:向量的概念、向量的运算、向量的线性相关与线性无关等。

(5) 空间几何:点、直线、平面的位置关系、立体图形的体积与表面积等。

5. 概率论(1) 随机事件与概率:随机事件的概念、概率的基本性质等。

(2) 事件的运算:事件的并、交、差、余等。

(3) 条件概率与独立事件:条件概率的概念、独立事件的概念等。

(4) 随机变量与概率分布:随机变量的概念、离散型随机变量、连续型随机变量等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学知识点总结归纳2020
说到高二数学,很多同学都会说很难,的确,相对而言,高二数学是高中数学中最难的一部分,但我们一定要把知识点给吃透。

下面就是给大家带来的高二数学知识点总结,希望能帮助到大家!
高二数学知识点总结1
空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

线面平行线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。

(面面平行→线线平行)
高二数学知识点总结2
1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.
2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,
继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.
3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.
4.秦九韶算法是一种用于计算一元二次多项式的值的方法.
5.常用的排序方法是直接插入排序和冒泡排序.
6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.
7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.
8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.
高二数学知识点总结3
(1)定义:
对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数
y=f(x)(x∈D)的零点。

(2)函数的零点与相应方程的根、函数的图象与x轴交点间的关系:
方程f(x)=0有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点。

(3)函数零点的判定(零点存在性定理):
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根。

二二次函数y=ax2+bx+c(a0)的图象与零点的关系
三二分法
对于在区间[a,b]上连续不断且f(a)·f(b)0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

1、函数的零点不是点:
函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标,所以函数的零点是一个数,而不是
一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标。

2、对函数零点存在的判断中,必须强调:
(1)、f(x)在[a,b]上连续;
(2)、f(a)·f(b)0;
(3)、在(a,b)内存在零点。

这是零点存在的一个充分条件,但不必要。

3、对于定义域内连续不断的函数,其相邻两个零点之间的所有函数值保持同号。

利用函数零点的存在性定理判断零点所在的区间时,首先看函数y=f(x)在区间[a,b]上的图象是否连续不断,再看是否有
f(a)·f(b)0.若有,则函数y=f(x)在区间(a,b)内必有零点。

四判断函数零点个数的常用方法
1、解方程法:
令f(x)=0,如果能求出解,则有几个解就有几个零点。

2、零点存在性定理法:。

相关文档
最新文档