六管超外差收音机原理
第17章 S66E六管超外差式收音机原理及组装.ppt

17.1 超外差收音机原理
采用了这种电路的收音机叫外差式收音机,混频和振荡的工 作,合称变频。外差作用产生出来的差频,习惯上我们采用 易于控制的一种频率,它比高频较低,但比音频高,这就是 常说的中间频率,简称中频。任何电台的频率,由于都变成 了中频,放大起来就能得到相同的放大量。调谐回路的输出, 进入混频级的是高频调制信号,即载波与其携带的音频信号。 经过混频,输出载波的波形变得很稀疏其频率降低了,但音 频信号的形状没有变。通常将这个过程(混濒和本振的作用) 叫做变频。变频仅仅是载波频率变低了,并且无论输入信号 频率如何变化最终都变为465KHz,而音频信号(包络线的 形状)没变。
上一页 下一页 返回
17.1 超外差收音机原理
它取本机振荡产生的等幅振荡信号频率f1和输入回路选择出 来的电台高频已调波信号频率f2的差频465KHz作为中频信 号输出,送往下一级。对变频电路,要求在变频过程中,原 有的低频成分不能有任何畸变,并且要有一定的变频增益; 躁声系数要非常小;工作要稳定;本机振荡频率要始终比输 入回路选择出的广播电台高频信号频率高465KHz。如图 17-2所示变频级是以晶体管 VT1 为中心,它兼有振荡、混 频两种作用。它的主要作用是把输入的不同频率的高频信号 变换成固定的465kHz 的中频信号。
上一页 下一页 返回
17.1 超外差收音机原理
3. 本振回路 由晶体管 VT1 、可变电容 CB 、振荡变压器(简称中振或
短振) T1 和电容 C2构成变压器反馈式振荡器。它能产生等 幅高频振荡信号,振荡频率总是比输入的电台信号高 465kHz。 4.混频回路 由调谐回路和本振电路组成天线所接收信号由L2 耦合到 VT1 的基极,本机振荡信号通过 C2 耦合到 VT1 的发射极。 两种频率的信号在 VT1 中混频,混频后由集电极输出各种 频率的信号。其中包含本机振荡频率和电台振荡频率的差额 等于465kHz 的中频信号。
六管收音机原理图

六管超外差式收音机[修改时间:2010-1-21 11:31:29 浏览次数:1969]六管外差式收音机、 S2108型六管超外差式收音机这里向大家介绍一台S2108型六管超外差式收音机,整机电原理图见图4-3-2。
图中可见,这是一个典型的六管分立件外差式电路,整机包括一级变频、一级中放、一级三极管检波兼AGC电路、一级低放和一级推挽功放。
T1是磁性天线线圈,它的初级绕组与可变电容C1a(电容量较大的一组)组成串联谐振回路对输入信号进行选择。
转动C1a使输入调谐回路的自然谐振频率刚好与某一电台的载波频率相同,这时,该电台在磁性天线中感应的信号电压最强。
该信号由T1的次级耦合到VT1的基极;同时,VT1还和振荡线圈T2、双连的振荡连C1b(电容量较少的一组)等元件接成变压器反馈式高频振荡电路,即本机振荡器。
为了使本振信号总是比输入信号高一个465 kHz的中频信号,C1b必须与C1a保持同步调谐,超外差收音机中总是把这两个可变电容装在同一个转轴上,我们称它为双连可变电容器。
本振信号通过C3加到VT1的发射极,它和加在VT1基极的输入信号一起经VT1非线性放大后就产生了465kHz的中频。
中频信号从第一中周T3输出,再由T3次级耦合到VT2的基极。
VT2对中频信号进行充分地放大后由第二中周T4耦合到检波管VT3。
VT3接成三极管检波电路,这种电路不仅检波效率高,而且有较强的自动增益控制(AGC)作用,AGC电压通过RP2、R4加到VT2 。
当输入信号较强时,VT3基极上得到的电压Vb3也高,基极电流Ib3也就较大,这个电流被VT3放大后就是集电极电流Ic 3 ,它是基流的β倍。
基极电流增加,集电极电流也随之增加,这时R3上的压降就较大,VT3集电极电压Vc3就比较低,那么VT2从R4取得的基极偏置电流Ib2也就比较小,于是VT3的集电极工作电流降低,导致VT2的放大倍数降低,从而起到了自动控制增益的作用。
中夏S66E六管超外差式收音机实验报告

收音机组装实验报告题目:中夏S66E六管超外差式收音机实验报告一、实验目的:利用所给材料制作一台收音机,接受频率范围535千赫----1605千赫的中波段。
在散件的组装过程中除可进一步学习电子技术外还可以掌握电子安装工艺了解测量,焊接和调试技术,一举多得。
二、实验原理:3V低压全硅管六管超外差式收音机具有安装调试方便,工作稳定,声音宏亮,耗电省等优点,它有输入回路高放混频级,一级中放,二级中放,前置低放兼检波级,低放级及功放级等部分组成。
电路原理图如下:图1.图2:三、实验内容:1、元件说明:(1)中频变压器(以下简称中周)三只为一套,其接线图见印制版图。
T2为振荡线圈的中周为红色,T3为第一级中放用的中周为白色,T4为第二级中放用的中周为黑色。
这三只中周在出厂前均已调在规定的频率上,装好后只需微调或不调,请不要乱调。
中周外壳除起屏蔽作用外,还起导线的作用,所以中周外壳必须可靠的接地。
(2)T5为输入变压器,线圈骨架上有凸点标记的为初级,印制板上也有圆点作为标记,其接线图在印制板上可以很明显的看出,安装时不要装反(还可以配合万用表测量进行分辨)。
(3)VT5,VT6为9013属于中功率三极管,请不要与VT1—VT4的高频小功率三极管相混淆,因为他们的外形和脚外的排练都是一样的。
VT1-VT3选用9018,VT4选用9014,请不要装错。
(4)电路原理图中所标出的元件参数为参考值,如与实际给出的元件参数有出入请自己灵活掌握。
如下图所示:2、安装工艺要求:再动手焊接前请先用万用表将各元件测量一下,做到心中有数,安装时请先装低矮和耐热的元件(如电阻),然后再装大一点的元件(如中周,变压器),最后装怕热元件(如三极管)。
(1)电阻的安装:请将电阻的阻值(参照本说明书电阻值计算示意图)选择好后根据两孔的距离弯曲电阻脚可采用卧式紧贴电路板安装,也可以采用立式安装,高度要统一。
(2)瓷片电容和三极管的脚剪的长度要适中,不要剪得太短,也不要留的太长,他们不要超过中周的高度。
六管超外差收音机原理

选频电路
由中周(中频变压器)T3内部的初级线圈和谐振电容 组成并联谐振电路,其固有谐振频率为465kHz。 因此,VT1集电极输出信号(包含各种频率)中的 465kHz的中频信号,将使谐振电路发生谐振,初级线 圈上产生最大的电压(频率为465kHz ),并且通过次级 线圈耦合到下一极。即只有465kHz的中频信号能够有 效地耦合进入下一级电路,实现了选频。
中放回路
三极管VT2是中放回路的核心。选频电路输出 的中频信号输入VT2的基极,并得到放大。 中放回路的负载是中周T4,其固有谐振频率也 是465KHz,可以使中频信号顺利通过。
检波和自动增益控制电路
中频信号由T4的次级线圈耦合进入VT3的基极,VT3的 be结实现检波,C4、C5滤除中频成分,电位器RP上得 到低频率的音频信号,并通过C6耦合进入下一级。
采用变压器T5将音频信号耦合进入由VT5、VT6 组成的推挽式功率放大电路 ,实现音频信号的功 率放大。然后,通过C9耦合进入扬声器和耳机。
课程设计内容: 收音机制作(3—5天); 滤波器电路设计制作(3—5天) ; 直流电源设计制作(选作)。 课程设计时间:2号—11号,共10天。 上午8:30—11:30;下午2:00—5:00。 安排值日:每个班级负责5天;每天安排人 员负责实验室管理。制定值班表。 安全:用电安全,防火、防盗。
四、超外差收音机原理
超外差收音机原理框图
调谐回路
调谐回路由天线线圈“ab”和可变电容CA组成。 通过调节可变电容CA,选择不同频率的电台信号。 当回路的固有频率等于某电台频率时,回路产生谐 振。由线圈“cd”将该信号耦合到下一级变频回路。
变频回路
线圈“cd”将电台信号耦合到三极管VT1的基极。本 机振荡信号通过C2耦合到VT1的发射极。 两种频率的信号在VT1中混频,混频后由VT1集电 极输出各种频率的信号。其中包含本机振荡频率和 电台频率的差频,即465kHz的中频信号。
六管超外差式收音机实训报告

六管超外差式收音机实训报告一、引言本实训报告将针对六管超外差式收音机进行详细的研究和探讨。
收音机作为一种常见的电子产品,具有广泛的应用。
而六管超外差式收音机作为现代收音机的一种重要形式,具备很高的接收灵敏度和信号稳定性。
本实训报告将对该收音机的基本原理、电路设计和实际操作进行分析和总结,以期达到更好地理解和掌握该收音机的目的。
二、基本原理六管超外差式收音机是一种利用超外差原理实现的收音机。
超外差原理是指将接收到的高频信号和本地振荡信号进行混频,得到中频信号后通过中频放大器进行放大,然后经过检波器和音频放大器处理,最终输出音频信号。
三、电路设计3.1 接收电路设计接收电路是收音机的核心部分,负责接收和放大无线电信号。
六管超外差式收音机采用一对相互耦合的三极管作为输入级和输出级,中间级采用两个变压器进行耦合。
接收电路设计需要考虑灵敏度、选择性和稳定性等因素,通过合理选择元件参数和电路连接方式可实现较好的接收效果。
3.2 本地振荡电路设计本地振荡电路是提供超外差原理所需的稳定的本地振荡信号。
六管超外差式收音机采用两级本地振荡电路,第一级为LC振荡器,第二级为晶体振荡器。
通过调整电路中电感和电容的数值,可以使振荡频率保持在稳定的中频范围内。
3.3 中频放大器设计中频放大器负责对混频得到的中频信号进行放大,以提高信号的强度。
六管超外差式收音机采用两级共射放大的方式构成中频放大器,通过选择合适的偏置点和放大倍数,可以获得较佳的放大效果。
3.4 检波和音频放大电路设计检波和音频放大电路用于将放大后的中频信号转化为音频信号,并对其进行进一步的放大和处理。
六管超外差式收音机采用二极管检波器和音频功率放大器,通过合理的参数选择和电路设计,能够实现音频信号的输出。
四、实际操作4.1 元件选购在实际操作中,需要选购合适的电子元件,包括三极管、二极管、电阻、电容等。
通过选择品牌、规格和性能良好的元件,可以提高收音机的可靠性和稳定性。
超外差式收音机原理及安装调试(简版)

超外差收音机原理安装与调试实验指导书孙红兵陈华宝编电子与电气工程系2008 年9 月1 超外差式收音机基本原理由于最简AM收音机中高频放大器只能适应较窄频率范围的放大,要想在整个中波频段535kHZ —1605kHZ获得一致放大是很困难的。
因此用超外差接收方式来代替高放式收音机。
所谓超外差式,就是通过输入回路先将电台高频调制波接收下来,和本地振荡回路产生的本地信号一并送入混频器(利用晶体管的非线性作用导致混频的结果产生许多新的频率),再经中频回路进行频率选择,得到一固定的中频载波(如:调幅中频国际上统一为465KHz或455KHz)调制波,这个过程称为变频。
超外差的实质就是将调制波不同频率的载波,变成固定的且频率较低的中频载波(简称中频)。
在广播、电视、通讯领域,超外差接收方式被广泛采用,如图 2.2。
通过变频,将所要收听的电台的高频信号变成另外一个预先确定好的频率,然后再进行中频放大和检波。
超外差式收音机的中频一般选择在465kHz或455KHz。
混频器的输出回路和中频变压器专门对465kHz或465KHz谐振。
比较起来,超外差式收音机具有以下优点:接收高低端电台(不同载波频率)的灵敏度一致;灵敏度高;选择性好(不易串台)。
超外差式收音机包括调频与调幅两种,本书仅介绍调幅式超外差式收音机的组成、原理、安装与调试方法。
1.3 超外差式调幅收音机基本组成调幅收音机由输入回路、本振回路、混频电路、检波电路、自动增益控制电路(AGC)及音频功率放大电路组成,如图1.1所示。
图1.1 调幅收音机原理框图1.3.1 输入回路收音机输入回路的任务是接收广播电台发射的无线电波,并从中选择出所需电台信号。
输入回路是由收音机内部的磁棒天线线圈与调台旋钮相连的可变电容构成的LC调谐电路,如图2.4所示。
调节可变电容C 可使LC 的固有频率等于电台频率,产生谐振,以选择不同频率的电台信号。
再由L2耦2合到下一级变频级。
六管超外差式收音机原理

11年1月4日星期二
c.中放
选频级输出的中频信号由VT2的 基极输入并进行放大,中放电路中 的负载是中频变压器T4的初级线 圈和谐振电容C,它们也是并联谐 振在中频465kHz,对中频信号再一 次选频,以保证只有有用信号被放 大。
11年1月4日ห้องสมุดไป่ตู้期二
d. 检波与AGC
检波级的主要任务是把中频调幅信号 还原成音频信号,C4、C5起滤去残 余的中频成分的作用。 检波工作由三极管 VT3 的 be 结 来完成,再由 C5 滤去残余的中频成 分 , 在 检 波 负 载RP上 得 到 音 频 信 号。检波后,音频信号由C6耦合到 下一极去。 自动增益控制AGC: AGC控制电压通过R3加到VT2的基 极,其控制过程是: 外 信 号 电 压 ↑→Vb3↑→Ib3↑→Ic3↑→Vc3↓通过 Vb2↓→Ib2↓→Ic2↓→外信号电压↓
11年1月4日星期二
e.低放级(电压放大)VT4
检波滤波后的音频信号由电位器RP送到前置低放管VT4, 把音频信号进行放大,使功放级得到更大的音频信号电压, 使收音机有足够的音量。旋转电位器RP可以改变VT4的基极 对地的信号电压的大小,可达到控制音量的目的。
但是音频信号经过放大后带 负载能力还是很差,不能直 接推动扬声器工作,还需进 行功率放大。
11年1月4日星期二
The End
谢谢大家!
11年1月4日星期二
11年1月4日星期二
b.变频
变频回路由混频、本机振荡和选频三部分电路组 成。 变频级是以晶体管 VT1 为中心,它兼有振荡、混 频两种作用。它的主要作用是把输入的不同频率的高 频信号变换成固定的 465kHz 的中频信号。 由晶体管 VT1 、可变电容 CB、中周 T2 和电容 C1 构成本地振荡器。它能产生等幅高频振荡信号,振荡 频率总是比输入的电台信号高 465kHz。 天线所接收信号由T1 耦合到VT1 的基极,本机振 荡信号通过 C1耦合到 VT1 的发射极。两种频率的信 号在 VT1 中混频,混频即相当于模拟乘法器, 混频后 由集电极输出的信号中包含了本振频率和电台振荡频 率的差频为465kHz 的中频信号。 由T3的初级线圈和谐振电容C组成并联谐振电路, 它的谐振频率在465kHz,对混频输出信号进行选频, 滤去其他频率的信号,只把465kHZ的信号耦合到下一 级.
六管超外差收音机实训报告

六管超外差收音机实训报告一、引言近年来,随着科技的不断发展,收音机作为一种重要的通讯工具,得到了广泛的应用。
而超外差收音机作为一种先进的收音机技术,具有接收范围广、抗干扰能力强等优点,因此备受关注。
本文将详细介绍六管超外差收音机的原理、设计和实训过程。
二、原理六管超外差收音机是一种基于超外差技术的收音机,其核心原理是通过将收音机的频率转换为中频,再进行放大和解调,最终得到音频信号。
在六管超外差收音机中,使用了六个管子分别完成不同的功能,包括混频、放大和解调等。
三、设计在设计六管超外差收音机时,首先需要确定各个管子的类型和参数。
通过分析电路的工作原理,选择合适的管子来满足设计要求。
同时,还需要确定电路的各个元件的数值,如电容、电感等。
在设计中,需要考虑电路的稳定性、抗干扰能力以及输出音质等方面。
四、实训过程在实训过程中,首先需要搭建六管超外差收音机的电路。
根据设计图纸,依次连接各个元件和管子,确保电路的连接正确。
然后,通过调试电路,检查各个元件和管子的工作状态,确保电路能够正常工作。
在调试过程中,需要使用示波器等仪器来观察电路的波形和频谱,以判断是否存在问题。
最后,进行实际的收音测试,检查收音机的接收效果和音质。
五、实训结果经过实训,我们成功搭建了一台六管超外差收音机,并进行了收音测试。
测试结果显示,该收音机具有良好的接收范围和音质,能够接收到各种广播频率的信号。
同时,该收音机具有较好的抗干扰能力,在强干扰环境下依然能够正常工作。
六、实训总结通过这次实训,我们深入了解了六管超外差收音机的原理和设计方法。
实践中,我们遇到了一些困难和问题,但通过团队合作和不断的尝试,最终成功完成了实训任务。
通过实训,我们不仅提高了电路设计和调试的能力,也进一步了解了收音机技术的发展和应用。
七、展望六管超外差收音机作为一种先进的收音机技术,具有广阔的应用前景。
未来,我们可以进一步改进和优化该收音机的设计,提高其性能和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线电波是指在自由空间(包括空气和真空)传
播的射频频段(300KHz~30GHz)的电磁波。
无线电技术的原理就是利用高频电磁波传送声音 、图像、视频等信息。
无线电系统分为发射端和接收端两部分。 发射端将声音等信号经过调制,成为调幅波或调
频波等已调信号,再通过功率放大,最后经由天 线发射出去。
两种频率的信号在VT1中混频,混频后由VT1集电 极输出各种频率的信号。其中包含本机振荡频率和 电台频率的差频,即465kHz的中频信号。
差频项的产生
电台信号: sin1t
本机振荡信号: sin2t
晶体管的近似平方率特性: (s i1 n tsi n2t)2
两信号相乘:
si1 tn si2 tn 1 2 [c1 o 2 s ) t ( co 1 s2 ) t( ]
接收端由天线接收到无线电波信号后,利用解调 电路,将原来的声音等信号分离出来,经放大后 ,通过扬声器等设备形成声音等信号。
二、调制、解调
调制就是将信号源的信息(调制信号)加到载 波上,使载波信号的参数(幅度、频率、相位 等)随调制信号改变的技术。
解调就是从已调信号中恢复调制信号的过程。 常见的调制方式:幅度调制(AM)和频率调制
调谐回路
调谐回路由天线线圈“ab”和可变电容CA组成。 通过调节可变电容CA,选择不同频率的电台信号。
当回路的固有频率等于某电台频率时,回路产生谐 振。由线圈“cd”将该信号耦合到下一级变频回路。
变频回路
线圈“cd”将电台信号耦合Байду номын сангаас三极管VT1的基极。本 机振荡信号通过C2耦合到VT1的发射极。
利用双联电容同步调节CA和CB,使本机振荡频 率和电台信号频率的差频始终保持465kHz。
选频电路
由中周(中频变压器)T3内部的初级线圈和谐振电容 组成并联谐振电路,其固有谐振频率为465kHz。
因此,VT1集电极输出信号(包含各种频率)中的 465kHz的中频信号,将使谐振电路发生谐振,初级线 圈上产生最大的电压(频率为465kHz ),并且通过次级 线圈耦合到下一极。即只有465kHz的中频信号能够有 效地耦合进入下一级电路,实现了选频。
安排值日:每个班级负责5天;每天安排人 员负责实验室管理。制定值班表。
安全:用电安全,防火、防盗。
采用变压器T5将音频信号耦合进入由VT5、VT6 组成的推挽式功率放大电路 ,实现音频信号的功 率放大。然后,通过C9耦合进入扬声器和耳机。
课程设计内容: 收音机制作(3—5天); 滤波器电路设计制作(3—5天)
;
直流电源设计制作(选作)。
课程设计时间:2号—11号,共10天。 上午8:30—11:30;下午2:00—5:00。
中放回路
三极管VT2是中放回路的核心。选频电路输出 的中频信号输入VT2的基极,并得到放大。
中放回路的负载是中周T4,其固有谐振频率也 是465KHz,可以使中频信号顺利通过。
检波和自动增益控制电路
中频信号由T4的次级线圈耦合进入VT3的基极,VT3的 be结实现检波,C4、C5滤除中频成分,电位器RP上得 到低频率的音频信号,并通过C6耦合进入下一级。
(FM)。
三、外差和超外差
外差: 输入信号和本机振荡信号产生差频的 过程。
超外差:输入信号和本机振荡信号产生一个固 定中频信号的过程。调幅中频国际上统一为 465KHz或455KHz。因为,它是比高频信号 低,比低频信号又高的超音频信号,所以这种 接收方式叫超外差式。
四、超外差收音机原理
超外差收音机原理框图
检波和自动增益控制电路
前置放大电路
旋转RP可以改变滑动抽 头的位置,控制音量的大 小,然后送到前置放大管 VT4 进行放大。经过放大 可将信号电压放大几十到 几百倍。低频信号经过前 置放大后已经达到了一至 几伏的电压,但是它的带 负载能力还很差,不能直 接推动扬声器,还需要进 行功率放大。
功率放大