1.1半导体基础知识电子(教案)教学设计
半导体整套课件完整版电子教案最全PPT整本书课件全套教学教程

电压较低时,由于外电场较弱,还不足以克服PN结内电场 对多数载流了扩散运动的阻力,所以正向电流很小,几乎为 零。此时二极管呈现出很大的电阻。
上一页 下一页 返回
1.2 半导体二极管
2.反向特性 图1-10所示曲线②部分为反向特性。二极管两端加上反向
电压时,由于少数载流子漂移而形成的反向电流很小,且在 一定的电压范围内基本上不随反向电压而变化,处于饱和状 态,所以这一段电流称为反向饱和电流IR。硅管的反向饱和 电流约在1μA至几十微安,锗管的反向饱和电流可达几百微 安,如图1-10的OC(OC’)段所示。 3.反向击穿特性 如图1-10中曲线③部分所示,当反向电压增加到一定数值 时,反向电流急剧增大,这种现象称为一极管的反向击穿。 此时对应的反向击穿电压用UBR表示。
1.4.2 晶体三极管的工作原理
三极管有两个按一定关系配置的PN结。由于两个PN结之间 的互相影响,使三极管表现出和单பைடு நூலகம்PN结不同的特性。三 极管最主要的特性是具有电流放大作用。下面以NPN型二极 管为例来分析。
1.电流放大作用的条件 三极管的电流放大作用,首先取决于其内部结构特点,即发
射区掺杂浓度高、集电结面积大,这样的结构有利于载流子 的发射和接收。而基区薄且掺杂浓度低,以保证来自发射区 的载流子顺利地流向集电区。其次要有合适的偏置。三极管 的发射结类似于二极管,应正向偏置,使发射结导通,以控 制发射区载流子的发射。而集电结则应反向偏置,以使集电 极具有吸收由发射区注入到基区的载流子的能力,从而形成 集电极电流。
1.1 半导体基础知识
1.1.1本征半导体
不含杂质且具有完整品体结构的半导体称为本征半导体。最 常用的本征半导体是锗和硅品体,它们都是四价元素,在其 原子结构模型的最外层轨道上各有四个价电子。在单品结构 中,由于原子排列的有序性,价电子为相邻的原子所共有, 形成了如图1-1所示的共价键结构,图中的+4表示四价元素 原子核和内层电子所具有的净电荷。本征半导体在温度 T=0K(热力学温度)目没有其他外部能量作用时,其共价键 中的价电子被束缚得很紧,不能成为自由电子,这时的半导 体不导电,在导电性能上相当于绝缘体。但是,当半导体的 温度升高或给半导体施加能量(如光照)时,就会使共价键中 的某些价电子获得足够的能量而挣脱共价键的束缚,成为自 由电子,同时在共价键中留下一个空位,这个现象称为本征 激发,如图1-2所示,自由电子是本征半导体中可以参与导 电的一种带电粒子,叫做载流子。
模拟电路电子教案设计

第1章半导体器件基础教学目的:了解半导体基础知识教学重点:PN结教学难点:PN结单向导电性教学容:1.1 半导体基础知识教学方法:理论讲解与举例相结合,讲例题时边讲边练(学生先作,老师后讲)。
教学进度:本容为2学时参考资料:模拟电子技术基础教学容1.1半导体及其特性一、半导体特点半导体特点:1、受光、热激发,导电性能↑↑2、掺杂质导电性能↑↑二、本征半导体1.概念:纯净的、结构完整的半导体,叫本征半导体。
它在物理结构上为共价键、呈单晶体形态。
在热力学温度零度和没有外界激发时,本征半导体不导电。
2.半导体的本征激发与复合现象:当导体处于热力学温度0 K时,导体中没有自由电子。
当温度升高或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚而参与导电,成为自由电子。
这一现象称为本征激发(也称热激发)。
因热激发而出现的自由电子和空穴是同时成对出现的,称为电子空穴对。
游离的部分自由电子也可能回到空穴中去,称为复合。
在一定温度下本征激发和复合会达到动态平衡,此时,载流子浓度一定,且自由电子数和空穴数相等。
三、杂质半导体掺入杂质的本征半导体称为杂质半导体。
杂质半导体是半导体器件的基本材料。
在本征半导体中掺入五价元素(如磷),就形成N型(电子型)半导体;掺入三价元素(如硼、镓、铟等)就形成P型(空穴型)半导体。
杂质半导体的导电性能与其掺杂浓度和温度有关,掺杂浓度越大、温度越高,其导电能力越强。
1. P型半导体(空穴半导体)多数载流子是空穴形成:在本征半导体中掺三价杂质2.N型半导体(电子型半导体)多数载流子是电子形成:在本征半导体中掺五价杂质1.2 PN结的形成及特性一、 PN结的形成1、半导体中的载流子有两种有序运动:载流子在浓度差作用下的扩散运动和电场作用下的漂移运动。
同一块半导体单晶上形成P型和N型半导体区域,在这两个区域的交界处,当多子扩散与少子漂移达到动态平衡时,空间电荷区(亦称为耗尽层或势垒区)的宽度基本上稳定下来,PN结就形成了。
《电子技术基础》正式教案设计(1)

实用标准电子技术基础教案§1-1 半导体的基础知识目的与要求1. 了解半导体的导电本质,2. 理解N型半导体和P型半导体的概念3. 掌握PN结的单向导电性重点与难点重点1.N型半导体和P型半导体2. PN结的单向导电性难点1.半导体的导电本质2.PN结的形成教学方法讲授法,列举法,启发法教具二极管,三角尺小结半导体中载流子有扩散运动和漂移运动两种运动方式。
载流子在电场作用下的定向运动称为漂移运动。
在半导体中,如果载流子浓度分布不均匀,因为浓度差,载流子将会从浓度高的区域向浓度低的区域运动,这种运动称为扩散运动。
多数载流子因浓度上的差异而形成的运动称为扩散运动PN结的单向导电性是指PN结外加正向电压时处于导通状态,外加反向电压时处于截止状态。
布置作业1.什么叫N型半导体和P型半导体第一章常用半导体器件§1-1 半导体的基础知识自然界中的物质,按其导电能力可分为三大类:导体、半导体和绝缘体。
半导体的特点:①热敏性②光敏性③掺杂性导体和绝缘体的导电原理:了解简介。
一、半导体的导电特性半导体:导电性能介于导体和绝缘体之间的物质,如硅(Si)、锗(Ge)。
硅和锗是4价元素,原子的最外层轨道上有4个价电子。
1.热激发产生自由电子和空穴每个原子周围有四个相邻的原子,原子之间通过共价键紧密结合在一起。
两个相邻原子共用一对电子。
室温下,由于热运动少数价电子挣脱共价键的束缚成为自由电子,同时在共价键中留下一个空位这个空位称为空穴。
失去价电子的原子成为正离子,就好象空穴带正电荷一样。
在电子技术中,将空穴看成带正电荷的载流子。
2.空穴的运动(与自由电子的运动不同)有了空穴,邻近共价键中的价电子很容易过来填补这个空穴,这样空穴便转移到邻近共价键中。
新的空穴又会被邻近的价电子填补。
带负电荷的价电子依次填补空穴的运动,从效果上看,相当于带正电荷的空穴作相反方向的运动。
3.结论(1)半导体中存在两种载流子,一种是带负电的自由电子,另一种是带正电的空穴,它们都可以运载电荷形成电流。
半导体的基本知识教案

半导体的基本知识教案第一篇:半导体的基本知识教案电工电子技术教案第一章半导体二极管§1-1 教学目的:1、了解半导体导电性及特点。
2、初步掌握PN结的基本特性及非线性的实质。
3、熟悉二极管外形和电路符号,伏安特性和主要参数。
4、了解特殊功能的二极管及应用。
半导体的基本知识教学重点、难点:教学重点:1)半导体导电性及特点。
2)PN结的基本特性及非线性的实质3)二极管外形和电路符号,伏安特性和主要参数。
教学难点:二极管外形和电路符号,伏安特性和主要参数一、半导体的基本概念人们按照物质导电性能,通常将各种材料分为导体、绝缘体和半导体三大类。
导电性能良好的物质称为导体,例如金、银、铜、铝等金属材料。
另一类是几乎不导电的物质称为绝缘体,例如陶瓷、橡胶、塑料等材料。
再一类是导电性能介于导体与绝缘体之间的物质称为半导体,例如硅(Si)、锗(Ge)、砷化镓等都是半导体。
纯净半导体也叫本征半导体,这种半导体只含有一种原子,且原子按一定规律整齐排列。
如常用半导体材料硅(Si)和锗(Ge)。
在常温下,其导电能力很弱;在环境温度升高或有光照时,其导电能力随之增强。
常常在本征半导体中掺入杂质,其目的不单纯是为了提高半导体的导电能力,而是想通过控制杂质掺入量的多少,来控制半导体的导电能力的强弱。
在硅本征半导体中,掺入微量的五价元素(磷或砷),就形成N型半导体。
在硅本征半导体中,掺入微量的三价元素(铟或硼),就形成P 型半导体。
二、PN结及单向导电性1、当把一块P型半导体和一块N型半导体用特殊工艺紧密结合时,在二者的交界面上会形成一个具有特殊现象的薄 1电工电子技术教案层,这个薄层被称为PN结。
2、PN结的单向导电性1)PN结加正向电压――正向导通正极接P区,负极接N区,称“正向偏置”或正偏。
2)PN结加反向电压――反向截止电源负极接P区,正极接N区,称“反向电压”或反偏。
PN结加正向电压导通,加反向电压截止,即PN结的――单向导电性§1-2一、二极管的结构、符号和分类 1.二极管的结构、符号半导体二极管晶体二极管是由一个PN结构成的,从P区引出的电极为二极管正极,N区引出的电极为二极管负极,用管壳封装起来即成二极管。
「半导体的基本知识教学设计」

「半导体的基本知识教学设计」教学目标:1.理解什么是半导体及其特性;2.掌握半导体的基本结构和工作原理;3.了解常见的半导体器件及其应用。
教学内容:一、半导体的定义和特性(200字)1.什么是半导体:介于导体和绝缘体之间的材料,具有导电能力,但电阻较高;2.半导体的特性:电阻随温度变化、存在电子和空穴两种载流子、能带结构。
二、半导体的基本结构和掺杂(300字)1.半导体材料的基本结构:原子结构和晶体结构;2.半导体的掺杂:掺入外来原子改变半导体晶体的导电性,区分P型和N型半导体。
三、PN结的形成和工作原理(300字)1.PN结的形成:将P型半导体和N型半导体结合形成的二极管结构;2.PN结的工作原理:电子从N区流向P区,空穴从P区流向N区,形成正向偏置和反向偏置模式。
四、常见的半导体器件及其应用(400字)1.二极管:用于整流、开关和信号检测等电路;2.晶体管:用于放大、开关和振荡等电路;3.MOSFET:用于功率放大和开关电路,广泛应用于数字电子技术;4.LED:发光二极管,用于指示灯、显示屏和照明等。
教学方法:1.课堂讲授:通过讲解理论知识,使学生了解半导体的基本概念和特性。
2.实验演示:展示半导体器件的基本原理和工作特点,让学生亲身体验半导体器件的使用。
3.讨论小组活动:组织学生分小组讨论,比较不同半导体器件的特点和应用。
教学过程:1.开篇导入(5分钟):介绍半导体的概念和特性,引发学生对半导体的兴趣。
2.理论讲解(30分钟):详细讲解半导体的基本知识,包括定义、特性、基本结构和掺杂等。
3.实验演示(30分钟):展示二极管和晶体管的实验,让学生观察器件的工作现象并进行验证。
4.小组讨论(20分钟):分小组讨论不同半导体器件的特点和应用,并分享给全班。
5.深化拓展(15分钟):介绍MOSFET和LED等常见半导体器件及其应用,鼓励学生自主学习和探索。
6.总结回顾(10分钟):对本节课的重点内容进行总结,并强调学生需要进一步学习和掌握的知识点。
半导体的奇妙特性教学设计

半导体的奇妙特性教学设计教学内容单相半波整流电路任课教师课程类型理实一体化授课班级教学学时1学时教学单元二极管及其应用教学章节1.1.1半导体的奇妙特性教材内容分析本节内容是中等职业教育规划教材《电子技术基础与技能》中1.1.1半导体的奇妙特性,包含了重要的概念,承载着激发学习兴趣重要使命。
本节课的重点和难点是N型、P型半导体的导电特性。
这节课与之前学过的《电工基础》以及后继内容的联系非常紧密,电阻、万用表的使用、电烙铁的使用都是这节课的基础,而这节课的学习又为后继二极管单向导电性及“三极管及放大电路基础”打下良好的基础。
在疫情防控中广泛使用的“安检测温门”、“测温枪”,走廊、过到中使用的声光控节能灯都是半导体特性的具体应用。
学情分析(含情感分析、思政导入)学生在生活中接触过金属导线、橡胶等物质,对导体和绝缘体有所的认识,能辨识常见的导体和绝缘体材料。
通过之前的学习,学生已初步掌握了基本的电学知识,对导体存在电阻的认识并不陌生,这对学生即将学习的半导体性质(热敏性、光敏性)作了很好铺垫。
在初中学生学习过原子的结构组成,知道了化合价的概念,这些知识,为在本节课中学习的P型、N型半导体,垫定了良好的基础。
学生已经具备了一定的实验能力、观察能力、归纳概括能力、逻辑思维能力,但分析能力还不强,但自学能力较差。
学生正处在16、17岁的年龄阶段,好奇心较强,兴趣不太稳定,逻辑思维和抽象思维正在日益发展中,在知识学上仍需要借助感性材料的支持,学生对实验有着浓厚的兴趣,乐于动手与探究,但从微观角度去分析、认识的能力不足。
本节课是出现的陌生名词会给学生带来一些学习上的障碍;由于现行的初中课本中以经删除了共价键的内容,将影响学生理解N型、P型半导体的导电特性。
教学目标知识目标1、知道半导体的特性——光敏性、热敏性、掺杂性;2、在教师的指导下,学习利用互联网查找有用信息;3、初步学习对实验的观察、分析和判断,并提高相应能力。
半导体的基础知识教案

半导体的基础知识教案第一章:半导体概述1.1 半导体的定义与特性解释半导体的概念介绍半导体的物理特性讨论半导体的重要参数1.2 半导体的分类与制备说明半导体材料的分类探讨半导体材料的制备方法分析半导体器件的制备过程第二章:PN结与二极管2.1 PN结的形成与特性解释PN结的概念与形成过程探讨PN结的特性分析PN结的应用领域2.2 二极管的结构与工作原理介绍二极管的结构解释二极管的工作原理探讨二极管的主要参数与规格第三章:双极型晶体管(BJT)3.1 BJT的结构与分类解释BJT的概念介绍BJT的结构与分类分析BJT的运作原理3.2 BJT的特性与参数探讨BJT的输入输出特性讨论BJT的主要参数与规格分析BJT的应用领域第四章:场效应晶体管(FET)4.1 FET的结构与分类解释FET的概念介绍FET的结构与分类分析FET的运作原理4.2 FET的特性与参数探讨FET的输入输出特性讨论FET的主要参数与规格分析FET的应用领域第五章:半导体器件的应用5.1 半导体二极管的应用介绍半导体二极管的应用领域分析二极管在不同电路中的应用实例5.2 半导体晶体管的应用解释半导体晶体管在不同电路中的应用探讨晶体管在不同电子设备中的应用实例5.3 半导体集成电路的应用介绍半导体集成电路的概念分析集成电路在不同电子设备中的应用实例第六章:半导体存储器6.1 存储器概述解释存储器的作用与分类探讨半导体存储器的发展历程分析存储器的主要参数6.2 RAM与ROM介绍RAM(随机存取存储器)的原理与应用解释ROM(只读存储器)的原理与应用分析RAM与ROM的区别与联系6.3 闪存与固态硬盘探讨闪存(NAND/NOR)的原理与应用介绍固态硬盘(SSD)的结构与工作原理分析固态硬盘的优势与挑战第七章:太阳能电池与光电子器件7.1 太阳能电池解释太阳能电池的原理与分类探讨太阳能电池的优缺点分析太阳能电池的应用领域7.2 光电子器件解释光电子器件的分类与应用探讨光电子器件的发展趋势第八章:半导体传感器8.1 传感器的基本概念解释传感器的作用与分类探讨传感器的基本原理分析传感器的主要参数8.2 常见半导体传感器介绍常见的半导体传感器类型解释半导体传感器的原理与应用分析半导体传感器的优势与挑战8.3 传感器在物联网中的应用探讨物联网与传感器的关系介绍传感器在物联网应用中的实例分析物联网传感器的发展趋势第九章:半导体激光器与光通信9.1 半导体激光器解释半导体激光器的工作原理探讨半导体激光器的特性与参数分析半导体激光器的应用领域9.2 光通信原理解释光纤通信与无线光通信的区别探讨光通信系统的组成与工作原理9.3 光通信器件与技术介绍光通信器件的类型与功能解释光通信技术的分类与发展趋势分析光通信在现代通信系统中的应用第十章:半导体技术与未来趋势10.1 摩尔定律与半导体技术发展解释摩尔定律的概念与意义探讨摩尔定律对半导体技术发展的影响分析半导体技术的未来发展趋势10.2 纳米技术与半导体器件介绍纳米技术在半导体器件中的应用解释纳米半导体器件的特性与优势探讨纳米半导体器件的未来发展趋势10.3 新兴半导体技术与应用分析新兴半导体技术的种类与应用领域探讨量子计算、生物半导体等未来技术的发展前景预测半导体技术与产业的未来发展趋势重点和难点解析重点环节一:半导体的定义与特性重点环节二:半导体的分类与制备重点环节三:PN结与二极管重点环节四:双极型晶体管(BJT)重点环节五:场效应晶体管(FET)重点环节六:半导体存储器重点环节七:太阳能电池与光电子器件重点环节八:半导体传感器重点环节九:半导体激光器与光通信重点环节十:半导体技术与未来趋势全文总结和概括:本文主要对半导体的基础知识进行了深入的解析,包括半导体材料的分类与特性、半导体的制备方法、PN结与二极管、双极型晶体管(BJT)、场效应晶体管(FET)、半导体存储器、太阳能电池与光电子器件、半导体传感器、半导体激光器与光通信以及半导体技术与未来趋势等内容进行了详细的阐述。
半导体基础知识教案

半导体基础知识教案教案:半导体基础知识一、教学目标1.了解半导体的基本概念和特性。
2.认识半导体器件的分类和特点。
3.理解PN结的形成原理。
4.掌握半导体材料的基本性质和载流子的性质。
5.能够解释N型和P型半导体的形成过程及其特点。
二、教学重点1.半导体的基本概念和特性。
2.PN结的形成原理和性质。
三、教学难点1.半导体材料的基本性质和载流子的性质。
2.N型和P型半导体的形成过程及其特点。
四、教学过程1.导入(10分钟)通过展示一些常见的电子器件,引导学生思考半导体在电子器件中的作用,并提出相关问题。
2.讲解半导体的基本概念和特性(30分钟)(1)什么是半导体?(2)半导体的特性:导电性介于导体和绝缘体之间,自由载流子密度较低,导电性可通过控制去控制。
(3)半导体的晶体结构:满足共价键结构,可分为三维晶体和二维薄膜。
3.讲解PN结的形成原理和性质(40分钟)(1)PN结的形成原理:在P型和N型半导体相接触时,P型区域的空穴会向N型区域扩散,而N型区域的电子会向P型区域扩散,从而形成PN结。
(2)PN结的特性:具有整流作用,在正向偏置时导通,在反向偏置时截止。
4.讲解半导体材料的基本性质和载流子的性质(40分钟)(1)半导体材料的基本性质:硅和锗是常见的半导体材料,它们的常见性质包括禁带宽度和载流子浓度等。
(2)载流子的性质:包括载流子类型、载流子浓度和载流子迁移率等。
5.解释N型和P型半导体的形成过程及其特点(40分钟)(1)N型半导体的形成:掺杂少量的五价元素,如砷、锑等,形成多余电子,增加了电子浓度,形成N型半导体。
(2)N型半导体的特点:导电性主要由电子提供,因此电子迁移到P 型区域发挥导电作用。
(3)P型半导体的形成:掺杂少量的三价元素,如硼、铝等,形成多余空穴,增加了空穴浓度,形成P型半导体。
(4)P型半导体的特点:导电性主要由空穴提供,空穴迁移到N型区域发挥导电作用。
6.总结与讨论(20分钟)总结半导体的基本概念、特性以及PN结的形成原理和性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计(第01章01节)
PN结的形成及空间电荷区内多数载流子已扩散到对方并复合掉了,或者说消耗尽了,因此空间电荷区又称为耗尽层。
PN结特点:
正偏导通,反偏截止,说明PN 结具有单相导电特性可分为空穴(P)型
和电子(N)型半导体
两类。
N型半导体:掺入5
价磷元素(或砷元
素)
P型半导体:掺入3
价铝元素(或硼元
素)
三、PN结的形成及
特性
PN 结的形成
在一块完整的
晶片上,通过一定的
掺杂工艺,一边形成
P型半导体,另一边
形成N型半导体。
在
交界面两侧形成一
个带异性电荷的离
子层,称为空间电荷
区,并产生内电场,
其方向是从N区指
向P区,内电场的建
立阻碍了多数载流
子的扩散运动,随着
内电场的加强,多子
的扩散运动逐步减
弱,直至停止,使交
界面形成一个稳定
的特殊的薄层,即PN
结。
因为在2. PN结
的单向导电特性
1)PN结正向偏给PN结加正向
偏置电压,即P区接电源正极,N区接
电源负极,此时称PN结为正向偏置
(简称正偏),如图1.6所示。
由于外
加电源产生的外电场的方向与PN结
产生的内电场方向相反,削弱了内电
场,使PN结变薄,有利于两区多数载
图1.6 PN结加正向电压
流子向对方扩散,形成正向电流,此
时PN结处于正向导通状态。
图1.7 PN结加反向电压
2) PN结反向偏置
给PN结加反向偏置电压,即
N区接电源正极,P区接电源负极,称
PN结反向偏置(简称反偏),如图1.7
所示。
由于外加电场与内电场的方
向一致,因而加强了内电场,使PN结
加宽,阻碍了多子的扩散运动。
在外
电场的作用下,只有少数载流子形成
的很微弱的电流,称为反向电流。
此
时PN结内几乎无电流流过,PN结处
于反向截止状态
+
+
+
+
-
-
-
-
空穴
(少数)
电子
(少数)
变厚
P N
内电场
外电场
A
I
R
R
U
+
+
+
+
+
+
+
+
-
-
-
-
-
-
-
-
+
-
+
+
+
+
-
-
-
-
空穴
(多数)
电子
(多数)
变薄
P N
内电场
外电场
mA
+-
I
R
U。