28.1特殊角的三角函数值教案

合集下载

28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册

28.1锐角三角函数特殊角的锐角三角函数值(教案)2023-2024学年人教版数学九年级下册
2.学习特殊(30°、45°、60°)的正弦、余弦、正切值,并能熟练运用这些值进行相关计算。
3.通过实际例题,培养学生运用锐角三角函数解决实际问题的能力。
本节课将结合教材内容,通过讲解、示范、练习等环节,帮助学生掌握特殊角的锐角三角函数值,并为后续学习三角函数的性质和应用打下坚实基础。
二、核心素养目标
3.增强学生的数学运算与数据分析能力:通过解决实际例题,让学生运用锐角三角函数进行计算和分析,提高数学运算与数据分析能力,为解决复杂问题奠定基础。
本节课将紧密围绕新教材的要求,关注学生核心素养的培养,帮助学生将所学知识内化为自身的数学素养,为未来的学习和生活打下坚实基础。
后的内容###”二、核心素养目标”作为标题标识,再开篇直接输出。
2.逻辑推理:通过特殊角的锐角三角函数值的推导,提高学生的逻辑推理能力。
3.数学运算与数据分析:培养学生运用特殊角的锐角三角函数值进行精确计算和解决实际问题的能力。
三、教学过程
1.导入新课
通过回顾上一节课的内容,引导学生进入锐角三角函数的学习。
2.基本概念与性质
复习锐角三角函数的定义,强调正弦、余弦、正切的概念。
四、教学评价
1.课堂问答:检查学生对特殊角的锐角三角函数值的掌握程度。
2.练习题完成情况:评估学生对知识点的理解和运用能力。
3.课后作业:布置相关作业,巩固所学知识。
五、教学资源
1.教材:人教版数学九年级下册。
2.课件:包含本节课教学内容的PPT。
3.练习题:针对本节课知识点的练习题。
五、教学反思
在上完这节关于特殊角的锐角三角函数值的内容后,我进行了深入的思考。首先,我发现学生们对于锐角三角函数的定义有了较好的理解,但记忆特殊角的函数值还存在一定难度。在教学中,我尝试通过一些记忆方法,如编口诀、画图等,帮助学生记忆。从学生的反馈来看,这些方法还是有一定效果的,但还需在后续教学中继续巩固。

人教版九年级下册28.1特殊角的锐角三角函数值教学设计

人教版九年级下册28.1特殊角的锐角三角函数值教学设计
(4)小组合作题:以小组为单位,探讨特殊角的三角函数值在生活中的应用,并撰写一篇小论文。
作业要求:
1.学生需独立完成作业,诚实守信,不得抄袭。
2.解题过程要求步骤清晰,书写规范。
3.小组合作题需充分发挥团队合作精神,共同完成。
4.作业完成后,及时上交,教师将进行批改和反馈。
4.通过对特殊角的锐角三角函数值的学习,培养学生对数的敏感性和逻辑思维能力。
(二)过程与方法
1.通过观察、猜想、验证等教学活动,引导学生自主发现特殊角的锐角三角函数值规律,培养学生自主学习的能力。
2.运用问题驱动的教学方法,激发学生的学习兴趣,引导学生通过合作、探究、讨论等方式,深入理解特殊角锐角三角函数的概念和计算方法。
针对学生的困惑,我会进行有针对性的解答,巩固学生对知识的理解。最后,强调特殊角的锐角三角函数值在实际生活中的应用,提高学生的应用意识,为后续学习打下坚实基础。
五、作业布置
为了巩固学生对特殊角的锐角三角函数值的学习,确保学生能够熟练掌握并运用到实际中,我设计了以下几类作业:
1.基础巩固题:布置一些基本的计算题,要求学生熟练掌握特殊角的正弦、余弦、正切值,并能快速准确地计算出结果。
学生在讨论过程中,可以相互提问、解答,共同探讨特殊角锐角三角函数值的规律。我会巡回指导,解答学生的疑问,引导学生深入思考。讨论结束后,每个小组汇报讨论成果,共同分享学习心得。
(四)课堂练习,500字
在课堂练习环节,我会设计不同难度的题目,让学生独立完成。题目包括基础题、提高题和应用题,旨在检验学生对特殊角的锐角三角函数值的掌握程度。
四、教学内容与过程
(一)导入新课,500字
在导入新课环节,我将结合学生的生活经验,提出一个与学生实际相关的问题:“同学们,在我们的日常生活中,如建筑设计、制作家具等,经常会遇到各种角度的测量问题。那么,如何才能快速、准确地计算出这些角度的三角函数值呢?”通过这个问题,激发学生的好奇心,引导学生思考。

人教版数学九年级下册28.1.2:特殊角的三角函数值及用计算器求锐角三角函数值 教案

人教版数学九年级下册28.1.2:特殊角的三角函数值及用计算器求锐角三角函数值 教案

28.1 锐角三角函数第4课时用计算器求锐角三角函数值及锐角学习目标1. 会使用科学计算器求锐角的三角函数值.2. 会根据锐角的三角函数值,借助科学计算器求锐角的大小.3. 熟练运用计算器解决锐角三角函数中的问题.教学重难点1. 使用科学计算器求锐角的三角函数值2. 根据锐角的三角函数值,借助科学计算器求锐角的大小一、导入新课复习引入填写下表:特殊角时,可以求得这些特殊角的锐角三角函数值;如果锐角A 不是这些特殊角,怎样得到它的锐角三角函数值呢?二、讲授新课1.用计算器求锐角的三角函数值或角的度数例1 (1) 用计算器求sin18°的值;(2) 用计算器求tan30°36′ 的值;(3) 已知 sin A = 0.501 8,用计算器求∠A 的度数.解:(1)第一步:按计算器键;第二步:输入角度值18;屏幕显示结果sin18°= 0.309 016 994.(2)方法①:第一步:按计算器键;第二步:输入角度值30.6 (因为30°36′ = 30.6°);屏幕显示答案:0.591 398 351.方法②:第一步:按计算器键;第二步:输入角度值30,分值36 (使用键);屏幕显示答案:0.591 398 351.(3)第一步:按计算器键;第二步:然后输入函数值0. 501 8;屏幕显示答案:30.119 158 67°(按实际需要进行精确).还可以利用键,进一步得到∠A =30°07′08.97 ″ (这说明锐角A 精确到1′ 的结果为30°7′,精确到1″ 的结果为30°7′9″).三、练一练1. 用计算器求下列各式的值(精确到0.0001):(1) sin47°;(2) sin12°30′;(3) cos25°18′;(4) sin18°+cos55°-tan59°.答案:(1) 0.7314 ;(2) 0.2164 ;(3) 0.9041;(4) -0.7817.2. 已知下列锐角三角函数值,用计算器求锐角∠A,∠B的度数(结果精确到0.1°):(1) sin A=0.7,sin B=0.01;(2) cos A=0.15,cos B=0.8;(3) tan A=2.4,tan B=0.5.答案:(1) ∠A ≈ 44.4°;∠B ≈ 0.6°.(2) ∠A ≈ 81.4°;∠B ≈ 36.9°.(3) ∠A ≈ 67.4°;∠B ≈ 26.6°.2.利用计算器探索三角函数的性质例2通过计算 (可用计算器),比较下列各对数的大小,并提出你的猜想:① sin30°____2sin15°cos15°;② sin36°____2sin18°cos18°;③ sin45°____2sin22.5°cos22.5°;④ sin60°____2sin30°cos30°;⑤ sin80°____2sin40°cos40°.猜想:(1)已知0°<α<45°,则sin2α___2sinαcosα.(2)如图,在△ABC中,AB=AC=1,∠BAC=2α,请利用面积方法验证 (1) 中的结论.3. (1) 利用计算器求值,并提出你的猜想:sin20°= ,cos20°= ,sin220°= ,cos220°= ;sin35°= ,cos35°= ,sin235°= ,cos235°= ;猜想:(1)已知0°<α<90°,则 sin2α + cos2α = .(2) 如图,在Rt△ABC 中,∠C=90°,请验证你在(1)中的结论.四、当堂练习1. 用计算器求sin24°37′18″的值,以下按键顺序正确的是( ) A.B.C.D.2. 下列式子中,不成立的是 ( )A.sin35°= cos55°B.sin30°+ sin45°= sin75°C.cos30°= sin60°D.sin260°+ cos260°=13. 利用计算器求值:(1) sin40°≈ (精确到0.0001);(2) sin15°30′≈ (精确到 0.0001);(3) 若sinα = 0.5225,则α≈ (精确到0.1°);(4) 若sinα = 0.8090,则α≈ (精确到0.1°).4. 已知:sin232°+ cos2α =1,则锐角α = .5. 用计算器比较大小:20sin87°___ tan87°.6. 在 Rt △ABC 中,∠C = 90°,∠BAC = 42°24′,∠A 的平分线 AT = 14.7cm ,用计算器求 AC 的长(精确到0.001).解:∵ AT 平分∠BAC ,且∠BAC = 42°24′,∴ ∠CAT =12∠BAC = 21°12′. 在 Rt△ACT 中 cos ∠CAT = AC AT , ∴ AC = AT · cos∠CAT = 14.7×cos21°12′≈13.705(cm).五、课堂小结。

28.1特殊角的三角函数值(教案)

28.1特殊角的三角函数值(教案)
3.重点难点解析:在讲授过程中,我会特别强调特殊角的三角函数值及其推导过程这两个重点。对于难点部分,我会通过直观图形和实际计算来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与特殊角三角函数值相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过测量和计算,演示特殊角三角函数值在直角三角形中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“特殊角的三角函数值在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
在今天的教学中,我发现学生们对特殊角的三角函数值的概念和应用掌握得还算不错。在导入新课环节,通过日常生活中的例子来引起学生的兴趣,看来效果挺好的,大家都很积极地参与到课堂讨论中。但在讲授理论部分,我发现有些学生对特殊角的记忆不够熟练,需要在这方面多下功夫。
在新课讲授中,我尽量用简单明了的语言解释概念,并通过案例分析让学生更好地理解。不过,我注意到在解释难点时,部分学生还是显得有些困惑。下次我可以尝试用更多直观的图形和实际操作来帮助他们理解。
2.教学难点
-特殊角的三角函数值推导过程的理解。
-运用三角函数值解决实际问题时,对问题模型的建立和转化。
-掌握在坐标平面中,如何利用特殊角的三角函数值来确定点的坐标。
举例:
-难点一:推导sin45°=cos45°=√2/2的过程。教师需要通过直观的图形和逻辑推理,帮助学生理解45°角的正弦和余弦值相等,并且是根号二除以二。

人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值优秀教学案例

人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值优秀教学案例
二、教学目标
(一)知识与技能
1.让学生掌握特殊角的三角函数值,包括30°、45°、60°等角的正弦、余弦和正切值。
2.使学生能够运用特殊角的三角函数值进行简化解题,提高问题解决能力。
3.培养学生运用数学知识描述现实生活中的现象,提高数学应用能力。
在教学过程中,我将以生活实例为导入,引导学生主动探究特殊角的三角函数值。通过多媒体课件的展示,让学生直观地理解特殊角的三角函数值,并在实际问题中运用。此外,我将设计具有挑战性的问题,激发学生的思考,培养学生的创新思维和问题解决能力。
3.培养学生勇于挑战、克服困难的勇气,培养他们的自信心和自尊心。
在教学过程中,我将关注学生的情感需求,以鼓励、表扬等方式激励学生,让他们在学习中感受到成功的喜悦。同时,我将引导学生认识到数学在现实生活中的重要性,培养他们的责任感和使命感。
三、教学策略
(一)情景创设
1.生活实例导入:以实际生活中的问题为导入,引发学生对特殊角的三角函数值的兴趣,激发学生的学习动机。
人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值优秀教学案例
一、案例背景
本节课是人教版九年级数学下册28.1锐角三角函数特殊角的三角函数值。在学习了锐角三角函数的基础上,本节课主要让学生掌握特殊角的三角函数值,进一步深化对锐角三角函数的理解和运用。
在案例背景中,学生已经掌握了锐角三角函数的定义和基本性质,具备了一定的数学思维能力和问题解决能力。然而,对于特殊角的三角函数值,学生可能存在一定的困难,需要通过本节课的学习,进一步巩固和提高。
(四)反思与评价
1.自我反思:让学生在学习过程中进行自我反思,发现自己的不足之处,明确改进方向。
2.同伴评价:学生相互评价,给予意见和建议,共同促进彼此的进步。

部审人教版九年级数学下册教学设计28.1 第3课时《特殊角的三角函数值》

部审人教版九年级数学下册教学设计28.1 第3课时《特殊角的三角函数值》

部审人教版九年级数学下册教学设计28.1 第3课时《特殊角的三角函数值》一. 教材分析人教版九年级数学下册第28.1节《特殊角的三角函数值》是三角函数基础知识的重要组成部分。

本节课主要让学生掌握30°、45°、60°特殊角的正弦、余弦、正切函数值,并能够运用这些知识解决实际问题。

教材通过引入特殊角的三角函数值,为学生深入学习三角函数奠定基础。

二. 学情分析九年级的学生已经掌握了锐角三角函数的概念,对直角三角形的边角关系有一定的了解。

但部分学生对函数值的计算和应用还不够熟练,需要在本节课中加强训练。

此外,学生对于解决实际问题的能力有待提高,需要教师在教学中进行引导和培养。

三. 教学目标1.让学生掌握30°、45°、60°特殊角的正弦、余弦、正切函数值。

2.培养学生运用三角函数知识解决实际问题的能力。

3.提高学生的数学思维能力和团队协作能力。

四. 教学重难点1.重点:掌握30°、45°、60°特殊角的三角函数值。

2.难点:灵活运用特殊角的三角函数值解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究特殊角的三角函数值。

2.运用合作学习法,培养学生团队协作能力和沟通能力。

3.利用案例分析法,让学生学会将理论知识应用于实际问题。

六. 教学准备1.准备相关案例,用于引导学生解决实际问题。

2.准备多媒体教学设备,用于展示特殊角的三角函数值。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用多媒体展示特殊角的三角函数值,引导学生回顾已学知识,为新课的学习做好铺垫。

2.呈现(10分钟)介绍30°、45°、60°特殊角的正弦、余弦、正切函数值,让学生直观地感受这些特殊角的三角函数值。

3.操练(10分钟)让学生分组讨论,运用特殊角的三角函数值解决实际问题。

教师巡回指导,帮助学生克服困难。

人教版九年级数学下册教案:28.1.3 (教案) 特殊角的

人教版九年级数学下册教案:28.1.3  (教案) 特殊角的

28.1.3 特殊角的三角函数值一、教学目标(一)知识与技能熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,(二)过程与方法逐步培养学生观察、比较、分析、概括的思维能力.(三)情感态度与价值观渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.二、重、难点重点:熟记特殊角的三角函数值.难点:熟练应用特殊角的三角函数值三、教学过程让每个学生画含30°、45°的直角三角形,分别求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.例1 求下列各式的值:为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题: (1)sin45°+cos45; (2)sin30°·cos60°;在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20°大概在什么范围内,cos50°呢?”这样的引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述“锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.”为查正余弦表作准备. 三角函数/0°/30°/45°/60°/90°三角函数︒0︒30 ︒45 ︒60 ︒90A sin21 22231A cos1232221tanA cotA请同学推算30°、45°、60°角的正切、余切值.(如图6-11)3331cot 60cot 111cot 45cot 313cot 30cot 313tan 60tan 111tan 45tan ;3331tan 30tan ''''''''''====︒====︒====︒====︒====︒===︒AC BC B C B B A A BC AC A BC AC B C A C B A A通过学生计算完成表格的过程,不仅复习巩固了正弦、余弦、正切、余切概念,而且使学生熟记特殊角的正弦、余弦、正切值与余切值,同时渗透了数形结合的数学思想.练习:1)请学生回答tan45°与cot45°的值各是多少?tan60°与cot30°?tan30°与cot60°呢?学生口答之后,还可以为程度较高的学生设置问题:tan60°与cot60°有何关系?为什么?tan30°与cot30°呢?例1 求下列各式的值:(1)2sin30°+3tan30°+cot45°;(2)cos245°+tan60°·cos30°.解:(1)2sin30°+3tan30°+cot45°(2)cos245°+tan60°·cos30°=2.练习:求下列各式的值:(1)sin30°-3tan30°+2cos30°+cot90°;(2)2cos30°+tan60°-6cot60°;(3)5cot30°-2cos60°+2sin60°+tan0°;(4);45sin 45cos 22︒+︒(5)︒-︒︒-︒45tan 260tan 45cot 60sin学生的计算能力可能不很强,尤其是分式,二次根式的运算,因此这里应查缺补漏,以培养学生运算能力. 四、布置作业。

九年级数学《特殊角的三角函数值》教案

九年级数学《特殊角的三角函数值》教案

教案:特殊角的三角函数值一、教学目标:1.理解特殊角的概念和特征。

2.掌握特殊角的三角函数值。

3.运用特殊角的三角函数值解决实际问题。

4.培养学生的逻辑思维能力和解决问题的能力。

二、教学内容:1.特殊角的概念。

2.特殊角的特征。

3.特殊角的三角函数值。

4.运用特殊角的三角函数值解决实际问题。

三、教学过程:Step 1 导入新课1.让学生回忆和复习正弦、余弦、正切的定义和性质。

2.引入特殊角的概念。

解释特殊角是指在单位圆上的角度是特殊的角度。

Step 2 学习特殊角的特征1.讲解特殊角的三种特殊情况:a)0度。

b)90度。

c)180度。

2.引导学生思考其他特殊角的特征和三种特殊角的函数值。

3.提示学生特殊角的函数值与直角三角形的边长有关。

Step 3 推导特殊角的三角函数值1.推导0度特殊角的三角函数值。

a)角度为0度时,对应的三角函数值:- sin0° = 0- cos0° = 1- tan0° = 0b)解释特殊角的三角函数值与单位圆上的点位置的关系。

2.推导90度特殊角的三角函数值。

a)角度为90度时,对应的三角函数值:- sin90° = 1- cos90° = 0- tan90° = 无定义(不存在)b)解释特殊角的三角函数值与单位圆上的点位置的关系。

3.推导180度特殊角的三角函数值。

a)角度为180度时,对应的三角函数值:- sin180° = 0- cos180° = -1- tan180° = 0b)解释特殊角的三角函数值与单位圆上的点位置的关系。

Step 4 运用特殊角的三角函数值解决实际问题1.将上述推导结果应用于实际问题。

a) 比如:已知角度为45度,求解sin45°、cos45°和tan45°的值。

b)引导学生根据特殊角的三角函数值和单位圆上的三角关系进行计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28.1锐角三角函数
第3课时特殊角的三角函数
【学习目标】
⑴: 能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数。

⑵: 能熟练计算含有30°、45°、60°角的三角函数的运算式
【学习重点】
熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式【学习难点】
30°、45°、60°角的三角函数值的推导过程
【导学过程】
一、自学提纲:
一个直角三角形中,
一个锐角正弦是怎么定义的?
一个锐角余弦是怎么定义的?
一个锐角正切是怎么定义的?
二、合作交流:
思考:
两块三角尺中有几个不同的锐角?
是多少度?
你能分别求出这几个锐角的正弦值、余弦值和正切值码?.
三、教师点拨:
归纳结果
30°45°60°
siaA
cosA
tanA
例3:求下列各式的值.
(1)cos260°+sin260°.(2)cos45
sin45


-tan45°.
例4:(1)如图(1),在Rt△ABC中,∠C=90,
63,求∠A的度数.
(2)如图(2),已知圆锥的高AO 等于圆锥的底面半径OB 3a .
四、学生展示:
一、课本67页 第1 题
课本67页 第 2题 二、选择题.
1.已知:Rt △ABC 中,∠C=90°,cosA=3
5
,AB=15,则AC 的长是( ).
A .3
B .6
C .9
D .12 2.下列各式中不正确的是( ). A .sin 260°+cos 260°=1 B .sin30°+cos30°=1 C .sin35°=cos55° D .tan45°>sin45° 3.计算2sin30°-2cos60°+tan45°的结果是( ).
A .2
B 3
C 2
D .1
4.已知∠A 为锐角,且cosA ≤1
2
,那么( )
A .0°<∠A ≤60°
B .60°≤∠A<90°
C .0°<∠A ≤30°
D .30°≤∠A<90°
5.在△ABC 中,∠A 、∠B 都是锐角,且sinA=1
2

cosB= 3
2
,则△ABC 的形状是( )
A .直角三角形
B .钝角三角形
C .锐角三角形
D .不能确定
6.如图Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,BC=3,AC=4,设∠BCD=a ,则tana•的值为( ).
A .34
B .43
C .35
D .45
7.当锐角a>60°时,cosa 的值( ).
A .小于12
B .大于12
C .大于 3
2
D .大于1
8.在△ABC 中,三边之比为a :b :c=132,则sinA+tanA 等于( ).
A .
3231
3331.32
B C D ++
9.已知梯形ABCD 中,腰BC 长为2,梯形对角线BD 垂直平分AC 3,•则∠CAB 等于( )
A .30°
B .60°
C .45°
D .以上都不对 10.sin 272°+sin 218°的值是( ).
A .1
B .0
C .12
D . 3
2
11.若( 3 tanA-3)2+│2cosB- 3 │=0,则△ABC ( ). A .是直角三角形 B .是等边三角形
C .是含有60°的任意三角形
D .是顶角为钝角的等腰三角形 三、填空题.
12.设α、β均为锐角,且sin α-cos β=0,则α+β=_______.
13.cos 45sin 301
cos 60tan 452︒-︒
︒+︒
的值是_______.
14.已知,等腰△ABC•的腰长为4 3 ,•底为30•°,•则底边上的高为______,•周长为
______.
15.在Rt △ABC 中,∠C=90°,已知tanB= 5
2
,则cosA=________.
六、作业设置:
课本 第69页 习题28.1复习巩固第3题
七、自我反思:
本节课我的收获:。

相关文档
最新文档