集成电路原理课件-cmos

合集下载

《CMOS集成电路基础》课件

《CMOS集成电路基础》课件
当输入为0时,截止;当输入为1时,导通。
NMOS
当输入为0时,导通;当输入为1时,截止。
输出
输出反相的输入信号。
CMOS电路组成:CMOS传输门
1 输入端
接收多个输入信号。
3 PMOS
通过开关和截止的方式传递输入信号。
2 NMOS
通过开关和导通的方式传递输入信号。
4 输出端
输出根据输入信号进行逻辑运算的结果。
晶圆切割
将完成的硅片切割成晶圆,以便后续封 装和测试。
CMOS电路组成:MOS管
N沟道MOS管(NMOS)
由N型沟道和P型沟道构成,可以实现电流的传输和 放大。
P沟道MOS管(PMOS)
由P型沟道和N型沟道构成,用于控制电流的开关。
CMOS电路组成:CMOS反相器
输入
接收输入信号(0或1)。
PMOS
CMOS电路组成:CMOS与门
1
输入A
接收输入信号A。
输入B
2
接收输入信号B。
3
NMOS
当输入A为1且输入B为1时,导通。
PMOS
4
Байду номын сангаас
当输入A为0且输入B为0时,导通。
CMOS电路组成:CMOS或门
1
输入A
接收输入信号A。
输入B
2
接收输入信号B。
3
NMOS
当输入A为1且输入B为1时,截止。
PMOS
CMOS的基本工艺流程
1
清洗和蚀刻
2
对硅片进行清洗和蚀刻,去除杂质和氧
化物,并形成特定的表面。
3
沉积
4
在硅片上沉积各种材料,如金属、氧化
物和多晶硅等,用于构建电路的不同部

CMOS 模拟集成电路课件完整

CMOS 模拟集成电路课件完整
反偏电压将使耗尽区变宽,从而降低了有效沟道深度。因此,需 要施加更大的栅极电压以弥补沟道深度的降低,VSB偏压会影响 MOSFET的有效阈值电压VTH。随着VSB反偏电压的增加导致VTH的增 加,这种效应称为“体效应”。这种效应也称为“衬底偏置效应” 或“背栅效应”。
VTHN VTHN0
2qsi Na Cox
VGS 1 0 1.0 VDS 2 0 5
.op .dc vds 0 5 .2 Vgs 1 3 0.5 .plot dc -I(vds) .probe
*model .MODEL MNMOS NMOS VTO=0.7 KP=110U +LAMBDA=0.04 GAMMA=0.4 PHI=0.7
.end
Systems
Ch13 开关电容电路
Ch14 DAC/ADC
complex Ch10 运算放大器 Ch7 频率响应
Ch11 稳定性和频 率补偿
Ch8 噪声
Ch12 比较器 Ch9 反馈
Ch3 电流源电流镜 simple Ch4 基准源 Circuits
Devices
Ch5 单级放大器 ch2 MOS器件
*Output Characteristics for NMOS M1 2 1 0 0 MNMOS w=5u l=1.0u
VGS 1 0 1.0 VDS 2 0 5
设计
属性/规范
系统/电路1
系统/电路2 系统/电路3
……
一般产品描述、想法 系统规范要求的定义
系统设计 电路模块规范定义
电路实现 电路仿真

是否满足系统规范
是 物理(版图)设计
物理(版图)验证
寄生参数提取及后仿真

是否满足系统规范

CMOS模拟集成电路分析与设计 ppt课件

CMOS模拟集成电路分析与设计  ppt课件

如果栅电压为负,则耗尽层变薄,栅 与衬底间电容增大。
对于大的负偏置,则电容接近于CGC。
PPT课件
24
1.2 MOS管的极间电容(1)
G
S
C1
C2 C4
C3
Cbs
反型层 耗尽层
d
L
d
p型衬底
D
Cbd
PPT课件
25
1.2 MOS管的极间电容(2)
栅与沟道之间的栅氧电容:
C2=WLCox,其中Cox为单位面积栅氧电容εox/tox;
CMOS模拟集成电路分析与设计
主讲教师:吴建辉 Tel:83795677
E-mail:wjh@
PPT课件
1
教材及参考书
教材:
吴建辉编著:“CMOS模拟集成电路分析与设 计”(第二版),电子工业出版社。
参考书:
Razavi B: Design of analog CMOS integrated circuits
11
1、有源器件
主要内容:
1.1 几何结构与工作原理 1.2 极间电容 1.3 电学特性与主要的二次效应 1.4 低频及高频小信号等效模型 1.5 有源电阻
PPT课件
12
1.1 MOS管几何结构与工作原理(1)
B p+
G
tox
S
D
G D
n+
n+
p+
n阱 p型衬底
(a)
S
B
p+
n+
W
多晶
d p+接触孔
PPT课件
3
模拟电路与模拟集成电路
分立元件音频放大电路
晶体管数 匹配性 电阻值 电容值 寄生效应影响

CMOS-模拟集成电路课件-电流源与电流镜

CMOS-模拟集成电路课件-电流源与电流镜

+ VTHN+2VOD
W/(4L)
VB
-
M4
VDD
W/L
M0
W/L
M1
IREF
Z +
VOUT IOUT=IREF
W/L +
VOD -
M3
VOD -
+
W/L
+
VOD -
M2
VOD -
例4:自偏置 增加R使得 IREFR = VOD,
VGS1 = VTHN + VOD 这样,
VB= VTHN + 2VOD
IOUT
(W (W
/ L)2 / L)1
I REF
IOUT与IREF的比值由器件尺寸的比率决定,不受工艺 和温度的影响。设计者可以通过器件的尺寸比来调整 输出电流的大小。
在λ=0的情况下 !
2024/10/19
8
• 例子:
– 在电流镜电路的实际设计中,通常采 用叉指MOS管,每个“叉指”的沟道 长度相等,复制倍数由叉指数决定, 减小由于漏源区边缘扩散所产生的误 差,以减小器件的失配造成的电流失 配。.
2024/10/19
VDD IREF
+ VOD R
-
VB = 2VOD +VTHN VOUT
IOUT=IREF
+
M0 X
VOD
M3
Y+
VGS = +
VOD
M1 VOD +VTHN M2
-
16
-
小结
• 工作在饱和区的MOS晶体管可以充当电流源 • 基本电流镜—基于电流复制 • 共源共栅电流镜—提高复制精度 • 大输出摆幅共源共栅电流源—使得输出的下限等

CMOS模拟集成电路设计第5章—电流镜ppt课件

CMOS模拟集成电路设计第5章—电流镜ppt课件
Iout与IREF的比值由器件尺寸的比率决定。
忽略沟道长度调制效应!
17.04.2020
5
.
• 例子:
– 实际设计中,所有晶体管采用相同 的栅长,以减小由于源漏区边缘扩 散所产生的误差。
– 采用叉指结构。
如图,每个叉指的W为5±0.1μm ,则 M1和M2的实际的W为:
W1=5±0.1μm, W2=4(5±0.1)μm 则IOUT/IREF= 4(5±0.1)/ (5±0.1)=4
17.04.2020
10
.
– 低压的共源共栅电流镜中的偏置Vb如何产生? 设计思路: 让Vb等于(或稍稍大于)VGS2+(VGS1-VTH1),
例1:在图a中,选择I1和器件的尺寸,使M5 产生VGS5≈VGS2,进一步调整M6的尺寸和Rb的阻 值,使VDS6=VGS6-RbI1 ≈VGS1-VTH1。
11
.
3、电流镜作负载的差动对
• 3.1大信号分析
– Vin1-Vin2足够负时,M1、M3和M4均关断,M2和 M5工作在深线性区,传输的电流为0,Vout=0;
– 随Vin1-Vin2增长,M1开始导通,使ID5的一部分流 经M3,M4开启,Vout增长
– 当Vin1和Vin2相当时,M2和M4都处于饱和区, 产生一个高增益区。
若2rO1,2>>(1/gm3)||rO3,
• 电路增益:
1
17.04.2020
I ss
15
.
• 3.3 共模特性
– 电路不存在器件失配时
忽略rO1,2,并假设1/(2gm3,4)<<rO3,4,
则,
17.04.2020
17
.

模拟CMOS集成电路设计课件

模拟CMOS集成电路设计课件
医学图像处理、音频处理
PPT学习交流
6
5
2、集成电路工艺
速度高, 功耗大, 集成度低
最早MOS工 艺,速度低
超高速、高频 IC
光电集成器件
主流工艺,集 成度高、功耗 低、速度快、 抗干扰性强
PPT学习交流
7
6
CMOS工艺
B
S
G
D
B
S
G
D
n+
n+
p+
p+
p 型衬底
n 型阱
n 阱CMOS工艺
B
S
G
D
20
沿沟道x点处的电荷密度为: 沟道x点的电势,以源级为参考点
电流为:
载流子为电子,电荷为负,电荷运动方向与电流 方向相反
其中: 得到:
v=μE μ为载流子的迁移率,E为电场 E=-dV(x)/dx
PPT学习交流
22
21
在整个沟道长度内积分得:
由于ID沿沟道方向是常数,因此:
电流随VGS的 增大而增加
漏极的反型层消失,出现由耗尽层
构成的夹断区。
➢电子沿沟道从源极向漏极运动,达
到夹断区边缘时,受夹断区强电场
的作用,很快漂移到漏极。 B
➢VDS的变化主要体现在夹断区上,
p+
对沟道长度和沟道内的场强影响不
大,因此可以近似认为沟道电流保
p-
持恒定。
VDS
-+
-+
VGS
G
S
D
n+
n+
夹断区
PPT学习交流
20
19
2、NMOS 管IV特性推导与分析

CMOS课件

CMOS课件
2-22
模拟CMOS集成电路设计
在漏源电压作用下开 始导电时(即产生iD) 的栅源电压为开启电
压VT
VGS<VTN时( VTN 称为开启电压)
0<VGS<VTN时,SiO2中产生一垂直于表面的电场,P型表 面上感应出现许多电子,但电子数量有限,不能形成沟道。
2-23
模拟CMOS集成电路设计
在栅极下方形成的 导电沟道中的电子 ,因与P型半导体的 多数载流子空穴极 性相反,故称为反 型层。
2-16
模拟CMOS集成电路设计
栅就是氧化物层
2-17
模拟CMOS集成电路设计
2-18
模拟CMOS集成电路设计
改变阈值电压的方法
• 往用离子注入技术改变沟道区的掺杂浓度,从 而改变阈值电压。
• 对NMOS晶体管而言,注入P型杂质,将使阈 值电压增加。反之,注入N型杂质将使阈值电 压降低。
• 如果注入剂量足够大,可使器件沟道区反型变 成N型的。这时,要在栅上加负电压,才能减 少沟道中电子浓度,或消除沟道,使器件截止。 在这种情况下,阈值电压变成负的电压,称其 为夹断电压。
216金属接负电荷后在金属面堆积负电荷氧化物是没有电荷绝缘层p型半导体中可以感应到正电荷p型半导体主要的载流子是空穴所以堆积空穴当金属接正电荷后在金属层堆积空穴则会排斥p型半导体上的空穴形成宽度为xd的耗尽层耗尽层区没有自由电子和空当vg不断升高时会有越来越多的空穴堆积他不仅把p型半导体中的空穴推得越来越远还会把p型半导体中的少子电子吸引到非常薄的层面紧紧贴到氧化物这层形成反型217栅就是氧化物层218219改变阈值电压的方法往用离子注入技术改变沟道区的掺杂浓度从而改变阈值电压
2-28
模拟CMOS集成电路设计
MOS的伏安特性

CMOS集成电路设计课件

CMOS集成电路设计课件
解决方法:直观和经验设计
鲁棒设计
鲁棒设计
电路性能随工艺、电源电压、温度而变化
器件模型参数的改变
阈值电压、二级效应参数 工艺角参数 TT、FF、SS、FNSP、SNFP 鲁棒设计电路性能随工艺、源压温度而变化器件模型
电源电压对器件工作区的影响
电压变化范围:20%
温度的范围
室温:25度、或50度 民品、军品
简单电路
单级放大器、差动放大器、电路偏置、电流镜电路
器件
CMOS工艺、器件物理、器件Spice参数、 *版图设计、*电路模拟
模拟集成电路设计步骤
设计要求描述
电路设计
与设计指标比较
模拟集成电路设计步骤要求描述定义与指标比
设计定义 执行设计
仿真
物理层设计 芯片设计
物理层设计 物理层验证 提取寄生参数
芯片制造
磁盘驱动器中的模块电路(C/filter …
磁盘驱动器中的模块电路(3)写发送扰码、RL编
小结
什么是模拟集成电路设计,模拟集成电路设计和分立模拟 电路与数字电路设计的区别,设计的难点。 设计步骤和直观的、层次的、鲁棒的设计。 模拟集成电路的应用、不同的信号带宽和工艺对模拟电路 的影响。 模拟信号处理系统设计和各种典型的模拟电路模块 小结什么是模拟集成电路设计,和分立 VLSI混合模拟信号电路设计举例
考核标准和联系方式
考核标准 平时作业 设计课题 期中练习 期末 联系方式
15% 15% 15% 55%
%5考核标准和联系方式1
导论
1.1 模拟集成电路设计的特点
层次化设计 设计步骤 鲁棒(robust)设计
1.2 模拟集成电路的应用 导论1.模拟集成电路设计的特点层次化2 1.3 模拟信号处理 1.4 混合信号电路举例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集成电路原理与设计
1
微电子学
• 微电子技术是电子计算机和通信的核心技术 • 微电子技术的核心是集成电路(Integrated Circuit, IC) 技术 • 微电子学是电子学的一门分支,主要研究电子或离 子在固体材料中的运动规律及其应用 • 微电子学是以实现电路和系统的集成为目的,研究 如何利用半导体的微观特性以及一些特殊工艺,在 一块半导体芯片上制作大量的器件,从而在一个微 小面积中制造出复杂的电子系统。
I
D
dx
V 0
WC
ox
n [VGS V ( x) VTH ]dV
I/V特性的推导(3)
W 1 2 I D = nCox [(VGS - VTH )VDS - VDS ] (2.8) L 2 W VGS - VTH 称为过驱动电压; 称为宽长比 L 三极管区(线性区)
每条曲线在VDS=VGS-VTH时取最 大值,且大小为:
CGD CGS
WLCOX WCOv 2
CGB可以忽略不计
CSB = CDB =
WE源极Cj (1 VSB /B ) WE漏极Cj (1 VDB /B )
mj mj

源极周长 C jsw (1 VSB /B )
m jsw
漏极周长 C jsw (1 VDB/B )
MOS器件电容
栅源、栅漏、栅衬电容与VGS关系
1) VGS < VTH截止区
CGD CGS WCOv
CGB W 2 L2 COX q si N sub / 4 F WLCOX Cd = 其中Cd=WL q si N sub / 4 F WLCOX Cd WLCOX WL q si N sub / 4 F
nCox W ID = (VGS - VTH ) 2 2L
饱和区,VGS >VTH
VDS >VGS - VTH
MOS管饱和的判断条件
d
g
g d
NMOS饱和条件:Vgs>V ;Vd≥Vg-V
THN
THN
PMOS饱和条件: Vgs<V
THP
;Vd≤Vg+| V |
THP
判断MOS管是否工作在饱和区时,不必考虑Vs
1 2 VDS [I x] = [ n WCox ((VGS - VTH )V(x) - V(x) ]0 2 W 1 2 I D = nCox [(VGS - VTH )VDS - VDS ] L 2
x 0 L D 0
ID = -WCox [VGS - V(x) - VTH ]
I/V特性的推导(2)
阱:局 部衬底
MOS管正常工作的基本条件
寄生二极管
MOS管正常工作的基本条件是:所有衬源(B 、S)、衬漏(B、D)pn结必须反偏
同一衬底上的NMOS和PMOS器件
MOS管所有pn结必须反偏: *N-SUB必须接最高电位VDD! *P-SUB必须接最低电位VSS!
*阱中MOSFET衬底常接源极S
Qdep = 4qεsi ΦF Nsub


k:玻耳兹曼常数 q:电子电荷 Nsub:衬底掺杂浓度 ni: 本征自由载流子浓度 ε si:硅的介电常数
Cox:单位面积栅氧化层电容
Cox =
ox
t ox
ΦMS:多晶硅栅与硅衬底功函数之差 Qdep耗尽区的电荷,是衬源电压VBS的函数 2ΦF:强反型时的表面电势
CSB = CDB =
WE源极Cj (1 VSB /B ) WE漏极Cj (1 VDB /B )
mj mj

源极周长 C jsw (1 VSB /B )
m jsw
漏极周长 C jsw (1 VDB/B )
m jsw
2) VGS > VTH VDS <<VGS – VTH深三极管区
m jsw
漏极周长 C jsw (1 VDB/B )
m jsw
CMOS反相器
52
教学内容
• CMOS反相器的直流特性 CMOS反相器的基本特性 CMOS反相器的直流电压传输特性 CMOS反相器的噪声容限 • CMOS反相器的瞬态特性 • CMOS反相器的设计
53
CMOS反相器的直流特性
VgS
MOS管亚阈值电流ID一般为几十~几百nA,
MOS器件模型
MOS器件版图
MOS器件电容
C1 WLCOX
C1:栅极和沟道之间的氧化层电容 C2:衬底和沟道之间的耗尽层电容
C2 WL q si N sub / 4 F
C3,C4栅极和有源区交叠电容
C3 C4 WCOv Cov单位宽度交叠电容
寄生二极管
MOS晶体管符号
NMOS D G S G
PMOS S
D
NMOS D G B S G
PMOS S B D
MOSFET开关
G(Gate) 栅极
导通时VG的值(阈值电压)? 源漏之间的电阻? 源漏电阻与各端电压的关系? …
S(Source) 源极
N型MOSFET
D(Drain) 漏极
NMOS晶体管工作原理
x 0
I
L'
D
dx
VGS VTH
V 0
WC
ox
n [VGS V ( x) VTH ]dV
饱和区的MOSFET(VDS ≥ VGS-VT)
ID
nCox W
2 L
'
(VGS VTH )
2
MOSFET的I/V特性
VDS<VGS-VT
沟道电阻随VDS 增加而增加导 致曲线弯曲
L=2µ
VGS-VT=0.15V, W=100µ
L=4µ
L=6µ
∂I /∂V ∝λ/L∝1/L2
D DS
亚阈值导电特性
VGS ID = I0exp ζ kT q
(ζ>1,是一个非理想因子)
MOS管亚阈值导电特性的Pspice仿真结果
logID
仿真条件: VT=0.6V W/L=100µ /2µ
晶体管是一个具有无限关断电阻( V
GS
VT
)和有限导通电阻( V
GS
VT
)的开关。
55
CMOS反相器的直流特性
• CMOS反相器的工作原理
VDD
•Vin=VDD,NMOS导通、PMOS截止。 •Vin=0,NMOS截止、PMOS导通。
V DD
V DD Rp
Vin
Vout CL
V out Rn
Triode Region
VDS>VGS-VT
曲线开始斜 率正比于 VGS-VT
用作恒流源条件:工作在饱和区且VGS =const!
NMOS管的电流公式
ID 0
截至区, VGS<VTH
线性区,VGS >VTH nCox W 2 ID = [2(VGS - VTH )VDS - VDS ] 2L VDS< VGS - VTH
Qd:沟道电荷密度 Cox:单位面积栅电容
WCox:MOSFET单位长度的总电容 Qd(x):沿沟道点x处的电荷密度 V(x):沟道x点处的电势 V(x)|x=0=0, V(x)|x=L=VDS
dV(x) 对于半导体: ν = μE 且 E(x) = - dx dV(x) I D = WCox [VGS - V(x) - VTH ] n dx VDS L
Ron = 1 W nCox (VGS - VTH ) L
等效为一个 压控电阻
饱和区的MOSFET(VDS ≥ VGS-VT)
L'
Qd ( x ) WCox (VGS V ( x ) VTH )
当V(x)接近VGS-VT,Qd(x)接近于0,即反型层将 在X≤L处终止,记为L’,沟道被夹断。
导电沟道形成
VGS>VT、VDS=0
NMOS器件的阈值电压VTH
(a)栅压控制的MOSFET (c)反型的开始
(b)耗尽区的形成 (d)反型层的形成
形成沟道时的VG称为阈值电压记为VT
Qdep VTH = ΦMS + 2ΦF + Cox ΦMS = Φgate - Φsilicon
ln Nsub kT ΦF = q ni
MOS器件物理基础
MOSFET的结构
MOSFET的结构
源极:提供载流 子
漏极:收集载流 子
Ldrawn:沟道总长度 LD:横向扩散长度
衬底 (bulk、body)
Leff:沟道有效长度, Leff= Ldrawn-2 LD tox : 氧化层厚度
MOSFET : Metal-Oxide Semiconductor Field-Effect Transistor CMOS : 互补MOS n型MOSFET :载流子为电子 p型MOSFET :载流子为空穴
VGS>VT、 0<VDS< VGS-VT称为三极管区或线性区
沟道未夹断条件
VGD =VGS -VDS≥VTH VDS≤VGS -VTH
VGS>VT、VDS>VGS-VT称为饱和区
NMOS沟道电势示意图(0<VDS< VGS-VT )
dq(x) = -Cox Wdx[vGS - v(x) -VTH ]
下极板电容=WEC j
C5,C6有源区和衬底之间的结电容
E有源区长度 C j单位面积下极板电容
侧壁电容=有源区周长 C jsw C jsw 单位长度侧壁电容
C5,C6=WECj +有源区周长 Cjsw
C j= VR :反向电压;B内建电势;m: 0.3~0.4 m ( 1+VR /B) C j0
相关文档
最新文档