八年级数学勾股定理单元测试(A卷基础篇)
八年级数学(上)第二章 勾股定理与平方根 单元测评卷(A)

第二章勾股定理与平方根单元测评卷(A)(附答案)(满分:100分时间:60分钟)一、选择题(每题4分,共28分)1.一个直角三角形的两边长分别为6 cm、8 cm,则这个三角形的斜边长为( )A.8 cm B.10 cm C.8 cm或10 cm D.10 cm或cm2.若等腰三角形中相等的两边长为10 cm,第三边长为16 cm,则第三边上的高为( ) A.6 cm B.8 cm C.10 cm D.12 cm3.若三角形的三边长分别为10、24、26,则它最长边上的中线长是( ) A.10 B.11 C.13 D.344.(2010.阜新)国家游泳中心——“水立方”是2008年北京奥运会标志性建筑物之一,其工程占地面积为62 828平方米,将62 828用科学记数法表示是(结果保留3个有效数字)( )A.6.28×103B.6.28×104C.6.282 8×l04D.0.628 28×1055( )A.5个B.4个C.3个D.2个6.如图,在四边形ABCD中,AB=3 cm,BC=4 cm,CD=12 cm,DA=13 cm,且∠ABC =90°,则四边形ABCD的面积是( )A.84 cm2B.36 cm2C.25.5 cm2D.无法确定7.如图,在由16个边长为1的小正方形拼成的图案中,有五条线段PA、PB、PC、PD、PE,其中长度是无理数的有( )A.1条B.2条C.3条D.4条二、填空题(每题4分,共28分)8.-4的绝对值是_______ .81的平方根是______.9.如图,在数轴上点A和点B之间表示整数的点有_______个.10.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7 cm,则A、B.C、D四个正方形的面积之和是______cm2.11.上海世博会的中国建筑外观以“东方之冠,鼎盛中华,天下粮仓,富庶百姓”为构思主题,建筑面积为4. 645 7万平方米,4.645 7保留2个有效数字是______万平方米.12.已知实数a 、b 10b -=,则a 2012+b 2011=______.13.如图,A 村到公路l 的距离AB =2 km ,C 村到公路l 的距离CD =6 km ,且BD =6 km现要在公路l 上取一点P ,使AP +CP 的值最小,则这个最小值为______.14.如图,△ABC 是直角边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,……依此类推,第n 个等腰直角三角形的斜边长是______.三、解答题(共44分)15.(6分)把下列各数填入相应的集合内:-6,0.45,0,2273π- 有理数集合:{ …};无理数集合:{ …}.16.(6分)求下面各式中x 的值.(1)8-2(x -1)2=-10;30-.17.(7分)如图,正方形网格中每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下面的要求画三角形.(1)在图①中画一个三角形,使它的三边长都是有理数;(2)在图②、图③中分别画一个直角三角形,使它们的三边长都是无理数,且所画的两个三角形不全等.18.(7分)如图,为了求出湖两岸的A、B两点之间的距离,一个观测者在点C设桩,使△ABC恰好为直角三角形,且∠ABC=90°.通过测量,得到AC长为160米,BC长为128米.问从点A穿过湖到点B有多远?19.(9分)《中华人民共和国道路交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70 km/h.如图,一辆小汽车在一条城市街路上沿直道CB行驶,某一时刻刚好行驶到路对面车速检测仪A点正前方30 m的C点处,过了2s后,测得小汽车与车速检测仪之间的距离AB=50 m.这辆小汽车超速了吗?20.(9分)如图,折叠长方形的一边AD,使点D落在BC边上的点F处.如果AB=8 cm,BC=10 cm,求EC的长.参考答案一、1.C 2.A 3.C 4.B 5.A 6.B 7.C二、8.4 ±9 9.4 10. 49 11.4.6 12.2 13.10 km 14.n三、 15.-6,0.45, 0,227 3π-16.(1)x =4或x =-2 (2)x =5或x =117.答案不惟一,(1)如图①所示 (2)如图②、③所示18.从点A 穿过湖到点B 有96米 19.这辆小汽车超速了20.EC 的长为3。
八年级下册数学第17章《勾股定理》单元测试题(含答案)

⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼋年级下册数学第17章《勾股定理》单元测试题(含答案)⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=°(点A,B,P是⽹格线交点).17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了⽶.(假设绳⼦是直的)三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案⼀、选择题(共10⼩题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满⾜两⼩边的平⽅和等于最长边的平⽅.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三⾓形为()A.锐⾓三⾓形B.直⾓三⾓形C.纯⾓三⾓形D.等腰直⾓三⾓形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直⾓三⾓形,故选:B.3.如图,在边长为1个单位长度的⼩正⽅形⽹格中,点A、B都是格点(即⽹格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了⼀副“弦图”,后⼈称其为“赵爽弦图如图,由弦图变化得到,它是由⼋个全等的直⾓三⾓形拼接⽽成.记图中正⽅形ABCD,正⽅形EFGH,正⽅形MNKT的⾯积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正⽅形的⾯积和勾股定理即可求解.【解答】解:设全等的直⾓三⾓形的两条直⾓边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直⾓三⾓形,四边形ABCD和EFGH都是正⽅形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直⾓三⾓形AHB中,利⽤勾股定理进⾏解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正⽅形,∴HG=EF=4,∴BH=16,∴在直⾓三⾓形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有⼀题:“今有开门去阃(kǔn)⼀尺,不合⼆⼨,问门⼴⼏何.”⼤意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10⼨),双门间的缝隙CD为2⼨,那么门的宽度(两扇门的和)AB 为()A.100⼨B.101⼨C.102⼨D.103⼨【分析】画出直⾓三⾓形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101⼨.故选:B.7.2019年10⽉1⽇,中华⼈民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举⾏了简朴⽽降重的升旗仪式.倾听着雄壮的国歌声,⽬送着五星红旗级缓升起,不禁⼼潮澎湃,爱国之情油然⽽⽣.爱动脑筋的王梓涵设计了⼀个⽅案来测量学校旗杆的⾼度.将升旗的绳⼦拉直到末端刚好接触地⾯,测得此时绳⼦末端距旗杆底端2⽶,然后将绳⼦末端拉直到距离旗杆5m处,测得此时绳⼦末端距离地⾯⾼度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的⾼度为()A.10mB.11mC.12mD.13m【分析】根据题意画出⽰意图,设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利⽤勾股定理可求出x.【解答】解:设旗杆⾼度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平⽅=x2+12,右图,根据勾股定理得,绳长的平⽅=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将⼀张A4纸(A4纸的尺⼨为210mm×297mm,AC>AB)剪去了⼀个⾓,量得CF =90mm,BE=137mm,则剪去的直⾓三⾓形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直⾓三⾓形解答.【解答】解:延长BE、CF相交于D,则EFD构成直⾓三⾓形,运⽤勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直⾓三⾓形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240⽶.如果⽕车⾏驶时,周围200⽶以内会受到噪⾳的影响.那么⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶时,A处受噪⾳影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利⽤锐⾓三⾓函数的定义求出AC的长与200m相⽐较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪⾳影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200⽶,∵∠QON=30°,OA=240⽶,∴AC=120⽶,当⽕车到B点时对A处产⽣噪⾳影响,此时AB=200⽶,∵AB=200⽶,AC=120⽶,∴由勾股定理得:BC=160⽶,CD=160⽶,即BD=320⽶,∵⽕车在铁路MN上沿ON⽅向以10⽶/秒的速度⾏驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,⼩明(视为⼩⿊点)站在⼀个⾼为10⽶的⾼台A上,利⽤旗杆OM顶部的绳索,划过90°到达与⾼台A⽔平距离为17⽶,⾼为3⽶的矮台B.那么⼩明在荡绳索的过程中离地⾯的最低点的⾼度MN是()A.2⽶B.2.2⽶C.2.5⽶D.2.7⽶【分析】⾸先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17⽶,得出EF=EM﹣FM =AC﹣BD=7⽶,求出BF=OE=5⽶,OF=12⽶,得出CM=CD﹣DM=CD﹣BF=12⽶,OM=OF+FM=15⽶,由勾股定理求出ON=OA=13⽶,进⽽求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所⽰:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(⽶)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(⽶),∵OE+OF=2EO+EF=17⽶,∴2OE=17﹣7=10(⽶),∴BF=OE=5⽶,OF=12⽶,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(⽶),OM=OF+FM=12+3=15(⽶),由勾股定理得:ON=OA===13(⽶),∴MN=OM﹣OF=15﹣13=2(⽶).故选:A.⼆、填空题(共8⼩题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,⼜其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,⼜其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直⾓三⾓形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,⼀是把两边长都看作直⾓边,⼆是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直⾓边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三⾓形ABC为直⾓三⾓形,利⽤勾股定理列出关系式,结合正⽅形⾯积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直⾓三⾓形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正⽅形,其⾯积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了⼀幅“勾股弦⽅图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦⽅图”中,以弦为边长得到的正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,这⼀图形被称作“赵爽弦图”张天同学要⽤细塑料棒制作“赵爽弦图”,若正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,则所⽤细塑料棒的长度为100.【分析】根据正⽅形的⾯积可得两个正⽅形的边长分别为13和7,再根据勾股定理可求得直⾓三⾓形的两条直⾓边长,进⽽求解.【解答】解:∵正⽅形ABCD是由4个全等的直⾓三⾓形和中间的⼩正⽅形组成,∴AE=BF,∠AEB=90°,∵正⽅形ABCD与正⽅形EFCH的⾯积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所⽤细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三⾓形三边长分别为5,12,13,则此三⾓形的最⼤边上的⾼等于.【分析】根据勾股定理的逆定理,△ABC是直⾓三⾓形,利⽤它的⾯积:斜边×⾼÷2=短边×短边÷2,就可以求出最长边的⾼.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直⾓三⾓形,最长边是13,设斜边上的⾼为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所⽰的⽹格是正⽅形⽹格,则∠PAB+∠PBA=45°(点A,B,P是⽹格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三⾓形外⾓的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平⾯直⾓坐标系,并标⽰了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修⼀条从C到铁路AB的最短公路l,并在l上建⼀个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离⽔⾯⾼度为8⽶的岸上,有⼈⽤绳⼦拉船靠岸,开始时绳⼦BC的长为17⽶,此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9⽶.(假设绳⼦是直的)【分析】在Rt△ABC中,利⽤勾股定理计算出AB长,再根据题意可得CD长,然后再次利⽤勾股定理计算出AD长,再利⽤BD =AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17⽶,AC=8⽶,∴AB===15(⽶),∵此⼈以1⽶每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(⽶),∴AD===6(⽶),∴BD=AB﹣AD=15﹣6=9(⽶),答:船向岸边移动了9⽶.故答案为:9.三、解答题(共4⼩题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直⾓三⾓形的性质解答;(2)作PF⊥AC于F,根据⾓平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直⾓三⾓形分割成⼀个正⽅形和两对全等的直⾓三⾓形,直⾓三⾓形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正⽅形IECF中,IE=EC=CF=FI=x(1)⼩明发明了求正⽅形边长的⽅法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)⼩亮也发现了另⼀种求正⽅形边长的⽅法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据⼩亮的思路完成他的求利⽤S△ABC解过程:(3)请结合⼩明和⼩亮得到的结论验证勾股定理.【分析】(1)根据全等三⾓形的性质和线段的和差即得结论;(2)根据⼤三⾓形的⾯积等于三个⼩三⾓形的⾯积和即可求解;(3)综合(1)和(2)的结论进⾏推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采⽤了移动宣讲的形式进⾏宣传动员.如图,笔直公路MN的⼀侧点A处有⼀村庄,村庄A到公路MN的距离为600⽶,假使宣讲车P周围1000⽶以内能听到⼴播宣传,宣讲车P在公路MN上沿PN⽅向⾏驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200⽶/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600⽶<1000⽶,于是得到结论;(2)根据勾股定理得到BP=BQ=800⽶,求得PQ=1600⽶,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600⽶<1000⽶,∴村庄能听到宣传;(2)如图:假设当宣讲车⾏驶到P点开始影响村庄,⾏驶QD点结束对村庄的影响,则AP=AQ=1000⽶,AB=600⽶,∴BP=BQ=⽶,∴PQ=1600⽶,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有⼀架秋千,当它静⽌时,踏板离地的垂直⾼度DE=1m,将它往前推送6m(⽔平距离BC=6m)时,秋千的踏板离地的垂直⾼度BF=4m,秋千的绳索始终拉得很直,求绳索AD。
专题01 第1章 勾股定理单元测试(A卷)

第一章勾股定理单元测试(A卷)(北师大版)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(2019春•资阳区校级期中)以下四组数中,不是勾股数的是()A.3n,4n,5n(n为正整数)B.5,12,13C.20,21,29 D.8,5,7【答案】解:A、3n2+4n2=5n2,是勾股数;B、52+122=132,是勾股数;C、202+212=292,是勾股数;D、72+52≠82,不是勾股数;故选:D.【点睛】考查了勾股数,理解勾股数的定义:满足a2+b2=c2的三个正整数称为勾股数,并能够熟练运用.2.(2019春•江岸区校级期中)直角三角形ABC的两条直角边的长分别为1、2,则它的斜边长为()A.B.C.2 D.3【答案】解:由勾股定理得,直角三角形的斜边长==,故选:B.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.3.(2019春•博白县期中)三角形的三边a,b,c满足a2+b2﹣c2=0,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【答案】解:∵a2+b2﹣c2=0,∴a2+b2=c2,∴此三角形是直角三角形.故选:B.【点睛】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边a2+b2=c2,那么这个三角形就是直角三角形.4.(2019春•南岗区校级期中)如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是()A.8 B.10 C.64 D.136【答案】解:由勾股定理得,AC2+CD2=AD2,则字母B所代表的正方形的面积=CD2=AC2﹣AD2=100﹣36=64,故选:C.【点睛】本题考查的是勾股定理、正方形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.5.(2019春•太原期中)古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一角便是直角,这样做的道理是()A.直角三角形两个锐角互余B.三角形内角和等于180°C.三角形两边之和大于第三边,两边之差小于第三边D.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形【答案】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选:D.【点睛】此题考查了勾股定理的证明,属于基础题,注意仔细阅读题目所给内容,得到解题需要的信息,比较简单.6.(2019春•江岸区校级期中)下列各组数作为三角形的三边,能组成直角三角形的一组数是()A.2、3、4 B.3、4、5 C.1、、D.、、【答案】解:A、22+32≠42,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、12+()2≠()2,不能构成直角三角形,故此选项错误;D、()2+()2≠()2,不能构成直角三角形,故此选项错误.故选:B.【点睛】本题主要考查勾股定理的逆定理的应用.关键是熟练掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7.(2019春•海阳市期中)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是()A.1.5 B.1.8 C.2 D.2.5【答案】解:连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF和△ACF中,,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4﹣x)2,解得:x=1.5;∴CF=1.5;故选:A.【点睛】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解决问题的关键.8.(2019春•汉阳区校级期中)如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树数断裂之前的高度为()A.16米B.15米C.24米D.21米【答案】解:由题意得BC=6,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:A.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.9.(2019春•江城区期中)已知等腰三角形的一条腰长是15,底边长是18,则它底边上的高为()A.9 B.12 C.15 D.18【答案】解:过点A作AD⊥BC,∵AB=AC,∴BD=CD=BC=18=9,∴AD==12(cm),∴它底边上的高为12cm;故选:B.【点睛】此题考查了勾股定理,用到的知识点是勾股定理、等腰三角形的性质,关键是作出辅助线,构造直角三角形.10.(2019春•资阳区校级期中)在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向东驶去,若自行车与摩托车每秒分别行驶2.5米、6米,则10秒后两车相距()米.A.55 B.65 C.75 D.85【答案】解:如图所示:由题意可得,在Rt△ACB中,AC=2.5×10=25米,BC=6×10=60米,则AB===65(米),则10秒后两车相距65米.故选:B.【点睛】此题主要考查了勾股定理的应用,正确画出图形是解题关键.二.填空题(共8小题,满分24分,每小题3分)11.(2019春•海沧区校级期中)Rt△ABC中,∠B=90°,AB=9,BC=12,则斜边上的高为.【答案】解:设AC边上的高为h,∵在Rt△ABC中,∠B=90°,AB=9,BC=12,AC=15,∴AB•BC=AC•h,∴h=.故答案为:【点睛】本题考查的是三角形的面积,熟知三角形的面积公式是解答此题的关键.12.(2019春•越秀区校级期中)如图,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为96m2.【答案】解:在Rt△ADC中,∵CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m,∴AC2=AD2+CD2=82+62=100,∴AC=10m,(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S阴影=AC×BC﹣AD×CD=×10×24﹣×8×6=96(m2).故答案是:96m2【点睛】本题考查的是勾股定理的运用和勾股定理的逆定理运用,解题的关键是根据勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACB为直角三角形.13.(2019春•鼓楼区校级期中)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE ⊥AB,垂足为点E,DE=2,则BC=6.【答案】解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DC=DE=2,在Rt△BDE中,∠B=30°,∴BD=2DE=4,∴BC=CD+BD=6,故答案为:6.【点睛】本题考查的是勾股定理、角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14.(2019春•阜阳期中)如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是17m.【答案】解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故答案为:17m.【点睛】本题考查了勾股定理的知识,与实际生活相联系,加深了学生学习数学的积极性.15.(2019春•花都区期中)如图,从电线杆离地面5m处向地面拉一条长13m的固定缆绳,这条缆绳的固定点距离电线杆底部有12m.【答案】解:∵电线杆、地面及缆绳正好构成直角三角形,AC=5m,BC=13m,∴AB===12m.故答案为:12.【点睛】本题考查的是勾股定理的应用,有利于培养学生理论联系实际的能力.16.(2018秋•景德镇期中)如图,某自动感应门的正上方装着一个感应器,离地2.5米,当物体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门1.2米的地方时,感应门才自动打开,则感应器的最大感应距离是 1.5米.【答案】解:如图,过点B作BC⊥AD于点C,依题意知,BE=CD=1.6米,ED=BC=1.2米,AD=2.5米,则AC=AD﹣CD=AD﹣BE=2.5﹣1.6=0.9(米).在Rt△ABC中,由勾股定理得到:AB===1.5(米)故答案是:1.5.【点睛】考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AB的长度.17.(2019春•沂水县期中)如图,一个直径为8cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,则筷子长度为8.5cm.【答案】解:设杯子的高度是xcm,那么筷子的高度是(x+1)cm,由题意:x2+42=(x+1)2,16=2x+1,x=7.5,∴x+1=8.5∴筷长8.5cm,杯高7.5cm.故答案为8.5.【点睛】本题考查勾股定理的应用,解题的关键是理解题意,学会利用参数构建方程解决问题.18.(2019春•武城县期中)如图所示,圆柱的高AB=15cm,底面周长为40cm,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是25cm.【答案】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=15,AD为底面半圆弧长,AD=40=20,所以AC===25,故答案为:25cm.【点睛】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.三.解答题(共5小题,满分46分)19.(9分)(2019春•路北区期中)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边.(1)如果a=5,b=12,那么c=13.(2)如果c=61,a=60,那么b=11.(3)若∠A=45°,a=2,则c=2.【答案】解:(1)∵在△ABC中,∠C=90°,a=5,b=12,∴c===13.故答案为13;(2)∵在△ABC中,∠C=90°,c=61,a=60,∴b===11.故答案为11;(3)∵在△ABC中,∠C=90°,∠A=45°,∴∠B=90°﹣∠A=45°,∴∠B=∠A,∴b=a=2,∴c===2.故答案为2.【点睛】本题考查了勾股定理,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.20.(9分)(2019春•高安市期中)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=3,AD =,求四边形ABCD的面积.【答案】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC===.在△ACD中,AC2+CD2=5+9=14=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××3=1+.故四边形ABCD的面积为1+.【点睛】本题考查的是勾股定理及其逆定理,三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.21.(9分)(2019春•江城区期中)如图,在锐角三角形ABC中,高AD=12,边AC=13,BC=14,求BD 的长.【答案】解:∵AD⊥BC,∴∠ADC=90°,在Rt△ACD中,CD===5,∵BC=14,∴BD=BC﹣CD=9.【点睛】本题考查了勾股定理的运用.关键是利用垂直的条件构造直角三角形,利用勾股定理求解.22.(9分)(2019春•全椒县期中)如图,有两棵树AB和CD,AB=10米,CD=4米,两树之间的距离BD =8米,一只鸟从A处飞到C处,则小鸟至少飞行多少米?【答案】解:连接AC,作CE⊥AB于E,则AE=10﹣4=6(米),CE=BD=8米.所以AC===10(米)即:小鸟至少飞行10米.【点睛】本题考查勾股定理的应用.善于观察题目的信息是解题以及学好数学的关键.23.(10分)(2019春•江城区期中)“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,你能知道“海天”号沿哪个方向航行吗?【答案】解:根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里).∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.由“远航号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,即“海天”号沿西北或东南方向航行.【点睛】此题考查勾股定理的应用,主要是能够根据勾股定理的逆定理发现直角三角形。
八年级下册 数学 第 17 章《勾股定理》单元测试题(含答案)

八年级下册 数学第17章《勾股定理》单元测试题(含答案)一、选择题(共10小题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,152.在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形3.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.44.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.75.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.156.在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10mB.11mC.12mD.13m8.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF =90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50mmB.120mmC.160mmD.200mm9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以10米/秒的速度行驶时,A处受噪音影响的时间为()A.32秒B.36秒C.40秒D.44秒10.如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米二、填空题(共8小题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=.12.直角三角形的两边长为3cm,4cm,则第三边边长为.13.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,则S2=.14.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为.15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.16.如图所示的网格是正方形网格,则∠PAB+∠PBA=°(点A,B,P是网格线交点).17.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为km.18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了米.(假设绳子是直的)三、解答题(共4小题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求利用S△ABC解过程:(3)请结合小明和小亮得到的结论验证勾股定理.21.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?22.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD 的长度.参考答案一、选择题(共10小题)1.下列各组数中,不是勾股数的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,15【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需满足两小边的平方和等于最长边的平方.【解答】解:A、32+42≠62,不是勾股数,此选项正确;B、72+242=252,是勾股数,此选项错误;C、62+82=102,是勾股数,此选项错误;D、92+122=152,是勾股数,此选项错误.故选:A.2.在△ABC中,BC=6,AC=8,AB=10,则该三角形为()A.锐角三角形B.直角三角形C.纯角三角形D.等腰直角三角形【分析】根据勾股定理的逆定理解答即可.【解答】解:∵在△ABC中,BC=6,AC=8,AB=10,∵BC2+AC2=AB2,∴△ABC是直角三角形,故选:B.3.如图,在边长为1个单位长度的小正方形网格中,点A、B都是格点(即网格线的交点),则线段AB的长度为()A.3B.5C.6D.4【分析】由勾股定理即可得出线段AB的长.【解答】解:由勾股定理得:AB==5;故选:B.4.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图如图,由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=21,则S2的值是()A.9.5B.9C.7.5D.7【分析】根据正方形的面积和勾股定理即可求解.【解答】解:设全等的直角三角形的两条直角边为a、b且a>b,由题意可知:S1=(a+b)2,S2=a2+b2,S3=(a﹣b)2,因为S1+S2+S3=21,即(a+b)2+a2+b2+(a﹣b)2=213(a2+b2)=21,所以3S2=21,S2的值是7.故选:D.5.如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【分析】在直角三角形AHB中,利用勾股定理进行解答即可.【解答】解:∵△ABH≌△BCG,∴BG=AH=12,∵四边形EFGH都是正方形,∴HG=EF=4,∴BH=16,∴在直角三角形AHB中,由勾股定理得到:AB===20.故选:C.6.在我国古代数学著作《九章算术》“勾股”章有一题:“今有开门去阃(kǔn)一尺,不合二寸,问门广几何.”大意是说:如图,推开双门(AD和BC),门边缘D、C两点到门槛AB距离为1尺(1尺=10寸),双门间的缝隙CD为2寸,那么门的宽度(两扇门的和)AB为()A.100寸B.101寸C.102寸D.103寸【分析】画出直角三角形,根据勾股定理即可得到结论.【解答】解:设OA=OB=AD=BC=r,过D作DE⊥AB于E,则DE=10,OE=CD=1,AE=r﹣1.在Rt△ADE中,AE2+DE2=AD2,即(r﹣1)2+102=r2,解得2r=101.故门的宽度(两扇门的和)AB为101寸.故选:B.7.2019年10月1日,中华人民共和国70年华诞之际,王梓涵和学校国旗护卫队的其他同学们赶到学校举行了简朴而降重的升旗仪式.倾听着雄壮的国歌声,目送着五星红旗级缓升起,不禁心潮澎湃,爱国之情油然而生.爱动脑筋的王梓涵设计了一个方案来测量学校旗杆的高度.将升旗的绳子拉直到末端刚好接触地面,测得此时绳子末端距旗杆底端2米,然后将绳子末端拉直到距离旗杆5m处,测得此时绳子末端距离地面高度为1m,最后根据刚刚学习的勾股定理就能算出旗杆的高度为()A.10mB.11mC.12mD.13m【分析】根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x,可得AC=AD=x,AB=(x﹣1)m,BC=5m根据勾股定理得,绳长的平方=x2+12,右图,根据勾股定理得,绳长的平方=(x﹣1)2+52,∴x2+22=(x﹣1)2+52,解得x=11.故选:B.8.如图,笑笑将一张A4纸(A4纸的尺寸为210mm×297mm,AC>AB)剪去了一个角,量得CF =90mm,BE=137mm,则剪去的直角三角形的斜边长为()A.50mmB.120mmC.160mmD.200mm【分析】解答此题只要把原来的图形补全,构造出直角三角形解答.【解答】解:延长BE、CF相交于D,则EFD构成直角三角形,运用勾股定理得:EF2=(210﹣90)2+(297﹣137)2=1202+1602=40000,所以EF=200.则剪去的直角三角形的斜边长为200mm.故选:D.9.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以10米/秒的速度行驶时,A处受噪音影响的时间为()A.32秒B.36秒C.40秒D.44秒【分析】过点A作AC⊥ON,利用锐角三角函数的定义求出AC的长与200m相比较,发现受到影响,然后过点A作AD=AB=200m,求出BD的长即可得出居民楼受噪音影响的时间.【解答】解:如图:过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米,当火车到B点时对A处产生噪音影响,此时AB=200米,∵AB=200米,AC=120米,∴由勾股定理得:BC=160米,CD=160米,即BD=320米,∵火车在铁路MN上沿ON方向以10米/秒的速度行驶,∴影响时间应是:320÷10=32秒.故选:A.10.如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米【分析】首先得出△AOE≌△OBF(AAS),得出OE=BF,AE=OF,求出OE+OF=AE+BF =CD=17米,得出EF=EM﹣FM=AC﹣BD=7米,求出BF=OE=5米,OF=12米,得出CM=CD﹣DM=CD﹣BF=12米,OM=OF+FM=15米,由勾股定理求出ON=OA=13米,进而求出MN的长即可.【解答】解:作AE⊥OM于E,BF⊥OM于F,如图所示:则∠OEA=∠BFO=90°,∵∠AOE+∠BOF=∠BOF+∠OBF=90°∴∠AOE=∠OBF在△AOE和△OBF中,,∴△AOE≌△OBF(AAS),∴OE=BF,AE=OF,∴OE+OF=AE+BF=CD=17(米)∵EF=EM﹣FM=AC﹣BD=10﹣3=7(米),∵OE+OF=2EO+EF=17米,∴2OE=17﹣7=10(米),∴BF=OE=5米,OF=12米,∴CM=CD﹣DM=CD﹣BF=17﹣5=12(米),OM=OF+FM=12+3=15(米),由勾股定理得:ON=OA===13(米),∴MN=OM﹣OF=15﹣13=2(米).故选:A.二、填空题(共8小题)11.在Rt△ABC中,∠C=90°,AB=15,BC:AC=3:4,则BC=9.【分析】设BC=3x,AC=4x,又其斜边AB=15,再根据勾股定理即可得出答案.【解答】解:设BC=3x,AC=4x,又其斜边AB=15,∴9x2+16x2=152,解得:x=3或﹣3(舍去),∴BC=3x=9.故答案为:9.12.直角三角形的两边长为3cm,4cm,则第三边边长为5或.【分析】根据勾股定理分两种情况解答,一是把两边长都看作直角边,二是把4cm长边看作斜边,根据勾股定理计算即可.【解答】解:(1)若把两边都看作是直角边,那么据已知和勾股定理,设第三边长为xcm,则:x2=32+42=25,∴x=5;(2)若把4cm长的边看作斜边,设第三边长为xcm,则:x2+32=42,x2=42﹣32=7,∴x=.故答案为:5或.13.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,则S2=9.【分析】由三角形ABC为直角三角形,利用勾股定理列出关系式,结合正方形面积公式得到S3=S1+S2,即可求出S2的值.【解答】解:∵△ABC为直角三角形,∴AB2=AC2+BC2,∵以Rt△ABC的三边向外作正方形,其面积分别为S1,S2,S3,且S1=6,S3=15,∴S3=S1+S2,则S2=S3﹣S1=15﹣6=9,故答案为:914.中国古代三国时期的数学家赵爽,创作了一幅“勾股弦方图”,通过数形结合,给出了勾股定理的详细证明如图,在“勾股弦方图”中,以弦为边长得到的正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,这一图形被称作“赵爽弦图”张天同学要用细塑料棒制作“赵爽弦图”,若正方形ABCD与正方形EFCH的面积分别为169和49,则所用细塑料棒的长度为100.【分析】根据正方形的面积可得两个正方形的边长分别为13和7,再根据勾股定理可求得直角三角形的两条直角边长,进而求解.【解答】解:∵正方形ABCD是由4个全等的直角三角形和中间的小正方形组成,∴AE=BF,∠AEB=90°,∵正方形ABCD与正方形EFCH的面积分别为169和49,∴AB=13,EF=7,在Rt△ABE中,BE=BF﹣EF=AE﹣7根据勾股定理,得AE2+BE2=AB2,即AE2+(AE﹣7)2=132解得,AE=12,所以BE=12﹣7=5,所以所用细塑料棒的长度为:4(AB+AE)=4(13+12)=100.故答案为100.15.已知三角形三边长分别为5,12,13,则此三角形的最大边上的高等于.【分析】根据勾股定理的逆定理,△ABC是直角三角形,利用它的面积:斜边×高÷2=短边×短边÷2,就可以求出最长边的高.【解答】解:∵52+122=132,∴根据勾股定理的逆定理,△ABC是直角三角形,最长边是13,设斜边上的高为h,则S△ABC=×5×12=×13h,解得:h=,故答案为.16.如图所示的网格是正方形网格,则∠PAB+∠PBA=45°(点A,B,P是网格线交点).【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠PAB+∠PBA=45°,故答案为:45.17.勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x 的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;18.如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,此人以1米每秒的速度收绳,7秒后船移动到点D的位置,问船向岸边移动了9米.(假设绳子是直的)【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB﹣AD可得BD长.【解答】解:在Rt△ABC中:∵∠CAB=90°,BC=17米,AC=8米,∴AB===15(米),∵此人以1米每秒的速度收绳,7秒后船移动到点D的位置,∴CD=17﹣1×7=10(米),∴AD===6(米),∴BD=AB﹣AD=15﹣6=9(米),答:船向岸边移动了9米.故答案为:9.三、解答题(共4小题)19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,DE垂直平分AB,分别交AB、BC 于点D、E,AP平分∠BAC,与DE的延长线交于点P.(1)求PD的长度;(2)连结PC,求PC的长度.【分析】(1)根据等腰直角三角形的性质解答;(2)作PF⊥AC于F,根据角平分线的性质定理求出PF,根据勾股定理计算即可.【解答】解:(1)∵DE垂直平分AB,∴AD=AB=2,∵AP平分∠BAC,∴∠PAD=∠BAC=45°,∴DP=AD=2;(2)作PF⊥AC于F,∵AP平分∠BAC,PD⊥AB,PF⊥AC,∴PF=PD=2,∠PAC=45°,∴AF=PF=2,∴FC=AC﹣AF=1,在Rt△PFC中,PC==.20.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=(2)小亮也发现了另一种求正方形边长的方法:=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求利用S△ABC解过程:(3)请结合小明和小亮得到的结论验证勾股定理.【分析】(1)根据全等三角形的性质和线段的和差即得结论;(2)根据大三角形的面积等于三个小三角形的面积和即可求解;(3)综合(1)和(2)的结论进行推导即可得结论.=S△ABI+S△BIC+S△AIC【解答】解:(2)因为S△ABC=cx+ax+bx所以x=.答:x与a、b、c的关系为x=.(3)根据(1)和(2)得:x==.即2ab=(a+b+c)(a+b﹣c)化简得a2+b2=c2.21.为了积极响应国家新农村建设,遂宁市某镇政府采用了移动宣讲的形式进行宣传动员.如图,笔直公路MN的一侧点A处有一村庄,村庄A到公路MN的距离为600米,假使宣讲车P周围1000米以内能听到广播宣传,宣讲车P在公路MN上沿PN方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?【分析】(1)根据村庄A到公路MN的距离为600米<1000米,于是得到结论;(2)根据勾股定理得到BP=BQ=800米,求得PQ=1600米,于是得到结论.【解答】解:(1)村庄能否听到宣传,理由:∵村庄A到公路MN的距离为600米<1000米,∴村庄能听到宣传;(2)如图:假设当宣讲车行驶到P点开始影响村庄,行驶QD点结束对村庄的影响,则AP=AQ=1000米,AB=600米,∴BP=BQ=米,∴PQ=1600米,∴影响村庄的时间为:1600÷200=8分钟,∴村庄总共能听到8分钟的宣传.22.有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送6m(水平距离BC=6m)时,秋千的踏板离地的垂直高度BF=4m,秋千的绳索始终拉得很直,求绳索AD的长度.【分析】设秋千的绳索长为xm,根据题意可得AC=(x﹣3)m,利用勾股定理可得x2=62+(x ﹣3)2.【解答】解:在Rt△ACB中,AC2+BC2=AB2,设秋千的绳索长为xm,则AC=(x﹣3)m,故x2=62+(x﹣3)2,解得:x=7.5,答:绳索AD的长度是7.5m.。
八年级数学下册《勾股定理》单元测试卷(带答案解析)

八年级数学下册《勾股定理》单元测试卷(带答案解析)一、单选题1.如图,在△ABC中,∠C=90°,AC=3,点D在BC上,∠ADC=2∠B,AD=√10,则BC的长为()A. 3√3B. √5+1C. √10−1D. √10+12.下列长度的线段中,能组成直角三角形的一组是()A. 1,√3,2B. 2,3,4C. 4,5,6D. 5,6,73.如图,在ΔABC中,三边a,b,c的大小关系是()A. a<b<cB. c<a<bC. c<b<aD. b<a<c4.下列各组数中,能成为直角三角形的三条边长的是()A. 3,5,7B. 5,7,8C. 4,6,7D. 1,√3,2,则AC的长为()5.如图,点A,B都在格点上,点C在线段AB上,每个小格长度为1,若BC=2√133A. √13B. 4√13C. 2√13D. 3√1336.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点.若AM=√2,则线段BN的长为()B. √2C. 1D. 2−√2A. √227.在平面直角坐标系中,点A、B的坐标分别是(0,3)、(−4,0),则原点到直线AB的距离是()A. 2B. 2.4C. 2.5D. 38.等腰三角形的一边长为4,另一边长为6,则这个等腰三角形的面积是()A. 3√7B. 8√2C. 6√7D. 3√7或8√29.如图,一只蚂蚁从长宽高分别是3,2,6的长方体纸箱的A点沿纸箱表面爬到B点,那么它所行的最短路线的长是()A. √61B. 11C. 7D. 810.若一个三角形的三边长分别为a,b,c,满足(a−3)2+√b−4+|c−5|=0,则这个三角形的形状是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题11.如图,直角三角形的两直角边长分别为6 cm和8 cm,分别以三边为直径作半圆,则阴影部分的面积为_______________.12.已知直角三角形的三边长分别为6,7,x,则x2=_______________.13.△ABC中,∠C=90°,AB=8,BC=6,则AC的长是 ______.14.如图,在△ABC 中,点D 是BC 上一点,已知:AB =15,AD =12,AC =13,CD =5,则BC 的长为 ______.15.如图,学校有一块长方形花圈,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,踩伤了花草,则他们仅仅少走了 ______步路.(假设2步为1米)16.ΔABC 中,∠ACB =90°,∠BAC =30°,BC =3.以BC 为边作等边ΔBCD ,连接AD ,则AD 的长为____.17.如图,P 是∠AOB 的平分线OC 上一点,PD ⊥OB ,PE ⊥OA ,垂足分别为D ,E ,若PD =3,则PE 的长是 ______.18.如图,等腰ΔABC 的底边BC =20,面积为120,点F 在边BC 上,且BF =3FC ,EG 是腰AC 的垂直平分线,若点D 在EG 上运动,则ΔCDF 周长的最小值为______.三 、解答题19.在数轴上表示下列各数,并用“<”连接.−12,0,√3,√−83,(−1)2.20.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“奇妙三角形”.(1)如图,在△ABC中,AB=AC=2√5,BC=4,求证:△ABC是“奇妙三角形”;(2)在Rt△ABC中,∠C=90°,AC=2√3,若△ABC是“奇妙三角形”,求BC的长.21.如图,在正方形网格中,每个小正方形的边长都是1,点A、B、C、D都在格点上.(1)线段AB的长是______;(2)在图中画出一条线段EF,使EF的长为√13,并判断AB、CD、EF三条线段的长能否成为一个直角三角形三边的长?说明理由.22.如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点O.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长.23.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.BE平分∠ABC交AC于点E.求CE的长.24.如图,矩形ABCD是一个底部直径BC为12cm的杯子的示意图,在它的正中间竖直放一根筷子EG,筷子漏出杯子外2cm,当筷子倒向杯壁时(筷子底端E不动),筷子顶端正好触到杯口,求筷子EG的长度.25.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE= 45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.参考答案与解析1.【答案】D;【解析】解:在Rt△ACD中,由勾股定理得:CD=√AD2−AC2=√10−9=1,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=2∠B,∴∠B=∠BAD,∴BD=AD=√10,∴BC=√10+1.故选:D.由勾股定理求出CD=1,再根据∠ADC是△ABD的外角,证出∠B=∠BAD,从而有BD=AD,即可求出BC的长.此题主要考查了勾股定理、三角形外角的性质等知识,利用外角证出∠B=∠BAD是解答该题的关键.2.【答案】A;【解析】解:A、∵12+(√3)2=22,∴能构成直角三角形,故本选项符合题意;B、∵22+32≠42,∴不能构成直角三角形,故本选项不符合题意;C、∵42+52≠62,∴不能构成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能构成直角三角形,故本选项不符合题意.故选:A.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.此题主要考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答该题的关键.3.【答案】D;【解析】解:根据勾股定理,得a=√1+9=√10;b=√1+4=√5;c=√4+9=√13.∵5<10<13,∴b<a<c.故选:D.先分析出a、b、c三边所在的直角三角形,再根据勾股定理求出三边的长,进行比较即可.此题主要考查了勾股定理及比较无理数的大小,属中学阶段的基础题目.4.【答案】D;【解析】解:A、因为32+52≠72,所以不能构成直角三角形,此选项错误;B、因为52+72≠82,所以不能构成直角三角形,此选项错误;C、因为42+62≠72,所以不能构成直角三角形,此选项错误;D、因为12+(√3)2=22,能构成直角三角形,此选项正确.故选D.分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.此题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:判断两个较小的数的平方和是否等于最大数的平方即可判断.5.【答案】B;【解析】解:∵点A,B都在格点上,点C在线段AB上,每个小格长度为1,∴AB=√62+42=2√13,∵BC=2√133,∴AC=AB−BC=2√13−2√133=4√133,即AC的长为4√133,故选:B.由勾股定理求出AB的长,即可得出结论.此题主要考查了勾股定理,由勾股定理求出AB的长是解答该题的关键.6.【答案】C;【解析】解:过M点作MH⊥AC于H点,∵四边形ABCD是正方形,∴∠HAM=45°.∴ΔHAM是等腰直角三角形,∴HM=√22AM=1.∵CM平分∠ACB,MH⊥AC,MB⊥CB,∴BM=HM=1,∠ACM=∠BCN.∵∠BMN=45°+∠ACM,∠BNM=45°+∠BCM,∴∠BMN=∠BNM.∴BN=BM=1.故选:C.过M点作MH⊥AC于H点,在等腰直角ΔHAM中可求HM=√22AM=1,根据角平分线的性质可得BM=MH=1,再证明BN=BM即可.这道题主要考查了正方形的性质、角平分线的性质,解决这类问题一般会利用到正方形对角线平分90°得到等腰直角三角形,涉及角平分线时作角两边的垂线段是常见辅助线.7.【答案】B;【解析】解:∵点A、B的坐标分别是(0,3)、(−4,0),∴OA=3,OB=4,∴AB=5,ΔAOB是直角三角形,∴O到AB的距离为3×45=125;故选:B.由ΔAOB是直角三角形,利用直角三角形面积相等,将O到AB的距离转化为直角三角形OAB斜边上的高求解;该题考查坐标平面内点的特征;将将O到AB的距离转化为直角三角形OAB斜边上的高是解答该题的关键;8.【答案】D;【解析】该题考查了勾股定理,等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解答该题的关键.因为已知长度为4和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.解:①当4为底时,其它两边都为6,4、6、6可以构成三角形,底边上的高为√62−22=4√2,∴等腰三角形的面积=12×4×4√2=8√2;②当4为腰时,其它两边为4和6,∵4+4>6,∴4、4、6能构成三角形.∴底边上的高为=√42−32=√7,∴等腰三角形的面积=1×√7×6=3√7.2故选D.9.【答案】A;【解析】解:因为平面展开图不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB2=(3+2)2+62=61;(2)展开前面上面由勾股定理得AB2=(2+6)2+32=73;(3)展开左面上面由勾股定理得AB2=(3+6)2+22=85.所以最短路径的长为AB=√61(cm).故选:A.把此长方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于长方体的高,另一条直角边长等于长方体的长宽之和,利用勾股定理可求得.此题主要考查了平面展开−最短路径问题及勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.10.【答案】B;【解析】解:∵(a−3)2+√b−4+|c−5|=0,∴a−3=0,b−4=0,c−5=0,解得:a=3,b=4,c=5,则a2+b2=c2,故这个三角形的形状是直角三角形;故选:B.利用绝对值以及偶次方的性质和二次根式的性质得出a,b,c的值,进而判断出三角形的形状即可.此题主要考查了勾股定理逆定理,关键是掌握两边的平方和等于第三边的平方,这个三角形是直角三角形.11.【答案】24cm2;【解析】略12.【答案】85或13;【解析】略13.【答案】2√7;【解析】解:在Rt△ABC中,∠C=90°,AB=8,BC=6,则AC=√AB2−BC2=√82−62=2√7,故答案为:2√7.根据勾股定理计算即可.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.14.【答案】14;【解析】解:∵AD=12,AC=13,CD=5,∴AC2=169,AD2+CD2=144+25=169,即AD2+CD2=AC2,∴△ADC为直角三角形,且∠ADC=90°,∴∠ADB=90°,∵AB=15,AD=12,∴BD=√AB2−AD2=√152−122=9,∴BC=BD+CD=9+5=14.故答案为:14.在△ADC中,由三边长,利用勾股定理的逆定理判断出△ADC为直角三角形,可得出AD与BC垂直,在直角三角形ABD中,由勾股定理求出BD,再根据线段的和差关系即可求解.此题主要考查了勾股定理,以及勾股定理的逆定理;熟练掌握勾股定理及逆定理是解本题的关键.15.【答案】4;【解析】解:由勾股定理,得路长=√32+42=5(m),少走(3+4−5)×2=4步,故答案为:4.根据勾股定理,可得答案.此题主要考查了勾股定理,利用勾股定理得出路的长是解题关键.16.【答案】3或3√7;【解析】该题考查了勾股定理、等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质是解答的关键.本题分两种情况,①D在AB边上,由直角三角形的性质解答即可;②D在三角形外面,由等边三角形的性质得出三角形ΔBCE和ΔDCA全等的条件,得出ΔBCE≌ΔDCA,推出BE=AD,由勾股定理得出BE,也就得出AD 了.解:分两种情况:①如图所示:D在AB边上,∵∠ACB=90°,∠BAC=30°,BC=3,∴AD=CD=BC=3;②D在三角形外面,以AC为边做等边ΔACE,连接BE,如图所示:∵ΔBCD和ΔACE是等边三角形,∴BC=DC,CE=CA,∠BCD=∠ACE=60°,∴∠BCE=∠DCA=60°+90°=150°,∴ΔBCE≌ΔDCA,∴BE=AD,∵在RtΔABC中,∠ACB=90°,∠BAC=30°,BC=3,∴AB=2BC=6,AC=√AB2−BC2=3√3,∵ΔACE为等边三角形,∴∠CAE=60°,AE=3√3,∴∠BAE=∠BAC+∠CAE=30°+60°=90°,∴BE=√AB2+AE2=√62+(3√3)2=3√7,∴AD=BE=3√7,综上所述,AD=3或3√7.故答案为3或3√7.17.【答案】3;【解析】解:∵P是∠AOB的平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD,∵PD=3,∴PE=3.故答案为:3.根据角平分线的性质定理可得答案.此题主要考查角平分线的性质定理,熟练掌握角平分线的性质是解题关键.18.【答案】18;【解析】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵1⋅BC⋅AH=120,2∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF=√AH2+HF2=√122+52=13,∴DF+DC的最小值为13.∴ΔCDF周长的最小值为13+5=18;故答案为18.如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;该题考查轴对称−最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解答该题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.19.【答案】解:√3≈1.73,√−83=-2,(-1)2=1,在数轴上表示如下:∴√−83<-12<0<(-1)2<√3.; 【解析】根据实数的符号和绝对值,在数轴上表示即可;依据数轴表示数的特征,右边的数总比左边的大,比较大小.此题主要考查数轴表示数的意义和方法,理解符号和绝对值是确定实数的两个必要条件.20.【答案】(1)证明:过点A 作AD ⊥BC 于D ,∵AB=AC ,AD ⊥BC ,∴BD=12BC=2,由勾股定理得,AD=√AB 2−BD 2=4,∴AD=BC ,即△ABC 是“奇妙三角形”;(2)解:当AC 边上的中线BD 等于AC 时,BC=√BD 2−CD 2=3,当BC 边上的中线AE 等于BC 时,AC 2=AE 2-CE 2,即BC 2-(12BC )2=(2√3)2, 解得BC=4.综上所述,BC 的长是3或4.;【解析】(1)过点A 作AD ⊥BC 于D ,根据等腰三角形的性质求出BD ,根据勾股定理求出AD ,根据“奇妙三角形”的定义证明;(2)分AC 边上的中线BD 等于AC ,BC 边上的中线AE 等于BC 两种情况,根据勾股定理计算.此题主要考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.21.【答案】null;【解析】解:(1)线段AB的长是:√12+22=√5;故答案为:√5;(2)如图所示:EF即为所求,AB、CD、EF三条线段的长能成为一个直角三角形三边的长理由:∵AB2=(√5)2=5,DC2=8,EF2=13,∴AB2+DC2=EF2,∴AB、CD、EF三条线段的长能成为一个直角三角形三边的长.(1)直接利用勾股定理得出AB的长;(2)直接利用勾股定理以及勾股定理逆定理分析得出答案.此题主要考查了勾股定理以及勾股定理逆定理,正确结合网格分析是解题关键.22.【答案】解:由题意得:∠DCE=90°,BF=DE=2.5m,CE=0.7m,DF=0.4m,在Rt△DCE中,由勾股定理得:DC=√DE2−CE2=√2.52−0.72=2.4(m),∴CF=DC-DF=2.4-0.4=2(m)在Rt△BCF中,由勾股定理得:CF=√BF2−CF2=√2.52−22=1.5(m),∴BE=BC-CE=1.5-0.7=0.8(m),答:梯子底端E向后滑动的距离BE的长为0.8m.;【解析】由勾股定理得DC=2.4m,再由勾股定理得BC=1.5m,即可得出结论.此题主要考查了勾股定理的应用,解答本题的关键是两次运用勾股定理.23.【答案】解:如图,过E作ED⊥AB于D,∵∠ACB=90°,AB=10,BC=6,∴EC⊥BC,AC=√AB2−BC2=√102−62=8,∵BE平分∠ABC,ED⊥AB,∴CE=DE,在Rt△BDE和Rt△BCE中,{DE=CEBE=BE,∴Rt△BDE≌Rt△BCE(HL),∴BD=BC=6,∴AD=AB-BD=10-6=4,设CE=DE=x,则AE=AC-CE=8-x,在Rt△ADE中,由勾股定理得:42+x2=(8-x)2,解得:x=3,即CE的长为3.;【解析】过E作ED⊥AB于D,由勾股定理得AC=8,再证Rt△BDE≌Rt△BCE(HL),得BD=BC=6,则AD= AB−BD=10−6=4,设CE=DE=x,则AE=AC−CE=8−x,然后在Rt△ADE中,由勾股定理得出方程,解方程即可.此题主要考查了勾股定理、全等三角形的判定与性质以及角平分线的性质等知识,熟练掌握全等三角形的判定与性质,由勾股定理得出方程是解答该题的关键.24.【答案】解:设杯子的高度是x cm,则筷子的高度为(x+2)cm,∵杯子的直径为12cm,∴DF=6cm,在Rt△DEF中,由勾股定理得:x2+62=(x+2)2,解得x=8,∴筷子EG=8+2=10cm.;【解析】设杯子的高度是xcm,则筷子的高度为(x+2)cm,在RtΔDEF中,利用勾股定理列出方程:x2+62=(x+ 2)2,解方程即可.此题主要考查了勾股定理的应用,运用方程思想是解答该题的关键,属于常考题.25.【答案】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC-∠BAE=90°-(∠DAE-∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°-∠ABC=135°∴∠DFE=∠AFD-∠AFE=135°-45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.;【解析】(1)DE2=BD2+EC2,将△ADB沿直线AD对折,得△AFD,连FE,容易证明△AFD≌△ABD,然后可以得到AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,再利用已知条件可以证明△AFE≌△ACE,从而可以得到∠DFE=∠AFD−∠AFE=135°−45°=90°,根据勾股定理即可证明猜想的结论;(2)根据(1)的思路一样可以解决问题;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(1)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA,然后可以得到AD=DF,EF=BE.由此可以得到∠DFE=∠1+∠2=∠A+∠B=120°,这样就可以解决问题.此题比较复杂,考查了全等三角形的性质与判定、等腰三角形的性质、勾股定理的应用等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.。
八年级数学 勾股定理单元测试(A卷基础篇)

第一章勾股定理单元测试(A卷基础篇)(北师大版)学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分第Ⅰ卷(选择题)评卷人得分一.选择题(共10小题,满分30分,每小题3分)1.(2019春•资阳区校级期中)以下四组数中,不是勾股数的是()A.3n,4n,5n(n为正整数)B.5,12,13C.20,21,29 D.8,5,72.(2019春•江岸区校级期中)直角三角形ABC的两条直角边的长分别为1、2,则它的斜边长为()A.B.C.2 D.33.(2019春•博白县期中)三角形的三边a,b,c满足a2+b2﹣c2=0,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形4.(2019春•南岗区校级期中)如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是()A.8 B.10 C.64 D.1365.(2019春•太原期中)古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一角便是直角,这样做的道理是()A.直角三角形两个锐角互余B.三角形内角和等于180°C.三角形两边之和大于第三边,两边之差小于第三边D.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形6.(2019春•江岸区校级期中)下列各组数作为三角形的三边,能组成直角三角形的一组数是()A.2、3、4 B.3、4、5 C.1、、D.、、7.(2019春•海阳市期中)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是()A.1.5 B.1.8 C.2 D.2.58.(2019春•汉阳区校级期中)如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树数断裂之前的高度为()A.16米B.15米C.24米D.21米9.(2019春•江城区期中)已知等腰三角形的一条腰长是15,底边长是18,则它底边上的高为()A.9 B.12 C.15 D.1810.(2019春•资阳区校级期中)在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向东驶去,若自行车与摩托车每秒分别行驶2.5米、6米,则10秒后两车相距()米.A.55 B.65 C.75 D.85第Ⅱ卷(非选择题)评卷人得分二.填空题(共8小题,满分24分,每小题3分)11.(2019春•海沧区校级期中)Rt△ABC中,∠B=90°,AB=9,BC=12,则斜边上的高为.12.(2019春•越秀区校级期中)如图,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为.13.(2019春•鼓楼区校级期中)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE ⊥AB,垂足为点E,DE=2,则BC=.14.(2019春•阜阳期中)如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.15.(2019春•花都区期中)如图,从电线杆离地面5m处向地面拉一条长13m的固定缆绳,这条缆绳的固定点距离电线杆底部有m.16.(2018秋•景德镇期中)如图,某自动感应门的正上方装着一个感应器,离地2.5米,当物体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门1.2米的地方时,感应门才自动打开,则感应器的最大感应距离是米.17.(2019春•沂水县期中)如图,一个直径为8cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,则筷子长度为cm.18.(2019春•武城县期中)如图所示,圆柱的高AB=15cm,底面周长为40cm,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是.评卷人得分三.解答题(共5小题,满分46分)19.(9分)(2019春•路北区期中)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边.(1)如果a=5,b=12,那么c=.(2)如果c=61,a=60,那么b=.(3)若∠A=45°,a=2,则c=.20.(9分)(2019春•高安市期中)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=3,AD =,求四边形ABCD的面积.21.(9分)(2019春•江城区期中)如图,在锐角三角形ABC中,高AD=12,边AC=13,BC=14,求BD 的长.22.(9分)(2019春•全椒县期中)如图,有两棵树AB和CD,AB=10米,CD=4米,两树之间的距离BD =8米,一只鸟从A处飞到C处,则小鸟至少飞行多少米?23.(10分)(2019春•江城区期中)“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,你能知道“海天”号沿哪个方向航行吗?第二章勾股定理单元测试(A卷基础篇)(北师大版)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(2019春•资阳区校级期中)以下四组数中,不是勾股数的是()A.3n,4n,5n(n为正整数)B.5,12,13C.20,21,29 D.8,5,7【答案】解:A、3n2+4n2=5n2,是勾股数;B、52+122=132,是勾股数;C、202+212=292,是勾股数;D、72+52≠82,不是勾股数;故选:D.【点睛】考查了勾股数,理解勾股数的定义:满足a2+b2=c2的三个正整数称为勾股数,并能够熟练运用.2.(2019春•江岸区校级期中)直角三角形ABC的两条直角边的长分别为1、2,则它的斜边长为()A.B.C.2 D.3【答案】解:由勾股定理得,直角三角形的斜边长==,故选:B.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.3.(2019春•博白县期中)三角形的三边a,b,c满足a2+b2﹣c2=0,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【答案】解:∵a2+b2﹣c2=0,∴a2+b2=c2,∴此三角形是直角三角形.故选:B.【点睛】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边a2+b2=c2,那么这个三角形就是直角三角形.4.(2019春•南岗区校级期中)如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是()A.8 B.10 C.64 D.136【答案】解:由勾股定理得,AC2+CD2=AD2,则字母B所代表的正方形的面积=CD2=AC2﹣AD2=100﹣36=64,故选:C.【点睛】本题考查的是勾股定理、正方形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.5.(2019春•太原期中)古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一角便是直角,这样做的道理是()A.直角三角形两个锐角互余B.三角形内角和等于180°C.三角形两边之和大于第三边,两边之差小于第三边D.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形【答案】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选:D.【点睛】此题考查了勾股定理的证明,属于基础题,注意仔细阅读题目所给内容,得到解题需要的信息,比较简单.6.(2019春•江岸区校级期中)下列各组数作为三角形的三边,能组成直角三角形的一组数是()A.2、3、4 B.3、4、5 C.1、、D.、、【答案】解:A、22+32≠42,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、12+()2≠()2,不能构成直角三角形,故此选项错误;D、()2+()2≠()2,不能构成直角三角形,故此选项错误.故选:B.【点睛】本题主要考查勾股定理的逆定理的应用.关键是熟练掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7.(2019春•海阳市期中)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是()A.1.5 B.1.8 C.2 D.2.5【答案】解:连接DF,如图所示:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB==5,∵AD=AC=3,AF⊥CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF和△ACF中,,∴△ADF≌△ACF(SSS),∴∠ADF=∠ACF=90°,∴∠BDF=90°,设CF=DF=x,则BF=4﹣x,在Rt△BDF中,由勾股定理得:DF2+BD2=BF2,即x2+22=(4﹣x)2,解得:x=1.5;∴CF=1.5;故选:A.【点睛】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质;熟练掌握勾股定理,证明三角形全等是解决问题的关键.8.(2019春•汉阳区校级期中)如图,一棵大树在离地面6米高的B处断裂,树顶A落在离树底部C的8米处,则大树数断裂之前的高度为()A.16米B.15米C.24米D.21米【答案】解:由题意得BC=6,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:A.【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.9.(2019春•江城区期中)已知等腰三角形的一条腰长是15,底边长是18,则它底边上的高为()A.9 B.12 C.15 D.18【答案】解:过点A作AD⊥BC,∵AB=AC,∴BD=CD=BC=18=9,∴AD==12(cm),∴它底边上的高为12cm;故选:B.【点睛】此题考查了勾股定理,用到的知识点是勾股定理、等腰三角形的性质,关键是作出辅助线,构造直角三角形.10.(2019春•资阳区校级期中)在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向东驶去,若自行车与摩托车每秒分别行驶2.5米、6米,则10秒后两车相距()米.A.55 B.65 C.75 D.85【答案】解:如图所示:由题意可得,在Rt△ACB中,AC=2.5×10=25米,BC=6×10=60米,则AB===65(米),则10秒后两车相距65米.故选:B.【点睛】此题主要考查了勾股定理的应用,正确画出图形是解题关键.二.填空题(共8小题,满分24分,每小题3分)11.(2019春•海沧区校级期中)Rt△ABC中,∠B=90°,AB=9,BC=12,则斜边上的高为.【答案】解:设AC边上的高为h,∵在Rt△ABC中,∠B=90°,AB=9,BC=12,AC=15,∴AB•BC=AC•h,∴h=.故答案为:【点睛】本题考查的是三角形的面积,熟知三角形的面积公式是解答此题的关键.12.(2019春•越秀区校级期中)如图,已知∠ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为96m2.【答案】解:在Rt△ADC中,∵CD=6m,AD=8m,∠ADC=90°,BC=24m,AB=26m,∴AC2=AD2+CD2=82+62=100,∴AC=10m,(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S阴影=AC×BC﹣AD×CD=×10×24﹣×8×6=96(m2).故答案是:96m2【点睛】本题考查的是勾股定理的运用和勾股定理的逆定理运用,解题的关键是根据勾股定理求出AC 的长,再根据勾股定理的逆定理判断出△ACB为直角三角形.13.(2019春•鼓楼区校级期中)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE ⊥AB,垂足为点E,DE=2,则BC=6.【答案】解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DC=DE=2,在Rt△BDE中,∠B=30°,∴BD=2DE=4,∴BC=CD+BD=6,故答案为:6.【点睛】本题考查的是勾股定理、角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.14.(2019春•阜阳期中)如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是17m.【答案】解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故答案为:17m.【点睛】本题考查了勾股定理的知识,与实际生活相联系,加深了学生学习数学的积极性.15.(2019春•花都区期中)如图,从电线杆离地面5m处向地面拉一条长13m的固定缆绳,这条缆绳的固定点距离电线杆底部有12m.【答案】解:∵电线杆、地面及缆绳正好构成直角三角形,AC=5m,BC=13m,∴AB===12m.故答案为:12.【点睛】本题考查的是勾股定理的应用,有利于培养学生理论联系实际的能力.16.(2018秋•景德镇期中)如图,某自动感应门的正上方装着一个感应器,离地2.5米,当物体进入感应器的感应范围内时,感应门就会自动打开.一个身高1.6米的学生正对门,缓慢走到离门1.2米的地方时,感应门才自动打开,则感应器的最大感应距离是 1.5米.【答案】解:如图,过点B作BC⊥AD于点C,依题意知,BE=CD=1.6米,ED=BC=1.2米,AD=2.5米,则AC=AD﹣CD=AD﹣BE=2.5﹣1.6=0.9(米).在Rt△ABC中,由勾股定理得到:AB===1.5(米)故答案是:1.5.【点睛】考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AB的长度.17.(2019春•沂水县期中)如图,一个直径为8cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,则筷子长度为8.5cm.【答案】解:设杯子的高度是xcm,那么筷子的高度是(x+1)cm,由题意:x2+42=(x+1)2,16=2x+1,x=7.5,∴x+1=8.5∴筷长8.5cm,杯高7.5cm.故答案为8.5.【点睛】本题考查勾股定理的应用,解题的关键是理解题意,学会利用参数构建方程解决问题.18.(2019春•武城县期中)如图所示,圆柱的高AB=15cm,底面周长为40cm,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C处捕食,则它爬行的最短距离是25cm.【答案】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在Rt△ADC中,∠ADC=90°,CD=AB=15,AD为底面半圆弧长,AD=40=20,所以AC===25,故答案为:25cm.【点睛】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.三.解答题(共5小题,满分46分)19.(9分)(2019春•路北区期中)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边.(1)如果a=5,b=12,那么c=13.(2)如果c=61,a=60,那么b=11.(3)若∠A=45°,a=2,则c=2.【答案】解:(1)∵在△ABC中,∠C=90°,a=5,b=12,∴c===13.故答案为13;(2)∵在△ABC中,∠C=90°,c=61,a=60,∴b===11.故答案为11;(3)∵在△ABC中,∠C=90°,∠A=45°,∴∠B=90°﹣∠A=45°,∴∠B=∠A,∴b=a=2,∴c===2.故答案为2.【点睛】本题考查了勾股定理,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.20.(9分)(2019春•高安市期中)已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=3,AD=,求四边形ABCD的面积.【答案】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC===.在△ACD中,AC2+CD2=5+9=14=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××3=1+.故四边形ABCD的面积为1+.【点睛】本题考查的是勾股定理及其逆定理,三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.21.(9分)(2019春•江城区期中)如图,在锐角三角形ABC中,高AD=12,边AC=13,BC=14,求BD 的长.【答案】解:∵AD⊥BC,∴∠ADC=90°,在Rt△ACD中,CD===5,∵BC=14,∴BD=BC﹣CD=9.【点睛】本题考查了勾股定理的运用.关键是利用垂直的条件构造直角三角形,利用勾股定理求解.22.(9分)(2019春•全椒县期中)如图,有两棵树AB和CD,AB=10米,CD=4米,两树之间的距离BD =8米,一只鸟从A处飞到C处,则小鸟至少飞行多少米?【答案】解:连接AC,作CE⊥AB于E,则AE=10﹣4=6(米),CE=BD=8米.所以AC===10(米)即:小鸟至少飞行10米.【点睛】本题考查勾股定理的应用.善于观察题目的信息是解题以及学好数学的关键.23.(10分)(2019春•江城区期中)“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,你能知道“海天”号沿哪个方向航行吗?【答案】解:根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里).∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.由“远航号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,即“海天”号沿西北或东南方向航行.【点睛】此题考查勾股定理的应用,主要是能够根。
八年级数学上册第一章勾股定理单元测试卷(含答案)

第一章勾股定理单元测试卷一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD的长为()A.3B.4C.2D.4(第1题) (第4题) (第5题) 2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:63.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+15.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A. B. C. D.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5C.5,10,13D.2,3,47.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里(第7题) (第9题) (第10题)8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.不能确定9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3B.6C.D.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.1011.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米(第11题) (第12题) 12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5mB.4mC.3mD.2m二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为.(第13题) (第14题) (第15题)14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为cm.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S 2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S 2,S3表示,确定它们的关系并证明.参考答案一.选择题(共12小题)1.如图,四边形ABCD的对角线AC与BD互相垂直,若AB=3,BC=4,CD=5,则AD 的长为()A.3B.4C.2D.4【解答】解:在Rt△AOB中,AO2=AB2﹣BO2;Rt△DOC中可得:DO2=DC2﹣CO2;∴可得AD2=AO2+DO2=AB2﹣BO2+DC2﹣CO2=18,即可得AD==3.故选A.2.△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,由下列条件不能判定△ABC 为直角三角形的是()A.∠A+∠B=∠CB.∠A:∠B:∠C=1:2:3C.a2=c2﹣b2D.a:b:c=3:4:6【解答】解:A、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C、由a2=c2﹣b2,得a2+b2=c2,符合勾股定理的逆定理,是直角三角形;D、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选D.3.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.http://www、czsx、com、cn4.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1B.+1C.﹣1D.+1【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,∴∠B=∠DAB,∴DB=DA=5,在Rt△ADC中,DC===1,∴BC=+1.故选D.5.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC 于点D,则BD的长为()A. B. C. D.【解答】解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=,故选:A.6.以下列各组线段为边长,能构成直角三角形的是()A.1,1,B.3,4,5C.5,10,13D.2,3,4【解答】解:A、12+12≠()2,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、52+102≠132,不能构成直角三角形,故此选项错误;D、22+32≠42,不能构成直角三角形,故此选项错误.故选B.7.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A.25海里B.30海里C.40海里D.50海里【解答】解:连接BC,由题意得:AC=16×2=32(海里),AB=12×2=24(海里),CB==40(海里),故选:C.8.△ABC中,边AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.不能确定【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.综上所述,△ABC的周长是42或32.故选:C.9.如图,在Rt△ABC中,∠ACB=90°,AB=,BC=2,则这个直角三角形的面积为()A.3B.6C.D.【解答】解:∵在Rt△ABC中,∠ACB=90°,AB=,BC=2,∴AC==3,∴这个直角三角形的面积=AC•BC=3,故选A.10.如图,有4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是17,小正方形面积是5,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.10【解答】解:根据勾股定理可得a2+b2=17,四个直角三角形的面积是:ab×4=17﹣5=12,即:ab=6.故选:B.11.如图①所示,有一个由传感器A控制的灯,要装在门上方离地高4、5m的墙上,任何东西只要移至该灯5m及5m以内时,灯就会自动发光.请问一个身高1、5m的学生要走到离墙多远的地方灯刚好发光?()A.4米B.3米C.5米D.7米【解答】解:由题意可知.BE=CD=1、5m,AE=AB﹣BE=4、5﹣1、5=3m,BD=5m由勾股定理得CE==4m故离门4米远的地方,灯刚好打开,故选A.12.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8cm,AC=17cm,AB=5cm,BD=10m,则C,D两辆车之间的距离为()A.5mB.4mC.3mD.2m【解答】解:在RT△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=0A+AB=20m,在RT△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD﹣OC=2m,故选:D.二.填空题(共5小题)13.如图,在△ABC中,AB=AC=4,AO=BO,P是射线CO上的一个动点,∠AOC=120°,则当△PAB为直角三角形时,AP的长为2或2.【解答】解:当∠APB=90°时,分两种情况讨论,情况一:如图1,∵AO=BO,∴PO=BO,∵∠AOC=120°,∴∠AOP=60°,∴△AOP为等边三角形,∴∠OAP=60°,∴∠∠PBA=30°,∴AP=AB=2;情况二:如图2,∵AO=BO,∠APB=90°,∴PO=BO,∵∠AOC=120°,∴∠BOP=60°,∴△BOP为等边三角形,∴∠OBP=60°,∴AP=AB•sin60°=4×=2;当∠BAP=90°时,如图3,∵∠AOC=120°,∴∠AOP=60°,∴AP=OA•tan∠AOP=2×=2.故答案为:2或2.14.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯 2 米.【解答】解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′=6m.则AA′=8﹣6=2m.15.如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是11cm≤a≤12cm.=24﹣12=12cm.【解答】解:当筷子与杯底垂直时h最大,h最大当筷子与杯底及杯高构成直角三角形时a最小,如图所示:此时,AB===13cm,故a=24﹣13=11cm.所以a的取值范围是:11cm≤a≤12cm.故答案是:11cm≤a≤12cm.16.如图,四边形ABCD中,AD=3,CD=4,∠ABC=∠ACB=∠ADC=45°,则BD的长为.【解答】解:作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′==3,∠D′DA+∠ADC=90°由勾股定理得CD′==,∴BD=CD′=,故答案为:.17.如果矩形的周长是14cm,相邻两边长之比为3:4,那么对角线长为 5 cm. 【解答】解:设矩形的相邻两边的长度分别为3acm,4acm,由题意3a+4a=7,a=1,所以矩形的相邻两边分别为3cm,4cm,所以对角线长==5cm,故答案为5.三.解答题(共5小题)18.一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?【解答】解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.19.在△ABC中,CD是AB边上的高,AC=4,BC=3,DB=求:(1)求AD的长;(2)△ABC是直角三角形吗?为什么?【解答】解:(1)∵CD⊥AB,∴∠CDB=∠CDA=90°,在Rt△BCD中,BC=3,DB=,根据勾股定理得:CD==,在Rt△ACD中,AC=4,CD=,根据勾股定理得:AD==;(2)△ABC为直角三角形,理由为:∵AB=BD+AD=+=5,∴AC2+BC2=AB2,∴△ABC为直角三角形.20.如图,AB=BC=CD=DE=1,且BC⊥AB,CD⊥AC,DE⊥AD,求线段AE的长.【解答】解:∵BC⊥AB,CD⊥AC,AC⊥DE,∴∠B=∠ACD=∠ADE=90°,∵AB=BC=CD=DE=1,∴在Rt△ACB中,AC═==,∴在Rt△ACD中,AD===,在Rt△ADE中,AE===2.21.如图,在Rt△ABC中,∠A=90°,边BC的垂直平分线DE交AB于点E,连接CE.求证:BE2=AC2+AE2.【解答】证明:∵如图,边BC的垂直平分线DE交AB于点E,∴CE=BE.∵在Rt△ABC中,∠A=90°,∴由勾股定理得到:CE2=AC2+AE2∴BE2=AC2+AE2.22.(1)如图(1),分别以Rt△ABC三边为直径向外作三个正方形,其面积分别用S1,S2,S3表示,写出S1,S2,S3之间关系.(不必证明)(2)如图(2),分别以Rt△ABC三边为边向外作三个半圆,其面积分别用S1,S 2,S3表示,确定它们的关系证明;(3)如图(3),分别以Rt△ABC三边为边向外作正三角形,其面积分别用S1,S 2,S3表示,确定它们的关系并证明.【解答】解:(1)S2+S3=S1,由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(2)∵S3=AC2,S2=BC2,S1=AB2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.(3)∵S1=AB2,S2=BC2,S3=AC2,∵三角形ABC是直角三角形,∴AC2+BC2=AB2,∴S2+S3=S1.。
八年级勾股定理练习题

勾股定理练习题:练习一:(基础)1.等腰三角形的腰长为13,底边长为10,则顶角的平分线为__12_.2.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__240_.3.已知a ,b ,c 为△三边,且满足(a 2-b 2)(a 22-c 2)=0,则它的形状为( D )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形4.如图,一圆柱高8,底面半径2,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程( 取3)是( B ).(A )20 (B )10 (C )14 (D )无法确定5. 在△中,斜边2,则2+2+28.6.△一直角边的长为11,另两边为自然数,则△的周长为( C )A 、121B 、120C 、132D 、不能确定7.如图,正方形网格中的△,若小方格边长为1,则△是 (A )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对8.如果△的两直角边长分别为n 2-1,2n (n >1),则它的斜边长是( D )A 、2nB 、1C 、n 2-1D 、n 2+1ABC9.在△中,,90︒=∠C 若,7=+b a △的面积等于6,则边长 5 10.如图△中,BC BM AC AN BC AC ACB ====︒=∠,,5,12,90则 611.一个直角三角形的三边长的平方和为200,则斜边长为 1012.若△是直角三角形,两直角边都是6,在三角形斜边上有一点P ,到两直角边的距离相等,则这个距离等于 313.如图,一个牧童在小河的南4的A 处牧马,而他正位于他的小屋B 的西8北7处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?1714、有一个直角三角形纸片,两直角边68,现将直角边沿∠的角平分线折叠,使它落在斜边上,且与重合,你能求出的长吗?3AB 小河北牧童 小屋AEC DB15.校园里有一块三角形空地,现准备在这块空地上种植草皮以美化环境,已经测量出它的三边长分别是13、14、15米,若这种草皮每平方米售价120元,则购买这种草皮至少需要支出多少?因为高相等,底边15上的一条直角边长为X 1322=142-(15)26.6高为 132-6.62=11.2211.2 15*11.2*0.5=84 84*120=1008016、如图,在△中,∠ 90,6,把△进行折叠,使点A 与点D 重合,1:2,折痕为,点E 在上,点F 在上,求的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 勾股定理单元测试 (A 卷基础篇)(北师大版)学校: __________ 姓名: __________ 班级: __________ 考号: __________题号 一 二 三 总分 得分第Ⅰ卷(选择题)评卷人 得 分.选择题(共 10 小题,满分 30 分,每小题 3分)1.( 2019 春?资阳区校级期中)以下四组数中,不是勾股数的是()C .20,21,29ABC 的两条直角边的长分别为 1、 2,则它的斜边长为(3.( 2019 春?博白县期中)三角形的三边 a , b , c 满足 a 2+b 2﹣ c 2=0,则此三角形是(A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形4.( 2019 春?南岗区校级期中)如图,两个正方形的面积分别是5.( 2019 春 ?太原期中)古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的 13 个结,然后以 3 个结间距、 4 个结间距、 5 个结间距的长度为边长,用木桩钉成一个三角形,其中一角便是直角,这 样做的道理是( )A .3n ,4n ,5n (n 为正整数)B .5,12,13 A . B .C .2D .3A . 8B . 10C . 64D .1362.( 2019 春?江岸区校级期中)直角三角形D .8,5,7100 和 36,则字母 B 所代表的正方形的面A .直角三角形两个锐角互余B .三角形内角和等于 180 °C .三角形两边之和大于第三边,两边之差小于第三边D .如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形6.( 2019 春?江岸区校级期中)下列各组数作为三角形的三边,能组成直角三角形的一组数是()A .2、 3、4B .3、 4、5C .1、 、D . 、 、7.( 2019春?海阳市期中)如图,在 Rt △ABC 中,∠ACB =90°,AC =3,BC =4,点 D 在 AB 上, AD = AC ,AF ⊥ CD 交 CD 于点 E ,交 CB 于点 F ,则 CF 的长是(9.( 2019 春?江城区期中)已知等腰三角形的一条腰长是 15,底边长是 18,则它底边上的高为( )10.( 2019 春 ?资阳区校级期中)在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向 东驶去,若自行车与摩托车每秒分别行驶 2.5米、 6米,则 10秒后两车相距( )米.B .1.8C .2D .2.58. 2019 春?汉阳区校级期中)如图,一棵大树在离地面6 米高的 B 处断裂,树顶 A 落在离树底部 C 的8C . 24 米D .21米A .9B .12C .15D .18A .1.5 A .16米B .15米A.55 B.65 C.75D.85第Ⅱ卷(非选择题)评卷人得分二.填空题(共8 小题,满分24分,每小题3分)11.(2019 春?海沧区校级期中)Rt △ABC 中,∠ B=90°,AB=9,BC=12,则斜边上的高为.12.(2019 春?越秀区校级期中)如图,已知∠ ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为.13.(2019 春?鼓楼区校级期中)如图,在△ABC 中,∠ C=90°,∠ B=30°,AD 是△ABC 的角平分线,DE ⊥AB,垂足为点E,DE =2,则BC=.14.(2019春?阜阳期中)如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是15.(2019 春?花都区期中)如图,从电线杆离地面5m处向地面拉一条长13m 的固定缆绳,这条缆绳的固定点距离电线杆底部有m.16.(2018 秋?景德镇期中)如图,某自动感应门的正上方装着一个感应器,离地 2.5 米,当物体进入感应器的感应范围内时,感应门就会自动打开.一个身高 1.6 米的学生正对门,缓慢走到离门 1.2 米的地方时,处沿圆柱表面爬到对角 C 处捕食,则它爬行的最短距离是三.解答题(共 5 小题,满分 46分)19.(9分)(2019春?路北区期中)在 △ABC 中,∠C =90°,a 、b 、c 分别为∠ A 、∠ B 、∠ C 的对边.(1)如果 a = 5, b = 12,那么 c = . ( 2)如果 c = 61, a = 60,那么 b = .( 3)若∠ A =45°, a = 2,则 c =.20.(9 分)(2019 春?高安市期中)已知:如图,四边形 ABCD 中, AB ⊥BC ,AB =1,BC =2,CD =3, = ,求四边形 ABCD 的面积.米.8cm 的杯子,在它的正中间竖直放一根筷子,筷子露出杯子,筷子顶端刚好触到杯口,则筷子长度为 cm .18.( 2019 春 ?武城县期中)如图所示,圆柱的高 A B = 15cm ,底面周长为 40cm ,现在有一只蚂蚁想要从AD则感应器的最大感应距离是17.(2019 春 ?沂水县期中)如图,一个直径为分21.(9分)(2019春?江城区期中)如图,在锐角三角形ABC中,高AD=12,边AC=13,BC=14,求BD22.(9分)(2019春?全椒县期中)如图,有两棵树AB 和CD ,AB=10米,CD =4米,两树之间的距离BD=8米,一只鸟从 A 处飞到C处,则小鸟至少飞行多少米?23.(10 分)(2019 春?江城区期中)“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,你能知道“海天”号沿哪个方向航行吗?第二章勾股定理单元测试(A 卷基础篇)(北师大版)参考答案与试题解析一.选择题(共10 小题,满分30 分,每小题3分)1.(2019 春?资阳区校级期中)以下四组数中,不是勾股数的是()A.3n,4n,5n(n 为正整数)B.5,12,13C.20,21,29 D .8,5,7【答案】解:A、3n2+4n2=5n2,是勾股数;B、52+122=132,是勾股数;C、202+212=292,是勾股数;D 、72+52≠82,不是勾股数;故选: D .【点睛】考查了勾股数,理解勾股数的定义:满足a2+b2=c2的三个正整数称为勾股数,并能够熟练运用.2.(2019春?江岸区校级期中)直角三角形ABC 的两条直角边的长分别为1、2,则它的斜边长为()A.B.C.2 D .3【答案】解:由勾股定理得,直角三角形的斜边长==,故选: B .【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.3.(2019春?博白县期中)三角形的三边a,b,c 满足a2+b2﹣c2=0,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形 D .等边三角形【答案】解:∵ a2+b2﹣c2=0,∴a2+b2=c2,∴此三角形是直角三角形.故选: B .【点睛】此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边a2+b2=c2,那么这个三角形就是直角三角形.4.(2019 春?南岗区校级期中)如图,两个正方形的面积分别是100 和36,则字母 B 所代表的正方形的面A.8 B.10 C.64 D .136【答案】解:由勾股定理得,AC2+CD2=AD2,则字母 B 所代表的正方形的面积=CD2=AC2﹣AD2=100﹣36=64,故选: C .【点睛】本题考查的是勾股定理、正方形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.5.(2019 春?太原期中)古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13 个结,然后以 3 个结间距、 4 个结间距、 5 个结间距的长度为边长,用木桩钉成一个三角形,其中一角便是直角,这样做的道理是()A .直角三角形两个锐角互余B.三角形内角和等于180 °C.三角形两边之和大于第三边,两边之差小于第三边D.如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形【答案】解:设相邻两个结点的距离为m,则此三角形三边的长分别为3m、4m、5m,∵(3m)2+(4m)2=(5m)2,∴以3m、4m、5m 为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形)故选: D .【点睛】此题考查了勾股定理的证明,属于基础题,注意仔细阅读题目所给内容,得到解题需要的信息,比较简单.6.(2019 春?江岸区校级期中)下列各组数作为三角形的三边,能组成直角三角形的一组数是()A.2、3、4 B.3、4、5 C.1、、D.、、【答案】解:A、22+32≠42,不能构成直角三角形,故此选项错误;B、32+42=52,能构成直角三角形,故此选项正确;C、12+()2≠()2,不能构成直角三角形,故此选项错误;D、()2+()2≠()2,不能构成直角三角形,故此选项错误.故选: B .【点睛】本题主要考查勾股定理的逆定理的应用.关键是熟练掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.7.(2019春?海阳市期中)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥ CD 交CD 于点E,交CB 于点F,则CF 的长是(C.2 D.2.5答案】解:连接DF ,如图所示:AC=3,BC=4,∴ AB==5,∵AD=AC=3,AF⊥ CD,∴CE=DE,BD=AB﹣AD=2,∴CF=DF,在△ADF 和△ACF 中,,∴△ ADF ≌△ ACF(SSS),∴∠ ADF =∠ ACF=90°,∴∠ BDF =90°,设CF=DF =x,则BF=4﹣x,在Rt△BDF 中,由勾股定理得:DF 2+BD2=BF2,即x2+22=(4﹣x)2,解得:x= 1.5;∴CF = 1.5; 故选: A .【点睛】本题考查了勾股定理、全等三角形的判定与性质、等腰三角形的性质、线段垂直平分线的性质; 熟练掌握勾股定理,证明三角形全等是解决问题的关键.8.(2019春?汉阳区校级期中)如图,一棵大树在离地面 6米高的 B 处断裂,树顶 A 落在离树底部 C 的 8米处,则大树数断裂之前的高度为( )A .16米B .15米C .24 米D .21 米【答案】解:由题意得 BC = 6,在直角三角形 ABC 中,根据勾股定理得: AB = = 10 米.所以大树的高度是 10+6=16 米. 故选: A .点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接 用算术法求解.9.( 2019 春?江城区期中)已知等腰三角形的一条腰长是 15,底边长是 18,则它底边上的高为(答案】解:过点 A 作 AD ⊥ BC , ∵AB = AC ,∴AD ==12( cm ),∴它底边上的高为 12cm ;点睛】此题考查了勾股定理,用到的知识点是勾股定理、等腰三角形的性质,关键是作出辅助线,构 造直角三角形.10.( 2019 春 ?资阳区校级期中)在两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北向A .9B .12C .15D .18∴BD =CD ==18=9,2.5 米、 6 米,则10 秒后两车相距()米.C.75 D.85Rt△ACB中,AC=2.5 ×10=25 米,BC=6×10=60 米,则AB===65(米),则10 秒后两车相距65 米.点睛】此题主要考查了勾股定理的应用,正确画出图形是解题关键.二.填空题(共8 小题,满分24分,每小题3分)11.(2019 春?海沧区校级期中)Rt △ABC 中,∠ B=90°,AB=9,BC=12,则斜边上的高为【答案】解:设AC 边上的高为h,∵在Rt△ABC 中,∠ B=90°,AB=9,BC=12,AC=15,∴AB?BC=AC?h,故答案为:【点睛】本题考查的是三角形的面积,熟知三角形的面积公式是解答此题的关键.12.(2019 春?越秀区校级期中)如图,已知∠ ADC=90°,AD=8m,CD=6m,BC=24m,AB=26m,则图中阴影部分的面积为96m2.答案】解:在Rt△ADC 中,∵ CD =6m,AD =8m,∠ ADC=90°,BC=24m,AB=26m,∴AC2=AD2+CD2=82+62=100,东驶去,若自行车与摩托车每秒分别行驶A .55 B.65【答案】解:如图所示:由题意可得,12∴AC = 10m ,(取正值).在△ABC 中,∵ AC 2+BC 2=102+242= 676,AB 2=262=676. ∴AC 2+BC 2=AB 2,∴△ ACB 为直角三角形,∠ ACB =90°.∴S 阴影= AC ×BC ﹣ AD ×CD = ×10×24﹣ ×8×6=96(m 2).故答案是: 96m 2 【点睛】本题考查的是勾股定理的运用和勾股定理的逆定理运用,解题的关键是根据勾股定理求出 的长,再根据勾股定理的逆定理判断出 △ACB 为直角三角形.13.(2019 春?鼓楼区校级期中)如图,在 △ABC 中,∠ C =90°,∠ B = 30°, AD 是△ABC 的角平分线,DE ⊥AB ,垂足为点 E , DE =2,则 BC = 6 .答案】解:∵ AD 是△ABC 的角平分线,∠ C = 90°,DE ⊥ AB , ∴DC =DE =2,在 Rt △BDE 中,∠ B = 30°, ∴BD =2DE =4, ∴BC = CD+BD = 6, 故答案为: 6.【点睛】本题考查的是勾股定理、角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解 题的关键.14.( 2019 春?阜阳期中)如图,在一个高为 5m ,长为 13m 的楼梯表面铺地毯, 则地毯的长度至少是 17m【答案】解:由勾股定理得: 楼梯的水平宽度== 12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和, 地毯的长度至少是 12+5=17 米.AC故答案为: 17m .【点睛】本题考查了勾股定理的知识,与实际生活相联系,加深了学生学习数学的积极性.15.(2019 春?花都区期中)如图,从电线杆离地面 5m 处向地面拉一条长 13m 的固定缆绳,这条缆绳的固定点距离电线杆底部有 12 m .【答案】解:∵电线杆、地面及缆绳正好构成直角三角形, AC = 5m ,BC =13m , ∴AB === 12m .点睛】本题考查的是勾股定理的应用,有利于培养学生理论联系实际的能力.16.( 2018 秋 ?景德镇期中)如图,某自动感应门的正上方装着一个感应器,离地 2.5 米,当物体进入感应器的感应范围内时,感应门就会自动打开.一个身高 1.6 米的学生正对门,缓慢走到离门 1.2 米的地方时,1.5 米.答案】解:如图,过点 B 作 BC ⊥ AD 于点 C ,依题意知, BE =CD =1.6米,ED =BC =1.2 米, AD =2.5 米,则 AC =AD ﹣CD =AD ﹣ BE = 2.5﹣ 1.6= 0.9 米).在 Rt △ABC 中,由勾股定理得到: AB = ==1.5(米)故答案是: 1.5.则感应器的最大感应距离是【点睛】考查了勾股定理的应用,解题的关键是作出辅助线,构造直角三角形,利用勾股定理求得线段AB 的长度.8cm 的杯子,在它的正中间竖直放一根筷子,筷子露出杯子答案】解:设杯子的高度是 xcm ,那么筷子的高度是( x+1) cm ,由题意: x 2+4 2=( x+1)216= 2x+1, x = 7.5,∴ x+1 = 8.5∴筷长 8.5cm ,杯高 7.5cm . 故答案为 8.5.【点睛】本题考查勾股定理的应用,解题的关键是理解题意,学会利用参数构建方程解决问题.18.(2019 春?武城县期中)如图所示,圆柱的高 AB = 15cm ,底面周长为 40cm ,现在有一只蚂蚁想要从 A故答案为: 25cm .,筷子顶端刚好触到杯口,则筷子长度为 8.5 cm .C 处捕食,则它爬行的最短距离是 25cm答案】解:把圆柱侧面展开,展开图如右图所示,点 A 、C 的最短距离为线段 AC 的长.在 Rt △ADC 中,∠ ADC =90°,CD =AB =15,AD 为底面半圆弧长, AD 40=20,所以 AC = == 25,17.(2019 春 ?沂水县期中)如图,一个直径为【点睛】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.三.解答题(共 5 小题,满分46分)19.(9分)(2019春?路北区期中)在△ABC中,∠C=90°,a、b、c分别为∠ A、∠ B、∠ C的对边.(1)如果a=5,b=12,那么c=13 .(2)如果c=61,a=60,那么b=11 .(3)若∠ A=45°,a=2,则c= 2 .【答案】解:(1)∵在△ABC 中,∠C=90°,a=5,b=12,∴ c===13.故答案为13;(2)∵在△ABC 中,∠ C=90°,c=61,a=60,∴ b===11.故答案为11;(3)∵在△ABC 中,∠ C=90°,∠ A=45°,∴∠ B=90°﹣∠ A=45°,∴∠B=∠ A,∴b=a=2,∴ c=== 2 .故答案为 2 .【点睛】本题考查了勾股定理,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.20.(9 分)(2019 春?高安市期中)已知:如图,四边形ABCD 中,AB⊥BC,AB=1,BC=2,CD=3,AD【答案】解:连接AC.∵∠ ABC =90°,AB=1,BC =2,∴ AC===.在△ACD 中,AC2+CD 2=5+9=14=AD2,∴△ ACD 是直角三角形,∴S四边形ABCD=AB?BC+ AC?CD ,=×1×2+ × ×3=1+ .【点睛】本题考查的是勾股定理及其逆定理,三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.21.(9分)(2019春?江城区期中)如图,在锐角三角形A BC中,高AD=12,边AC=13,BC=14,求BD【答案】解:∵ AD⊥ BC,∴∠ ADC =90°,在Rt△ACD 中,CD===5,∵BC=14,∴BD=BC﹣CD=9.【点睛】本题考查了勾股定理的运用.关键是利用垂直的条件构造直角三角形,利用勾股定理求解.22.(9分)(2019春?全椒县期中)如图,有两棵树AB 和CD ,AB=10米,CD =4米,两树之间的距离BD =8米,一只鸟从 A 处飞到C处,则小鸟至少飞行多少米?【答案】解:连接AC,作CE⊥AB 于E,则AE=10﹣4=6(米),CE=BD=8 米.所以AC===10(米)即:小鸟至少飞行10 米.【点睛】本题考查勾股定理的应用.善于观察题目的信息是解题以及学好数学的关键.23.(10 分)(2019 春?江城区期中)“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,你能知道“海天”号沿哪个方向航行吗?【答案】解:根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里).∵242+182=302,即PQ2+PR2=QR2,∴∠ QPR=90°.由“远航号”沿东北方向航行可知,∠ QPS=45°,则∠ SPR=45°,即“海天”号沿西北或东南方向航行.。