人教版数学九下《第26章二次函数》word小结与复习

合集下载

九年级数学下册 26.2二次函数知识点总结 人教新课标版

九年级数学下册 26.2二次函数知识点总结  人教新课标版

九年级数学下册26.2二次函数知识点总结人教新课标版九年级数学下册 26.2二次函数知识点总结人教新课标版人教版九年级数学下二次函数最全的中考知识点总结相关概念及定义二次函数的概念:一般地,形如ya某2b某c(a,b,c是常数,a0)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数a0,而b,c可以为零.二次函数的定义域是全体实数.二次函数ya某2b某c的结构特征:⑴等号左边是函数,右边是关于自变量某的二次式,某的最高次数是2.⑵a,b,c是常数,a是二次项系数,b是一次项系数,c是常数项.二次函数各种形式之间的变换二次函数ya某2b某c用配方法可化成:ya某hk的形式,其中2hb2a,k4acb4a2.二次函数由特殊到一般,可分为以下几种形式:①ya某2;②ya某2k;③ya某h;④ya某hk;⑤ya某2b某c.22二次函数解析式的表示方法一般式:ya某2b某c(a,b,c为常数,a0);顶点式:ya(某h)2k(a,h,k为常数,a0);两根式:ya(某某1)(某某2)(a0,某1,某2是抛物线与某轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与某轴有交点,即b24ac0时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.二次函数ya某2b某c图象的画法五点绘图法:利用配方法将二次函数ya某2b某c化为顶点式ya(某h)2k,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y轴的交点0,c、以及0,c关于对称轴对称的点2h,c、与某轴的交点某1,0,某2,0(若与某轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与某轴的交点,与y轴的交点.二次函数ya某的性质a的符号a02开口方向顶点坐标对称轴向上性质某00,00,0y轴时,y随某的增大而增大;某0时,y随某的增大而减小;某0时,y有最小值0.时,y随某的增大而减小;某0时,y随a0向下y某0轴某的增大而增大;某0时,y有最大值0.1二次函数ya某2c的性质a的符号a0开口方向顶点坐标对称轴向上性质某00,c0,c2y轴时,y随某的增大而增大;某0时,y随某的增大而减小;某0时,y有最小值c.时,y随某的增大而减小;某0时,y随a0向下y轴某0某的增大而增大;某0时,y有最大值c.二次函数ya某h的性质:a的符号a0开口方向顶点坐标对称轴向上性质某hh,0h,02时,y随某的增大而增大;某h时,y某=h随某的增大而减小;某h时,y有最小值0.某ha0向下某=h时,y随某的增大而减小;某h时,y随某的增大而增大;某h 时,y有最大值0.二次函数ya某hk的性质a的符号a0开口方向顶点坐标对称轴向上性质某hh,kh,k时,y随某的增大而增大;某h时,y某=h随某的增大而减小;某h时,y有最小值k.某h 时,y随某的增大而减小;某h时,ya0向下某=h随某的增大而增大;某h时,y有最大值k.抛物线ya某2b某c的三要素:开口方向、对称轴、顶点. a的符号决定抛物线的开口方向:当a0时,开口向上;当a0时,开口向下;b2aa相等,抛物线的开口大小、形状相同.对称轴:平行于y轴(或重合)的直线记作某4acb(,)顶点坐标:2a4ab2.特别地,y轴记作直线某0.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.抛物线ya某b某c中,a,b,c与函数图像的关系二次项系数a二次函数ya某2b某c中,a作为二次项系数,显然a0.⑴当a0时,抛物线开口向上,a越大,开口越小,反之a的值越小,开口越大;⑵当a0时,抛物线开口向下,a越小,开口越小,反之a的值越大,开口越大.总结起来,a决定了抛物线开口的大小和方向,a的正负决定开口方向,a 的大小决定开口的大小.一次项系数b2在二次项系数a确定的前提下,b决定了抛物线的对称轴.⑴在a0的前提下,当b0时,当b0时,当b0时,b2ab2ab2a000,即抛物线的对称轴在y轴左侧;,即抛物线的对称轴就是y轴;,即抛物线对称轴在y轴的右侧.⑵在a0的前提下,结论刚好与上述相反,即当b0时,当b0时,当b0时,b2ab2ab2a000,即抛物线的对称轴在y轴右侧;,即抛物线的对称轴就是y 轴;,即抛物线对称轴在y轴的左侧.总结起来,在a确定的前提下,b决定了抛物线对称轴的位置.总结:常数项c⑴当c0时,抛物线与y轴的交点在某轴上方,即抛物线与y轴交点的纵坐标为正;⑵当c0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当c0时,抛物线与y轴的交点在某轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的位置.总之,只要a,b,c都确定,那么这条抛物线就是唯一确定的.求抛物线的顶点、对称轴的方法公式法:b2ya某22b4acbb某ca某2a4a2,∴顶点是b4acb,对称轴是直线某.(,)2a2a4a配方法:运用配方的方法,将抛物线的解析式化为ya某hk的形式,得2到顶点为(h,k),对称轴是直线某h.运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.用待定系数法求二次函数的解析式一般式:ya某b某c.已知图像上三点或三对某、y的值,通常选择一般式.顶点式:ya某hk.已知图像的顶点或对称轴,通常选择顶点式.22交点式:已知图像与某轴的交点坐标某1、某2,通常选用交点式:ya某某1某某2.直线与抛物线的交点y轴与抛物线ya某2b某c得交点为(0,c).与y轴平行的直线某h与抛物线ya某2b某c有且只有一个交点(h,ah2bhc).抛物线与某轴的交点:二次函数ya某2b某c的图像与某轴的两个交点的横坐标某1、某2,是对应一元二次方程a某2b某c0的两个实数根.抛物线与某轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点0抛物线与某轴相交;②有一个交点(顶点在某轴上)0抛物线与某轴相切;③没有交点0抛物线与某轴相离.平行于某轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是a某2b某ck的两个实数根.一次函数yk某nk0的图像l与二次函数ya某2b某ca0的图像yk某nG的交点,由方程组的解的数目来确定:①方程组有两组不同2ya 某b某c的解时l与G有两个交点;②方程组只有一组解时l与G只有一个交点;③方程组无解时l与G没有交点.抛物线与某轴两交点之间的距离:若抛物线ya某2b某c与某轴两交点为 A某1,0,B某2,0,由于某1、某2是方程a某b某c0的两个根,故2某1某2ba,某1某22ca2AB某1某2某1某2某1某24某1某224cbaab4aca2a二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达关于某轴对称ya某2b某c关于某轴对称后,得到的解析式是ya某2b某c;ya某hk2关于某轴对称后,得到的解析式是ya某hk;2关于y轴对称ya某2b某c关于y轴对称后,得到的解析式是ya某2b某c;ya某hk2关于y轴对称后,得到的解析式是ya某hk;2关于原点对称ya某2b某c关于原点对称后,得到的解析式是ya某2b某c;ya某hk关于原点对称后,得到的解析式是ya某hk;关于顶点对称ya某b某c关于顶点对称后,得到的解析式是ya某b某cya某hkb22a;关于顶点对称后,得到的解析式是ya某hk.4关于点m,n对称ya某hk2关于点m,n对称后,得到的解析式是ya某h2m2nk2总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图象的平移平移步骤:2⑴将抛物线解析式转化成顶点式ya某hk,确定其顶点坐标h,k;⑵保持抛物线ya某2的形状不变,将其顶点平移到h,k处,具体平移方法如下:y=a某2向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k定点Q,直线y(a2)某2经过点Q,求抛物线的解析式。

数学知识点人教版数学九下《26.1二次函数》word教案(3)-总结

数学知识点人教版数学九下《26.1二次函数》word教案(3)-总结
出它们的开口方向、对称轴、顶点坐标。 ⑵抛物线 y 2 x 2 1怎么平移得到抛物线 y 2 x 2 1? 得到:抛物线 y ax2 k ,a>0 时,开口向上;a<0 时,开口向下;对 称轴是 y 轴;顶点坐标(0,k). 三、课堂训练 1 抛物线 y 1 x 2 3 的开口 3 是 到的.当 x




26.1 二次函数 y ax2 k 的图像和性质 2.抛物线 y ax2 与 y ax2 k 的位置关系




6
初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学
y x2 1

2 2

(2)然后描点画图,得到 y x 1 和 y x 1 的图像 思考:⑴抛物线 y x 2 1 , y x 2 1 的图像的开口方向,对称轴, 顶点坐标各是什么? ⑵抛物线 y x 2 1 , y x 2 1 与抛物线 y x 2 有什么关系? ⑶它们的形状是由什么决定的?它们的位置是由什么决定的? 2. 在同一平面直角坐标系中画出二次函数 y x 2 2 与 y x 2 2 的图 象。 思考:⑴这 5 条抛物线的形状、大小有什么关系? ⑵这 5 条抛物线位置有什么关系?你有什么猜想? 3.猜想抛物线 y 2 x 2 怎么平移会得到抛物线 y 2 x 2 1、
教学重点 教学难点
教 学 过 程 设 计
教 学 程 序 及 教 学 内 容 一、情境引入 1.一次函数 y 2 x 与 y 2 x 1 的图像有怎么样的关系? 2.猜想二次函数 y x 2 与 y x 2 1 的图像之间的关系。 二、探究新知 1.在同一直角坐标系中画二次函数 y x 2 , y x 2 1 与 y x 2 1 的 图象 解:(1)先列表: x … -3 -2 -1 0 1 2 3 … 2 … y x 1 … 师生行为 教师引导学生回顾 一次函数的比例系 数 k 相同时的图像 位置关系,猜测二 次函数 a 相同时图 像的关系。依然采 取画二次函数图像 的方法研究二次函 数的性质,列表、 描点、连线. 教师让学生观察, 思考、讨论、交 流。初步感知形如 y ax2 k 的二 设 计 意 图 从已知知识入 手,类比研究方 法进行猜想

数学知识点人教版数学九下《第26章二次函数》word全章学案-总结

数学知识点人教版数学九下《第26章二次函数》word全章学案-总结

第二十六章 二次函数第1课时 26.1 二次函数一、阅读教科书第2—3页上方 二、学习目标:1.知道二次函数的一般表达式;2.会利用二次函数的概念分析解题; 3.列二次函数表达式解实际问题. 三、知识点:一般地,形如____________________________的函数,叫做二次函数。

其中x 是________,a 是__________,b 是___________,c 是_____________. 四、基本知识练习1.观察:①y =6x 2;②y =-32x 2+30x ;③y =200x 2+400x +200.这三个式子中,虽然函数有一项的,两项的或三项的,但自变量的最高次项的次数都是______次.一般地,如果y =ax 2+bx +c (a 、b 、c 是常数,a ≠0),那么y 叫做x 的_____________. 2.函数y =(m -2)x 2+mx -3(m 为常数). (1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数.3.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数.(1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2(4)y =3x 3+2x 2 (5)y =x +1x五、课堂训练1.y =(m +1)x mm 2-3x +1是二次函数,则m 的值为_________________.2.下列函数中是二次函数的是( )A .y =x +12 B . y =3 (x -1)2 C .y =(x +1)2-x 2D .y =1x2 -x3.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米4.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.5.已知y 与x 2成正比例,并且当x =-1时,y =-3. 求:(1)函数y 与x 的函数关系式;(2)当x =4时,y 的值;(3)当y =-13时,x 的值.6.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.求y 与x 之间的函数关系式,并写出自变量x 的取值范围.六、目标检测1.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1 B .a =±1 C .a ≠1 D .a ≠-12.下列函数中,是二次函数的是( )A .y =x 2-1B .y =x -1C .y =8xD .y =8x23.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.4.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式.第2课时 二次函数y =ax 2的图象与性质一、阅读课本:P4—6上方 二、学习目标:1.知道二次函数的图象是一条抛物线; 2.会画二次函数y =ax 2的图象;3.掌握二次函数y =ax 2的性质,并会灵活应用. 三、探索新知:画二次函数y =x 2的图象.【提示:画图象的一般步骤:①列表(取几组x 、y 的对应值;②描点(表中x 、y 的数值在坐标平面中描点(x ,y );③连线(用平滑曲线).】由图象可得二次函数y=x2的性质:1.二次函数y=x2是一条曲线,把这条曲线叫做______________.2.二次函数y=x2中,二次函数a=_______,抛物线y=x2的图象开口__________.3.自变量x的取值范围是____________.4.观察图象,当两点的横坐标互为相反数时,函数y值相等,所描出的各对应点关于________对称,从而图象关于___________对称.5.抛物线y=x2与它的对称轴的交点(,)叫做抛物线y=x2的_________.因此,抛物线与对称轴的交点叫做抛物线的_____________.6.抛物线y=x2有____________点(填“最高”或“最低”).四、例题分析例1 在同一直角坐标系中,画出函数y=12x2,y=x2,y=2x2的图象.y=x2的图象刚画过,再把它画出来.归纳:抛物线y=12x2,y=x2,y=2x2的二次项系数a_______0;顶点都是__________;对称轴是_________;顶点是抛物线的最_________点(填“高”或“低”).例2 请在例1的直角坐标系中画出函数y =-x 2,y =-12x 2, y =-2x 2的图象.归纳:抛物线y =-x 2,y =-12x 2, y =-2x 2的二次项系数a______0,顶点都是________,对称轴是___________,顶点是抛物线的最________点(填“高”或“低”) . 五、理一理122.抛物线y =x 2与y =-x 2关于________对称,因此,抛物线y =ax 2与y =-ax 2关于_______ 对称,开口大小_______________.3.当a >0时,a 越大,抛物线的开口越___________; 当a <0时,|a | 越大,抛物线的开口越_________;因此,|a | 越大,抛物线的开口越________,反之,|a | 越小,抛物线的开口越________.六、课堂训练 12.若二次函数y =ax 2的图象过点(1,-2),则a 的值是___________. 3.二次函数y =(m -1)x 2的图象开口向下,则m____________. 4.如图, ① y =ax 2 ② y =bx 2 ③ y =cx 2 ④ y =dx 2 比较a 、b 、c 、d 的大小,用“>”连接. ___________________________________七、目标检测1.函数y =37x 2的图象开口向_______,顶点是__________,对称轴是________,当x =___________时,有最_________值是_________. 2.二次函数y =mx 22 m 有最低点,则m =___________.3.二次函数y =(k +1)x 2的图象如图所示,则k 的取值 范围为___________.4.写出一个过点(1,2)的函数表达式_________________.第3课时 二次函数y =ax 2+k 的图象与性质一、阅读课本:P6—7上方 二、学习目标:1.会画二次函数y =ax 2+k 的图象;2.掌握二次函数y =ax 2+k 的性质,并会应用; 3.知道二次函数y =ax 2与y =的ax 2+k 的联系. 三、探索新知:在同一直角坐标系中,画出二次函数y =x 2+1,y =x 2-1的图象.观察图象得:2.可以发现,把抛物线y=x2向______平移______个单位,就得到抛物线y=x2+1;把抛物线y=x2向_______平移______个单位,就得到抛物线y=x2-1.3.抛物线y=x2,y=x2-1与y=x2+1的形状_____________.四、理一理知识点1.2.抛物线y=2x2向上平移3个单位,就得到抛物线__________________;抛物线y =2x 2向下平移4个单位,就得到抛物线__________________.因此,把抛物线y =ax 2向上平移k (k >0)个单位,就得到抛物线_______________; 把抛物线y =ax 2向下平移m (m >0)个单位,就得到抛物线_______________. 3.抛物线y =-3x 2与y =-3x 2+1是通过平移得到的,从而它们的形状__________,由此可得二次函数y =ax 2与y =ax 2+k 的形状__________________.五、课堂巩固训练2.将二次函数y =5x 2-3向上平移7个单位后所得到的抛物线解析式为_________________. 3.写出一个顶点坐标为(0,-3),开口方向与抛物线y =-x 2的方向相反,形状相同的抛物线解析式____________________________.4.抛物线y =4x 2+1关于x 轴对称的抛物线解析式为______________________.六、目标检测2.抛物线y =-13 x 2-2可由抛物线y =-13x 2+3向___________平移_________个单位得到的.3.抛物线y =-x 2+h 的顶点坐标为(0,2),则h =_______________.4.抛物线y =4x 2-1与y 轴的交点坐标为_____________,与x 轴的交点坐标为_________.第4课时 二次函数y =a(x-h)2的图象与性质一、阅读课本:P7—8二、学习目标:1.会画二次函数y =a (x -h )2的图象;2.掌握二次函数y =a (x -h )2的性质,并要会灵活应用; 三、探索新知:画出二次函数y =-12 (x +1)2,y -12(x -1)2的图象,并考虑它们的开口方向、对称轴、顶点以及最值、增减性.12.请在图上把抛物线y =-12x 2也画上去(草图).①抛物线y =-12 (x +1)2 ,y =-12 x 2,y =-12 (x -1)2的形状大小____________.②把抛物线y =-12 x 2向左平移_______个单位,就得到抛物线y =-12 (x +1)2 ;把抛物线y =-12 x 2向右平移_______个单位,就得到抛物线y =-12(x +1)2 .四、整理知识点2.对于二次函数的图象,只要|a|相等,则它们的形状_________,只是_________不同.五、课堂训练2.抛物线y=4 (x-2)2与y轴的交点坐标是___________,与x轴的交点坐标为________.3.把抛物线y=3x2向右平移4个单位后,得到的抛物线的表达式为____________________.把抛物线y=3x2向左平移6个单位后,得到的抛物线的表达式为____________________.4.将抛物线y=-13(x-1)x2向右平移2个单位后,得到的抛物线解析式为____________.5.写出一个顶点是(5,0),形状、开口方向与抛物线y=-2x2都相同的二次函数解析式___________________________.六、目标检测1.抛物线y=2 (x+3)2的开口______________;顶点坐标为__________________;对称轴是_________;当x>-3时,y______________;当x=-3时,y有_______值是_________.2.抛物线y =m (x +n)2向左平移2个单位后,得到的函数关系式是y =-4 (x -4)2,则 m =__________,n =___________.3.若将抛物线y =2x 2+1向下平移2个单位后,得到的抛物线解析式为_______________. 4.若抛物线y =m (x +1)2过点(1,-4),则m =_______________.第5课时 二次函数y =a(x -h)2+k 的图象与性质一、阅读课本:第9页. 二、学习目标:1.会画二次函数的顶点式y =a (x -h)2+k 的图象; 2.掌握二次函数y =a (x -h)2+k 的性质;3.会应用二次函数y =a (x -h)2+k 的性质解题. 三、探索新知:画出函数y =-12(x +1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.由图象归纳:2.把抛物线y =-12x 2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y =-12(x +1)2-1.2.抛物线y=a (x-h)2+k与y=ax2形状___________,位置________________.五、课堂练习2.y=6x2+3与y=6 (x-1)2+10_____________相同,而____________不同.3.顶点坐标为(-2,3),开口方向和大小与抛物线y=12x2相同的解析式为()A.y=12(x-2)2+3 B.y=12(x+2)2-3C.y=12(x+2)2+3 D.y=-12(x+2)2+34.二次函数y=(x-1)2+2的最小值为__________________.5.将抛物线y=5(x-1)2+3先向左平移2个单位,再向下平移4个单位后,得到抛物线的解析式为_______________________.6.若抛物线y=ax2+k的顶点在直线y=-2上,且x=1时,y=-3,求a、k的值.7.若抛物线y=a (x-1)2+k上有一点A(3,5),则点A关于对称轴对称点A’的坐标为__________________.六、目标检测2.抛物线y=-3 (x+4)2+1中,当x=_______时,y有最________值是________.3.足球守门员大脚开出去的球的高度随时间的变化而变化,这一过程可近似地用下列哪幅图表示()A B CD4.将抛物线y=2 (x+1)2-3向右平移1个单位,再向上平移3个单位,则所得抛物线的表达式为________________________.5.一条抛物线的对称轴是x=1,且与x轴有唯一的公共点,并且开口方向向下,则这条抛物线的解析式为____________________________.(任写一个)第6课时二次函数y=ax2+bx+c的图象与性质一、阅读课本:第10页.二、学习目标:1.配方法求二次函数一般式y=ax2+bx+c的顶点坐标、对称轴;2.熟记二次函数y=ax2+bx+c的顶点坐标公式;3.会画二次函数一般式y=ax2+bx+c的图象.三、探索新知:1.求二次函数y=12x2-6x+21的顶点坐标与对称轴.解:将函数等号右边配方:y=12x2-6x+212.画二次函数y=12x2-6x+21的图象.解:y=12x2-6x+21配成顶点式为_______________________.3.用配方法求抛物线y=ax2+bx+c(a≠0)的顶点与对称轴.五、课堂练习1.用配方法求二次函数y=-2x2-4x+1的顶点坐标.2.用两种方法求二次函数y=3x2+2x的顶点坐标.3.二次函数y=2x2+bx+c的顶点坐标是(1,-2),则b=________,c=_________.4.已知二次函数y=-2x2-8x-6,当___________时,y随x的增大而增大;当x=________时,y有_________值是___________.六、目标检测1.用顶点坐标公式和配方法求二次函数y=12x2-2-1的顶点坐标.2.二次函数y=-x2+mx中,当x=3时,函数值最大,求其最大值.第7课时 二次函数y =ax 2+bx +c 的性质一、复习知识点:第6课中“理一理知识点”的内容. 二、学习目标:1.懂得求二次函数y =ax 2+bx +c 与x 轴、y 轴的交点的方法; 2.知道二次函数中a ,b ,c 以及△=b 2-4ac 对图象的影响. 三、基本知识练习1.求二次函数y =x 2+3x -4与y 轴的交点坐标为_______________,与x 轴的交点坐标____________.2.二次函数y =x 2+3x -4的顶点坐标为______________,对称轴为______________. 3.一元二次方程x 2+3x -4=0的根的判别式△=______________. 4.二次函数y =x 2+bx 过点(1,4),则b =________________.5.一元二次方程y =ax 2+bx +c (a ≠0),△>0时,一元二次方程有_______________, △=0时,一元二次方程有___________,△<0时,一元二次方程_______________. 四、知识点应用1.求二次函数y =ax 2+bx +c 与x 轴交点(含y =0时,则在函数值y =0时,x 的值是抛物线与x 轴交点的横坐标).例1 求y =x 2-2x -3与x 轴交点坐标.2.求二次函数y =ax 2+bx +c 与y 轴交点(含x =0时,则y 的值是抛物线与y 轴交点的纵坐标).例2 求抛物线y =x 2-2x -3与y 轴交点坐标.3.a 、b 、c 以及△=b 2-4ac 对图象的影响. (1)a 决定:开口方向、形状(2)c 决定与y 轴的交点为(0,c )(3)b 与-b2a共同决定b 的正负性(4)△=b 2-4ac ⎪⎩⎪⎨⎧<=>轴没有交点与轴有一个交点与轴有两个交点与x x x 000例3 如图, 由图可得:a_______0b_______0c_______0△______0例4 已知二次函数y =x 2+kx +9.①当k 为何值时,对称轴为y 轴;②当k 为何值时,抛物线与x 轴有两个交点; ③当k 为何值时,抛物线与x 轴只有一个交点. 五、课后练习1.求抛物线y=2x2-7x-15与x轴交点坐标__________,与y轴的交点坐标为_______.2.抛物线y=4x2-2x+m的顶点在x轴上,则m=__________.3.如图:由图可得:a_______0b_______0c_______0△=b2-4ac______0六、目标检测1.求抛物线y=x2-2x+1与y轴的交点坐标为_______________.2.若抛物线y=mx2-x+1与x轴有两个交点,求m的范围.3.如图:由图可得:a _________0b_________0c_________0△=b2-4ac_________0第8课时二次函数y=ax2+bx+c解析式求法一、阅读课本:第12~13页.二、学习目标:1.会用待定系数法求二次函数的解析式;2.实际问题中求二次函数解析式.三、课前基本练习1.已知二次函数y=x2+x+m的图象过点(1,2),则m的值为________________.2.已知点A(2,5),B(4,5)是抛物线y=4x2+bx+c上的两点,则这条抛物线的对称轴为_____________________.3.将抛物线y=-(x-1)2+3先向右平移1个单位,再向下平移3个单位,则所得抛物线的解析式为____________________.4.抛物线的形状、开口方向都与抛物线y=-12x2相同,顶点在(1,-2),则抛物线的解析式为________________________________.四、例题分析例1 已知抛物线经过点A(-1,0),B(4,5),C(0,-3),求抛物线的解析式.例2 已知抛物线顶点为(1,-4),且又过点(2,-3).求抛物线的解析式.例3 已知抛物线与x 轴的两交点为(-1,0)和(3,0),且过点(2,-3). 求抛物线的解析式. 五、归纳用待定系数法求二次函数的解析式用三种方法: 1.已知抛物线过三点,设一般式为y =ax 2+bx +c .2.已知抛物线顶点坐标及一点,设顶点式y =a(x -h)2+k .3.已知抛物线与x 轴有两个交点(或已知抛物线与x 轴交点的横坐标),设两根式:y =a(x -x 1)(x -x 2) .(其中x 1、x 2是抛物线与x 轴交点的横坐标)六、实际问题中求二次函数解析式例4 要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管应多长?七、课堂训练1.已知二次函数的图象过(0,1)、(2,4)、(3,10)三点,求这个二次函数的关系式.2.已知二次函数的图象的顶点坐标为(-2,-3),且图像过点(-3,-2),求这个二次函数的解析式.3.已知二次函数y =ax 2+bx +c 的图像与x 轴交于A (1,0),B (3,0)两点,与 y 轴交于点C (0,3),求二次函数的顶点坐标.4.如图,在△ABC 中,∠B =90°,AB =12mm ,BC =24mm ,动点P 从点A 开始沿边AB向B 以2mm/s 的速度移动,动点Q 从点B 开始沿边BC 向C 以4mm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,那么△PBQ 的面积S 随出发时间t 如何变化?写出函数关系式及t 的取值范围.八、目标检测1.已知二次函数的图像过点A (-1,0),B (3,0),C (0,3)三点,求这个二次函数解析式.Q P C B A第9课时用函数观点看一元二次方程一、阅读课本:第16~19页二、学习目标:1.知道二次函数与一元二次方程的关系.2.会用一元二次方程ax2+bx+c=0根的判别式△=b2-4ac判断二次函数y=ax2+bx+c与x轴的公共点的个数.三、探索新知1.问题:如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?2.观察图象:(1)二次函数y=x2+x-2的图象与x轴有____个交点,则一元二次方程x2+x-2=0的根的判别式△=_______0;(2)二次函数y=x2-6x+9的图像与x轴有___________个交点,则一元二次方程x2-6x+9=0的根的判别式△=_______0;(3)二次函数y=x2-x+1的图象与x轴________公共点,则一元二次方程x2-x+1=0的根的判别式△_______0.四、理一理知识1.已知二次函数y=-x2+4x的函数值为3,求自变量x的值,可以看作解一元二次方程__________________.反之,解一元二次方程-x2+4x=3又可以看作已知二次函数__________________的函数值为3的自变量x的值.一般地:已知二次函数y=ax2+bx+c的函数值为m,求自变量x的值,可以看作解一元二次方程ax2+bx+c=m.反之,解一元二次方程ax2+bx+c=m又可以看作已知二次函数y=ax2+bx+c的值为m的自变量x的值.2.二次函数y=ax2+bx+c与x轴的位置关系:一元二次方程ax2+bx+c=0的根的判别式△=b2-4ac.(1)当△=b2-4ac>0时抛物线y=ax2+bx+c与x轴有两个交点;(2)当△=b2-4ac=0时抛物线y=ax2+bx+c与x轴只有一个交点;(3)当△=b2-4ac<0时抛物线y=ax2+bx+c与x轴没有公共点.五、基本知识练习1.二次函数y=x2-3x+2,当x=1时,y=________;当y=0时,x=_______.2.二次函数y=x2-4x+6,当x=________时,y=3.3.如图,一元二次方程ax2+bx+c=0的解为________________ 4.如图一元二次方程ax2+bx+c=3的解为_________________5.如图填空:(1)a________0(2)b________0(3)c________0(4)b2-4ac________0六、课堂训练1.特殊代数式求值:①如图看图填空:(1)a +b+c_______0(2)a -b+c_______0(3)2a -b_______0②如图2a+b_______04a+2b +c_______02.利用抛物线图象求解一元二次方程及二次不等式(1)方程ax2+bx+c=0的根为___________;(2)方程ax2+bx+c=-3的根为__________;(3)方程ax2+bx+c=-4的根为__________;(4)不等式ax2+bx+c>0的解集为________;(5)不等式ax2+bx+c<0的解集为________;(6)不等式-4<ax2+bx+c<0的解集为________.七、目标检测根据图象填空:(1)a_____0;(2)b_____0;(3)c______0;(4)△=b2-4ac_____0;(5)a+b+c_____0;(6)a-b+c_____0;(7)2a+b_____0;(8)方程ax2+bx+c=0的根为__________;(9)当y>0时,x的范围为___________;(10)当y<0时,x的范围为___________;八、课后训练1.已知抛物线y=x2-2kx+9的顶点在x轴上,则k=____________.2.已知抛物线y=kx2+2x-1与坐标轴有三个交点,则k的取值范围___________.3.已知函数y=ax2+bx+c(a,b,c为常数,且a≠0)的图象如图所示,则关于x的方程ax2+bx+c-4=0的根的情况是()A.有两个不相等的正实数根B.有两个异号实数根C.有两个相等实数根D.无实数根4.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1=-1,x2=3;③a+b+c>0;④当x>1时,y随x的增大而增大.正确的说法有__________________(把正确的序号都填在横线上).第10课时实际问题与二次函数(1)一、阅读教科书:P22的问题二、学习目标:几何问题中应用二次函数的最值.三、课前基本练习1.抛物线y=-(x+1)2+2中,当x=___________时,y有_______值是__________.2.抛物线y=12x2-x+1中,当x=___________时,y有_______值是__________.3.抛物线y=a x2+b x+c(a≠0)中,当x=___________时,y有_______值是__________.四、例题分析:(P15的探究)用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化,当l是多少时,场地的面积S最大?五、课后练习1.已知直角三角形两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?2.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式是h=30t-5t2.小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?3.如图,四边形的两条对角线AC、BD互相垂直,AC+BD=10,当AC、BD的长是多少时,四边形ABCD的面积最大?DCBA4.一块三角形废料如图所示,∠A =30°,∠C =90°,AB =12.用这块废料剪出一个长方形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的长方形CDEF 面积最大,点E 应造在何处?六、目标检测如图,点E 、F 、G 、H 分别位于正方形ABCD 的四条边上,四边形EFGH 也是正方形.当 点E 位于何处时,正方形EFGH 的面积最小?第11课时 实际问题与二次函数(2)商品价格调整问题一、阅读课本:第23页(探究1)二、学习目标:1.懂得商品经济等问题中的相等关系的寻找方法;2.会应用二次函数的性质解决问题.三、探索新知某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?F E D C B A HG F E D C B A分析:调整价格包括涨价和降价两种情况,用怎样的等量关系呢?解:(1)设每件涨价x元,则每星期少卖_________件,实际卖出_________件,设商品的利润为y元.(2)设每件降价x元,则每星期多卖_________件,实际卖出__________件.四、课堂训练1.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(100-x)件,应如何定价才能使利润最大?2.蔬菜基地种植某种蔬菜,由市场行情分析知,1月份至6月份这种蔬菜的上市时间x(月函数的图象是抛物线的一段(如图).(1)写出上表中表示的市场售价P(元/千克)关于上市时间x(月份)的函数关系式;(2)若图中抛物线过A、B、C三点,写出抛物线对应的函数关系式;(3)由以上信息分析,哪个月上市出售这种蔬菜每千克的收益最大?最大值为多少?(收益=市场售价-种植成本)五、目标检测某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空间.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定介增加x元,求:(1)房间每天入住量y(间)关于x(元)的函数关系式;(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式,当每个房间的定价为多少元时,w有最大值?最大值是多少?图①第12课时 实际问题与二次函数(3)一、阅读课本:第25页探究3二、学习目标:1.会建立直角坐标系解决实际问题;2.会解决桥洞水面宽度问题.三、基本知识练习1.以抛物线的顶点为原点,以抛物线的对称轴为y 轴建立直角坐标系时,可设这条抛物线的关系式为___________________________________.2.拱桥呈抛物线形,其函数关系式为y =-14x 2,当拱桥下水位线在AB 位置时,水面宽为 12m ,这时水面离桥拱顶端的高度h 是( )A .3mB .2 6 mC .4 3 mD .9m3.有一抛物线拱桥,已知水位线在AB 位置时,水面的宽为4 6 米,水位上升4米,就达到警戒线CD ,这时水面宽为4 3 米.若洪水到来时,水位以每小时0.5米的速度上升,则水过警戒线后几小时淹没到拱桥顶端M 处?四、课堂练习1.一座拱桥的轮廓是抛物线(如图①所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m .(1)将抛物线放在所给的直角坐标系中(如图②所示),其关系式y =ax 2+c 的形式,请根据所给的数据求出a 、c 的值;(2)求支柱MN 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m ,高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.2.如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m .(1)建立如图所示的直角坐标系,求此抛物线的解析式.(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1h时,忽然接到紧急通知:前方连降暴雨,造成水位以每小0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由.若不能,要使货车安全通过此桥,速度应超过每小时多少千米?第13课时二次函数综合应用一、复习二次函数的基本性质二、学习目标:灵活运用二次函数的性质解决综合性的问题.三、课前训练1.二次函数y=kx2+2x+1(k<0)的图象可能是()2.如图:(1)当x为何范围时,y1>y2?(2)当x为何范围时,y1=y2?(3)当x为何范围时,y1<y2?3.如图,是二次函数y=ax2-x+a2-1的图象,则a=____________.4.若A(-134,y1),B(-1,y2),C(53,y3)为二次函数y=-x2-4x+5图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y35.抛物线y=(x-2) (x+5)与坐标轴的交点分别为A、B、C,则△ABC的面积为__________.6.如图,已知在平面直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD =5.若矩形以每秒2个单位长度沿x轴正方向做匀速运动,同时点P从A点出发以每秒1个单位长度沿A→B→C→D的路线做匀速运动.当点P运动到点D时停止运动,矩形ABCD也随之停止运动.(1)求点P从点A运动到点D所需的时间.(2)设点P运动时间为t(秒)①当t=5时,求出点P的坐标.②若△OAP的面积为S,试求出S与t之间的函数关系式(并写出相应的自变量t的取值范围).五、目标检测如图,二次函数y=ax2+bx+c的图像经过A(-1,0),B(3,0)两交点,且交y轴于点C.(1)求b、c的值;(2)过点C作CD∥x轴交抛物线于点D,点M为此抛物线的顶点,试确定△MCD的形状.。

数学知识点人教版数学九下《第26章二次函数》word总结提升-总结

数学知识点人教版数学九下《第26章二次函数》word总结提升-总结

第26章 二次函数全章总结提升◆本章总结归纳(一)知识框架(二)重点难点突破1.函数图象的理解与应用易错点:函数图象的意义认识不表,它的性质、特征与函数图象联系不上,不能达到数形互助;突破点:加强对函数图象中点的坐标的意义认识,分析各点的坐标,理解y 随x 的变化情况,从而达到能直接根据图象说出二次函数的有关性质。

(如:增减性、极值、对称轴等)理解,,a b c 的值对抛物线2y ax bx c =++的影响,提高解题效率 2.抛物线2y ax bx c =++的特征与,,a b c 符号:,,a b c 决定开口方向0,0,a a >⎧⎨<⎩开口向上;开口向下.,,a b c 与b 决定对称轴位置,,a b a b ⎧⎨⎩同号,在轴左侧;异号,在轴右侧.c 决定抛物线与y 轴交点的位置0,0,0,c c c >⎧⎪=⎨⎪<⎩交点在y 轴的正半轴上;交点在原点;交点在y 轴的负半轴上. 易错点:以上关系不清楚,导致做题盲目,出错。

突破点:数形结合,变式训练,特别是,,a b c 与b 一走决定对称轴位置的理解与判定。

3.解析式之间的转化与解析式的求法。

易错点:①将2y ax bx c =++化成顶点式224()24b ac b y a x a a -=++ ②用待定系数法求解时,不能根据不同条件恰当地选取解析式。

突破点:①强调配方的步骤、配方的规律,注意恒等变形与检验。

②比较不同形式的解析式的优劣,应用的环境,加强对顶点式、交点式的理解,并能正确运用。

4.抛物线的平移规律,表达式的变化。

易错点:抛物线的移动,对解析式变化理解不透,不同方向的移动,到底是加还是减判断不清。

突破点:抓住顶点坐标的变化,熟记平移规律,左加右减,上加下减。

5.抛物线与x 轴交点情况。

易错点:此类题综合性较大,对应关系不很明确,隐含条件较多,极易出错。

突破点:抛物线与x 轴交点横坐标就是相应一元二次方程的两根,把交点的个数转化为方程。

数学知识点人教版数学九下《26.1二次函数》word教案(1)-总结

数学知识点人教版数学九下《26.1二次函数》word教案(1)-总结

课 型
新授
1. 能列出实际问题中的二次函数关系式; 2. 理解二次函数概念; 3. 能判断所给的函数关系式是否二次函数关系式; 4 . 掌握二次函数解析式的几种常见形式. 从实际问题中感悟变量间的二次函数关系,揭示二次函数概念.学生经历观察、思考、交流、 归纳、辨析、实践运用等过程,体会函数中的常量与变量,深刻领悟二次函数意义. 使学生进一步体验函数是描述变量间对应关系的重要数学模型,培养学生合作交流意识和探索 能力。 理解二次函数的意义,能列出实际问题中二次函数解析式 能列出实际问题中二次函数解析式
初中数学、数学课件、数学综合练习题、数学教学教案、试卷数学
教师引导学生观察解析 式结构,对照二次函数 的一般形式进行分析 教师组织学生讨论所给 函数解析式是一次函数 时,二次项系数须是 0,一次项系数不等于 0. 学生独自列二次函数解 析式,之后集体交流, 达成一致. 教师组织学生回顾本节 知识,学生谈个人收 获,师生交流.
y ax2 c ; y ax2 bx c .
③所缺项的系数看做为 0. 2.已知 y (m 2) xm
2
m 4
是关于 x 的二次函数,求 m 的值.
分析:m-2≠0, m 2 m 4 2 ; 3. 已知 y (m2 m) x 2 mx m 1 , ⑴ 若 y 是 x 的一次函数,求 m 的值; ⑵ 若 y 是 x 的二次函数,求 m 的取值范围. 分析:根据一次函数和二次函数解析式的一般形式确定 m 的值. 4 教材 6 页练习 1、2 四、小结归纳 学生谈本节课收获 1.二次函数概念 2.二次函数与一次函数的区别与联系 3.二次函数的 4 种常见形式 五、作业设计
强调二次函数解析 式的二次项系数不 等于 0,自变量的 最高次数是 2,使 学生能比较一次函 数和二次函数的解 析式特点,确定 m 的取值情况。 使学生能列出实际 问题中的二次函数 解析式. 1

人教版九年级下册第二十六章_《二次函数》小结与复习(2)课件ppt

人教版九年级下册第二十六章_《二次函数》小结与复习(2)课件ppt

y x mx 2m (m 0)
2 2
y
A
P
o
B
x
巩固
2、已知y是x的二次函数,且其图象在x 轴上截得的线段AB长为4个单位,当x= 3时,y取得最小值为-2。 (1)求这个二次函数的解析式; (2)若此函数图象上有一点P,使△PAB 的面积等于12个平方单位,求P点坐标。
范例
例2、如图,直线AB过x轴上的点A(3,0), 且与抛物线 相交于B、C,点B的 坐标为(1,2)。 2 (1)求直线和抛物线的 解析式; (2)在抛物线上求一
y ax
2
y kx b
y
M o
P A x
巩固
3、如图,点P(m,a)是抛物线 上 的点,且点P在第一象限。 (2)直线 过点P,交x轴的正半 轴于点A,交抛物线于另一点M。 ②当b=4时,记△MOA的
y ax
2
y kx b
1 S
y
面积为S,求 的最大值。
M o
P A x
范例
小结与复习(2)
范例
例1、已知抛物线 经过A、 B、C三点,当x≥0时,其图象如图所 示: (1)求抛物线的解析式; (2)画出当x<0时函数 的图象; (3)利用函数图象写出 x为何值时,y>0?
y ax bx c
2
y
2 A
B
o
4
5 C
x
-3
巩固
1、已知抛物线 。 (1)求证:该抛物线与x轴有两个不同的 交点; (2)过点P(0, n)作y轴的垂线交抛物线于点 A、B(A在P的左侧),是否 存在实数m、n,使得 AP=2PB?若存在,求 出m、n满足的条件; 若不存在,请说明理由。

初中数学九年级下册第二十六章二次函数知识点总结及(K12教育文档)

初中数学九年级下册第二十六章二次函数知识点总结及(K12教育文档)

初中数学九年级下册第二十六章二次函数知识点总结及(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学九年级下册第二十六章二次函数知识点总结及(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学九年级下册第二十六章二次函数知识点总结及(word版可编辑修改)的全部内容。

新课标人教版初中数学九年级下册第二十六章《二次函数》知识点总结及精品试题第一部分 基础知识1。

定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2ax y =的性质(1)抛物线2ax y =的顶点是坐标原点,对称轴是y 轴。

(2)函数2ax y =的图像与a 的符号关系。

①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2ax y =)(0≠a 。

3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线。

4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5。

二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2。

6。

抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作h x =。

九年级数学下册 第26章 二次函数小结与复习教学课件

九年级数学下册 第26章 二次函数小结与复习教学课件

值的增大而减小,∴抛物线y=-x2+2bx+c的对称轴应在直线x=1
的左侧而抛物线y=-x2+2bx+c的对称轴 故选择D .
x ,b 即b≤b1, 2(1)
第十五页,共二十六页。
考点四 抛物线的几何变换
例4 将抛物线y=x2-6x+5向上(xiàngshàng)平移 2个单位长
度,再向右平移1个单位长度后,得到的抛物线表达式是
3.若已知二次函数图象与x轴的交点坐标为 (x1,0)、(x2,0)
时,可设交点式求表达式,最后化为一般式.
第十九页,共二十六页。
针对训练
5.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状相同,顶点在 直线x=1上,且顶点到x轴的距离为5,请写出满足(mǎnzú)此条件的抛物线
的表达式.
y最大=
4ac b2 4a
在对称轴左边, x ↗y↘ ;在对称轴右边, x ↗ y ↗
在对称轴左边, x ↗y ↗ ;在对称轴右边, x ↗ y ↘
第四页,共二十六页。
6.二次函数(hánshù)与一元二次方程及一元二次不等式的关系:
判别式△=b2-4ac
△>0
△=0
△<0
二次函数y=ax2+bx+c (a>0) 的图象
方法总结 抛物线平移的规律可总结如下(rúxià)口诀:左加右减 自变量,上加下减常数项.
第十六页,共二十六页。
针对训练
4.若抛物线 y=-7(x+4)2-1平移(pínɡ yí)得到 y=-7x2,则必须( )B A.先向左平移4个单位,再向下平移1个单位 B.先向右平移4个单位,再向上平移1个单位 C.先向左平移1个单位,再向下平移4个单位 D.先向右平移1个单位,再向下平移4个单位
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第26章 《二次函数》小结与复习(1)教学目标:理解二次函数的概念,掌握二次函数y =ax2的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y =ax2经过适当平移得到y =a(x -h)2+k 的图象。

重点难点:1.重点:用配方法求二次函数的顶点、对称轴,根据图象概括二次函数y =ax2图象的性质。

2.难点:二次函数图象的平移。

教学过程:一、结合例题精析,强化练习,剖析知识点1.二次函数的概念,二次函数y =ax 2 (a ≠0)的图象性质。

例:已知函数4m m 2x)2m (y -++=是关于x 的二次函数,求:(1)满足条件的m 值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大?(3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小?学生活动:学生四人一组进行讨论,并回顾例题所涉及的知识点,让学生代表发言分析解题方法,以及涉及的知识点。

教师精析点评,二次函数的一般式为y =ax 2+bx +c(a ≠0)。

强调a ≠0.而常数b 、c 可以为0,当b ,c 同时为0时,抛物线为y =ax 2(a ≠0)。

此时,抛物线顶点为(0,0),对称轴是y 轴,即直线x =0。

(1)使4m m 2x)2m (y -++=是关于x 的二次函数,则m 2+m -4=2,且m +2≠0,即:m 2+m -4=2,m +2≠0,解得;m =2或m =-3,m ≠-2 (2)抛物线有最低点的条件是它开口向上,即m +2>0, (3)函数有最大值的条件是抛物线开口向下,即m +2<0。

抛物线的增减性要结合图象进行分析,要求学生画出草图,渗透数形结合思想,进行观察分析。

强化练习;已知函数mm 2x)1m (y ++=是二次函数,其图象开口方向向下,则m =_____,顶点为_____,当x_____0时,y 随x 的增大而增大,当x_____0时,y 随x 的增大而减小。

2。

用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律,例:用配方法求出抛物线y =-3x 2-6x +8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线y =-3x 2。

学生活动:小组讨论配方方法,确定抛物线画法的步骤,探索平移的规律。

充分讨论后让学生代表归纳解题方法与思路。

教师归纳点评:(1)教师在学生合作讨论基础上强调配方的方法及配方的意义,指出抛物线的一般式与顶点式的互化关系: y =ax 2+bx +c ————→y =a(x +b 2a )2+4ac -b 24a(2)强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。

(3)抛物线的平移抓住关键点顶点的移动,分析完例题后归纳; 投影展示:强化练习:(1)抛物线y =x 2+bx +c 的图象向左平移2个单位。

再向上平移3个单位,得抛物线y =x 2-2x +1,求:b 与c 的值。

(2)通过配方,求抛物线y =12x 2-4x +5的开口方向、对称轴及顶点坐标,再画出图象。

3.知识点串联,综合应用。

例:如图,已知直线AB 经过x 轴上的点A(2,0),且与抛物线y =ax 2相交于B 、C 两点,已知B 点坐标为(1,1)。

(1)求直线和抛物线的解析式;(2)如果D 为抛物线上一点,使得△AOD 与△OBC 的面积相等,求D 点坐标。

学生活动:开展小组讨论,体验用待定系数法求函数的解析式。

教师点评:(1)直线AB 过点A(2,0),B(1,1),代入解析式y =kx +b ,可确定k 、b ,抛物线y =ax 2过点B(1,1),代人可确定a 。

求得:直线解析式为y =-x +2,抛物线解析式为y =x 2。

(2)由y =-x +2与y =x 2,先求抛物线与直线的另一个交点C 的坐标为(-2,4), S △OBC =S △ABC -S △OAB =3。

∵ S △AOD =S △OBC ,且OA =2 ∴ D 的纵坐标为3又∵ D 在抛物线y =x 2上,∴x 2=3,即x =± 3 ∴ D(-3,3)或(3,3) 强化练习:函数y =ax 2(a ≠0)与直线y =2x -3交于点A(1,b),求: (1)a 和b 的值;(2)求抛物线y =ax 2的顶点和对称轴;(3)x 取何值时,二次函数y =ax 2中的y 随x 的增大而增大,(4)求抛物线与直线y =-2两交点及抛物线的顶点所构成的三角形面积。

二、课堂小结1.让学生反思本节教学过程,归纳本节课复习过的知识点及应用。

2。

投影:完成下表:三、作业:作业优化设计一、填空。

1.若二次函数y =(m +1)x 2+m 2-2m -3的图象经过原点,则m =______。

2.函数y =3x 2与直线y =kx +3的交点为(2,b),则k =______,b =______。

3.抛物线y =-13(x -1)2+2可以由抛物线y =-13x 2向______方向平移______个单位,再向______方向平移______个单位得到。

4.用配方法把y =-12x 2+x -52化为y =a(x -h)2+k 的形式为y =__________________,其开口方向______,对称轴为______,顶点坐标为______。

二、选择。

1.函数y =(m -n)x 2+mx +n 是二次函数的条件是( ) A .m 、n 是常数,且m ≠0 B .m 、n 是常数,且m ≠n C. m 、n 是常数,且n ≠0 D. m 、n 可以为任意实数2.直线y =mx +1与抛物线y =2x 2-8x +k +8相交于点(3,4),则m 、k 值为( )A .⎩⎨⎧m =1k =3B .⎩⎨⎧m =-1k =2 C. ⎩⎨⎧m =1k =2 D. ⎩⎨⎧m =2k =13.下列图象中,当ab >0时,函数y =ax 2与y =ax +b 的图象是( )三、解答题1.函数(1)当a取什么值时,它为二次函数。

(2)当a取什么值时,它为一次函数。

2.已知抛物线y=14x2和直线y=ax+1(1)求证:不论a取何值,抛物线与直线必有两个不同舶交点。

(2)设A(x1,y1),B(x2,y2)是抛物线与直线的两个交点,P为线段AB的中点,且点P的横坐标为x1+x22,试用a表示点P的纵坐标。

(3)函数A、B两点的距离d=1+a2|x1-x2|,试用a表示d。

(4)过点C(0,-1)作直线l平行于x轴,试判断直线l与以AB为直径的圆的位置关系,并说明理由。

第26章《二次函数》小结与复习(2)教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。

重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。

难点:会运用二次函数知识解决有关综合问题。

教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。

(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。

(2)抛物线顶点P(-1,-8),且过点A(0,-6)。

(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。

(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。

学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。

教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c (a≠0)(2)顶点式:y=a(x-h)2+k (a≠0) (3)两根式:y=a(x-x1)(x-x2) (a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。

当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。

当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。

(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。

二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B 、C 。

(1)求抛物线的解析式;(2)求抛物线的顶点坐标,(3)若点M 在第四象限内的抛物线上,且OM ⊥BC ,垂足为D ,求点M 的坐标。

学生活动:学生先自主分析,然后小组讨论交流。

教师归纳:(1)求抛物线解析式,只要求出A 、B ,C 三点坐标即可,设y =x 2-2x -3。

(2)抛物线的顶点可用配方法求出,顶点为(1,-4)。

(3)由|0B|=|OC|=3 又OM ⊥BC 。

所以,OM 平分∠BOC设M(x ,-x)代入y =x 2-2x -3 解得x =1±132因为M 在第四象限:∴M(1+132,1-132)题后反思:此题为二次函数与一次函数的交叉问题,涉及到了用待定系数法求函数 解析式,用配方法求抛物线的顶点坐标;等腰三角形三线合一等性质应用,求M 点坐标 时应考虑M 点所在象限的符号特征,抓住点M 在抛物线上,从而可求M 的求标。

强化练习;已知二次函数y =2x 2-(m +1)x +m -1。

(1)求证不论m 为何值,函数图象与x 轴总有交点,并指出m 为何值时,只有一个交点。

(2)当m 为何值时,函数图象过原点,并指出此时函数图象与x 轴的另一个交点。

(3)若函数图象的顶点在第四象限,求m 的取值范围。

三、课堂小结1.投影:让学生完成下表:2.归纳二次函数三种解析式的实际应用。

3.强调二次函数与方程、圆、三角形,三角函数等知识综合的综合题解题思路。

四、作业: 课后反思:本节课重点是用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式;要让学生熟练掌握配方法,并由此确定二次函数的顶点、对称轴,并能结合图象分析二次函数的有关性质。

对于二次函数与其他知识的综合应用,关键要让学生掌握解题思路,把握题型,能利用数形结合思想进行分析,从而把握解题的突破口。

课时作业优化设计一、填空。

1. 如果一条抛物线的形状与y =-13x 2+2的形状相同,且顶点坐标是(4,-2),则它的解析式是_____。

相关文档
最新文档