【精品】五年级奥数培优教程讲义第12讲-长方体和正方体(教师版)
人教版五年级下册奥数专讲:长方体与正方体的表面积教案

重点:长方体与正方体表面积计算公式的理解和应用。
难点:空间想象力不足导致对表面积概念的理解困难,以及在实际问题中运用表面积公式时的策略选择。
解决办法及突破策略:
1.通过直观教具和三维模型展示,增强学生的空间感知,帮助他们建立起长方体和正方体的直观形象。
2.设计阶梯式问题,从简单到复杂,逐步引导学生理解和掌握表面积计算公式,并在每个阶段提供反馈和纠正。
过程:
选择几个典型的案例,如包装设计、房屋装修中等涉及表面积计算的问题。
详细介绍每个案例的背景、特点以及如何应用表面积知识解决实际问题。
引导学生思考这些案例对实际生活的影响,并探讨如何优化解决方案。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与长方体和正方体表面积相关的实际问题进行讨论。
教学方法:
1.讲授法:通过生动的语言和形象的比喻,对长方体与正方体的表面积计算公式进行深入讲解,确保学生对概念的理解准确无误。
2.讨论法:组织学生进行小组讨论,鼓励他们提出问题、分享思路,解决在表面积计算过程中遇到的难题,促进知识的内化。
3.实验法:设计动手操作活动,如让学生制作长方体和正方体模型,通过折叠、剪裁等实验活动,直观感受表面积的形成和计算。
小组内讨论问题的现状、挑战以及可能的解决方案。
每组选出一名代表,准备向全班展示讨论成果。
5.课堂展示与点评(15分钟)
目标:锻炼学生的表达能力,同时加深全班对长方体和正方体表面积的认识和理解。
过程:
各组代表依次上台展示讨论成果,包括问题的现状、挑战及解决方案。
其他学生和教师对展示内容进行提问和点评,促进互动交流。
五年级数学奥数精品讲义1-34讲

五年级数学奥数精品讲义1-34讲(总87页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除目录第一讲消去问题(一)第二讲消去问题(二)第三讲一般应用题第四讲盈亏问题(一)第五讲盈亏问题(二)第六讲流水问题第七讲等差数列第八讲找规律能力测试(一)第九讲加法原理第十讲乘法法原理第十一讲周期问题(一)第十二讲周期问题(二)第十三讲巧算(一)第十四讲巧算(二)第十五讲数阵问题(一)第十六讲数阵问题(二)能力测试(二)第十七讲平面图形的计算(一)第十八讲平面图形的计算(二)第十九讲列方程解应用题(一)第二十讲列方程解应用题(二)第二十一讲行程问题(一)第二十二讲行程问题(二)第二十三讲行程问题(三)第二十四讲行程问题(四)能力测试(三)第二十五讲平均数问题(一)第二十六讲平均数问题(二)第二十七讲长方体和正方体(一)第二十八讲长方体和正方体(二)第二十九讲数的整除特征第三十讲奇偶性问题第三十一讲最大公约数和最小公倍数第三十二讲分解质因数(一)第三十三讲分解质因数(二)第三十四讲牛顿问题能力测试(四)2第一讲消去问题(一)在有些应用题里,给出了两个或者两个以上的未知数量间的关系,要求出这些未知数的数量。
我们在解题时,可以通过比较条件,分析对应的未知数量变化的情况,想办法消去其中的一个未知量,从而把一道数量关系较复杂的题目变成比较简单的题目解答出来。
这样的解题方法,我们通常把它叫做“消去法”。
例题与方法在学习例题前,我们先进行一些基本数量关系的练习,为用消去法解题作好准备。
(1)买1个皮球和1个足球共用去40元,买同样的5个皮球和5个足球一共用去多少元?(2)3袋子、大米和3袋面粉共重225、千克,1袋大米和1袋面粉共重多少千克?(3)6行桃树和6行梨树一共120棵,照这样子计算8行桃树和8行梨树一共有多少棵?(4)学校买了4个水瓶和25个茶杯,一共用去172元,每个水瓶18元,每个茶杯多少元?例1学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个差杯,共用去118元。
西师大版小学五年级数学下册 长方体和正方体的认识精品ppt课件

上
后
左
右
前
下
正方体有六个面,它们是上面、下面、左 面、右面、前面、后面。
上
前
左
后
右
下
正方体有六个相等的面
上
左
右
后
前
下
正方体有6个面,12条棱,8个顶点。
返回目录
长方体 正方体
长方体和正方体的特征
名称
长方体
正方体
个数 面 形状
棱 条数 长度
2019/9/16
最新中小学教学课件
47
上海制笔销售公司宜兴洋新兴化工厂后面前面下面上面名称长方体正方体形状每个面都是长方形也可能相对的两个面是正方形都是正方形条数长度12条每4条相等可能有8条相等12条都相等长方体和正方体的面棱和顶点的数目都一样
西师大版五年级数学下册
长方体和正方体的认识
进入目录
1.掌握长方体和正方体的特征,认识它们 之间的关系。 2.培养同学们动手操作、观察、抽象概括 的能力和初步的空间观念。 3.渗透事物是相互联系,发展变化的辩证 唯物主义观点。
长方体和正方体的面、棱和顶点的数目都一样;只是正方体的棱长都相等。正方体 可以说是长、宽、高都相等的长方体。
结束
长方体 正方体
返回目录
谁来说一说长方体和正方体的 特征和它们之间的关系?如何 看图纸上的立体图?
编后语
老师上课都有一定的思路,抓住老师的思路就能取得良好的学习效果。在上一小节中已经提及听课中要跟随老师的思路,这里再进一步论述听课时如何 抓住老师的思路。
是(
)长,方长形方形相对的面的
(
)相大等小。
巩固练习
1. 长方体有6个面,12条棱,
五年级奥数经典培训讲义——长方体和正方体 基础部分 全国通用

长方体和正方体姓名:一、长方体和正方体的认识1、长方体的特征:长方体是由6个长方形围成的立体图形。
○1观察长方体,长方体有几个面?每个面都是什么形状?比一比相对面是不是完全相同?○2两个面相交的边叫做棱。
数一数,长方体有几条棱?这些棱可以分成几组?每组中的几条棱是不是相等?○3三条棱相交的点叫做顶点。
长方体有几个顶点?2、长方体通常画成下图那样:相交于通一丁点的三条棱分别叫做长方体的长、宽、高。
3、正方体的特征:正方体是有6个完全相同的正方形围成的立体图形。
你也能从面、棱、顶点角度,说说可见,正方体是一种特殊的长方体。
如图1图1 图另外,还有一种特殊的长方体,如图2。
它的长厘米,宽厘米,高厘米,它的左面和面完全相同,都是正方形。
其余四个面。
都是长厘米,宽厘米的形。
4、长方体的棱长总和=(长+宽+高)×4正方体的棱长总和=棱长×12练一练:1、请你画一个长方体和一个正方体。
长方体:正方体:2、一个长方体长4厘米,宽3厘米,高2厘米,它的前面是()形,长是()厘米,宽是()厘米;它的右面是()形,长是(),宽是();长方体的下面、左面、前面分别和()面、()面、()面完全相同。
3、小学数学课本的长是21厘米,宽14.5厘米,高0.8厘米,则它的底面是(),面积是()。
4、用一根48厘米的铁丝围成一个正方体,其棱长是()厘米。
5、李师傅用两根一样长的铁丝分别围成一个长方体和一个正方体,已知长方体的长10厘米,宽6厘米,高5厘米。
那么正方体的棱长是()厘米。
6、一个长方体是由3个棱长4厘米的正方体拼成的,这个长方体的长是(),宽是(),高是()。
他最多有()面完全相同,面积为()。
7、用一根长为60厘米的铁丝扎成一个正方体框架,长7厘米,宽5厘米,高是()厘米。
8、用5个完全一样的正方体拼成一个长方体,这个长方体所有棱长总和是112厘米,求长方体的底面积是(),原来一个正方体的棱长总和是()厘米。
著名机构五年级数学下册同步讲义长方体和正方体的认识、棱长和(教师版)

长方体和正方体的认识、棱长和(教师版)学生姓名年级学科授课教师日期时段核心内容长方体和正方体的特征、棱长和课型一对一/一对N教学目标1、掌握长方体和正方体的特征;2、掌握正方体的11种平面展开图,学会解决正方体的展开图题型;3、找出正方体平面展开图相对的面;4、掌握求长方体和正方体棱长和的方法;5、有关图形的题目,要养成画图、标数据、分析后再动笔做的习惯。
重、难点1、掌握长方体和正方体的特征;2、掌握正方体的11种平面展开图、找出正方体平面展开图相对的面;3、掌握求长方体和正方体棱长和的方法;4、有关图形的题目,要养成画图、标数据、分析后再动笔做的习惯。
课首沟通知道长方体和正方体的特征是什么吗?记得它们棱长和的计算公式吗?知识导图课首小测1. [正方体的特征] [难度:★★ ] 正方体是特殊的(),是由6个()的正方形围成的立体图形,也有()个面,()条棱,()顶点,所有棱长度都()。
【参考答案】长方体;完全相同;6;12;8;相等2.[长方体、正方体的棱长总和] [难度:★★ ]【参考答案】棱长(或a);12;长+宽+高(或a+b+h);4导学一:长方体和正方体的认识知识点讲解 1:长方体和正方体的特征1.正方体的染色。
(1)三个面都染色:必定在顶点上;(2)两个面染色:必定在棱上;(3)一个面染色:必定在面上。
例题1.[正方体的特征;长方体的特征] [难度:★★ ]【参考答案】2.[正方体的特征] [难度:★★ ] 一个棱长10厘米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。
问:在这些小正方体中,(1)3个面涂有红色的有多少个?(2)2个面涂有红色的有多少个?(3)1个面涂有红色的有多少个?(4)6个面都没有涂色的有多少个?【参考答案】(1)8个;(2)96个;(3)384个;(4)512个【题目解析】根据题意可知,大正方体一共可以切成10×10×10=1000(个)小正方体。
小学奥数讲义:长方体与正方体

小学奥数讲义:长方体与正方体长方体与正方体【知识要点】1、正方体棱长和=棱长×12 长方体棱长和=(长+宽+高)×42、长方体和正方体的表面积,就是长方体和正方体6个面的总面积。
长方体的表面积=(长×宽+长×高+宽×高)×2 正方体的表面积=棱长×棱长×6表面积在计算时的特殊情况:(1)一般情况需要计算6个面的面积;(2)有时只要计算5个面的面积:如计算游泳池粉刷,游泳池贴瓷砖,浴缸,教室、房间的粉刷面积,无盖的盒子……(3)有时只要计算4个面的面积:如计算饮料的包装纸,通风管……(4)有时只要计算1个面的面积:如游泳池的占地面积,冰箱、洗衣机的占地面积……3、正方体体积=棱长×棱长×棱长长方体体积=长×宽×高通用体积公式:体积=底面积×高【精选例题】1、一个长方体,长12厘米,宽8厘米,高6厘米。
(1)如果从这个长方体上切下一个最大的正方体,这个正方体的体积应该是多少?(2)如果将这个长方体切成若干个大小一样的正方体(不许有剩余),最少能切多少块?(3)如果用若干个这样相同的长方体拼成一个更大的正方体,至少需要多少个长方体?2、把一个长16厘米,宽6厘米,高8厘米的大长方体切成两个小长方体,这两个小长方体的表面积的和最大是多少平方厘米?最小是多少平方厘米?3、一个长方体,如果长减少2厘米,就成为一个正方体,这时,正方体的表面积是96平方厘米,原来长方体的体积是多少?4、一个长方体纸盒,长8厘米,宽是长的43,高是宽的一半。
这个长方体的棱长总和是多少厘米?5、一个体积为160立方厘米的长方体中两个侧面的面积分别为20厘米,32厘米,如图,求这个长方体底面的面积(即图中阴影部分的面积)。
6、一个底面长为25厘米,宽为20厘米的长方体容器,里面盛有水。
当把一个正方体木块放入水中时,木块的12部分没入水中,此时水面升高了1厘米。
小学五年级奥数精品长方体与正方体
2019年春小学五年级精品班培训资料长方体与正方体一、基本应用1、基本公式长方体的棱长和=长方体的表面积=长方体的体积(1)=正方体的棱长和=正方体的表面积=正方体的体积(1)=长方体、正方体的体积(2)=2、(1)一个正方体的棱长扩大2倍,棱长和扩大倍,表面积扩大倍,体积扩大倍;(2)一个长方体的长、宽、高同时扩大2倍,棱长和扩大倍,表面积扩大倍,体积扩大倍.3、(1)一根铁丝的长24米,围成一个正方体,它的体积是多少立方米?(2)一根铁丝的长36米,围成一个长4分米、宽3分米的长方体,高是多少分米?体积是多少立方分米?二、熔铸锻造与入水问题1、将一个棱长为4厘米的正方体锻造成一个长5厘米、宽4厘米的长方体,长方体高是多少厘米?2、一堆长为8米、宽6米、高5米的沙石铺在宽4米、长100米的公路上,能铺多厚?3、在一个长15分米、宽12分米的长方体的水箱中,有10分米深的水。
如果在水中沉入一个棱长是30厘米的正方体铁块,那么水箱这时水深多少分米?4、在一个长15dm,宽12dm的长方体水箱中装有10dm深的水,如果浸入一个棱长是30cm 的正方体铁块(水没有溢出),那么现在水箱中水深多少分米?三、物体的围成一张长、宽分别是120cm,100cm的长方形铁皮,在它的4个角各剪去一个边长为20cm 的小正方形(如图),弯折后焊接成一个无盖的铁皮水箱,这个水箱的容积是多少升?120cm20cm20cm100cm四、物体的切分与拼合1、一个长方体沿着长切走3厘米后变成一个正方体,表面积减少24平方厘米。
原长方体的表面积与体积各是多少?2、用一张包装纸去包装完全一样的三个小长方体,其中每个小长方体的长为3分米、宽为2分米、高为1分米,需要的包装纸最大是多少平方分米?最小是多少平方分米?3、一个长方体从上面切走2厘米后,再从下面切走3厘米后就变成了一个正方体,表面积减少120平方厘米。
求原来长方体的表面积与体积.五、不规则几何体的计算计算下面物体的表面积与体积(单位:厘米)。
最新北师大版小学五年级数学下册奥数专题讲座第十二课(容斥原理)
五年级下册数学奥数专题讲座第十二课《容斥原理》难题练习及题目答案
五年级奥数下册:第十二讲容斥原理
五年级奥数下册:第十二讲容斥问题习题
五年级奥数下册:第十二讲容斥问题习题解答
后序:
亲爱的朋友,你好!很高兴和你再次相遇。
满足您的需求,能够帮到你是我最大的快乐。
愿在知识的海洋里,你我携手共同进步。
请您阅读此文章后,对该文档进行点赞或留言。
文档如有不妥或需改进的地方,请您告诉我,我将尽快更新或完善,以便更好的提高文档质
量,为您服务。
在此我深表感谢!
孔子曰,三人行必有我师焉,尺有所长,寸有所短。
你的宝贵意见,是我前进的方向。
其目的是文档能给您提供一份参考,哪怕只是一点点,我也倍感欣慰。
人生就像一场旅行,愿你我相伴。
共同欣赏沿途的风景,走向美好的未来。
【教材同步】春季学期五年级奥数教程下册【讲义】
春季学期北师大版数学五年级奥数讲义2020年3月制目录第一讲多边形的面积1.1面积计算1.2等积变形1.3列方程求面积第二讲二元一次方程组第三讲牛吃草问题第四讲分数的简算(加减法)第五讲分数的简算(乘法)第六讲分数除法应用题第七讲较复杂分数应用题第八讲浓度问题(百分数)第九讲长方体和正方体的表面积第十讲长方体和正方体的体积第十一讲应用题综合练习(一)第十二讲应用题综合练习(二)第一讲多边形的面积面积的计算[同步巩固演练]1、求下图中每个小图形的阴影部分的面积(单位:厘米)[能力拓展平台]1、已知三角形ABC的周长是20厘米,三角形内一点到三角形三条边的距离都是3厘米,求三角形的面积。
第1题2、如图,ABCG是4×7的长方形,DEFG是2×10的长方形,那么三角形BCM的面积与三角形DEM的面积之差是多少?(单位:厘米)第2题3、求阴影部分的面积(单位:厘米)4、长方形ABCD 的边上有二点E 、F 、AF 、BE 、BE 把长方形分成若干块,其中三个小块的面积标注在图上,求阴影部分面积。
第4题5、(第五届华杯赛试题)涂阴影部分的小正六角星形面积是16平方厘米,问大正六角星的面积是多少平方厘米第5题等积变形[同步巩固演练]1、如图所示,已知矩形ABCD 中,BE=21EC ,则△ABE 和△ABC 的面积之比是多少?第1题2、如图所示,梯形ABCD 中共有8个三角形,其中,面积相等的三角形有多少对?第2题3、如图,三角形ABC 的面积是18平方厘米,BD=2DC ,AE=EC ,则三角形BDE 的面积是多少平方厘米?第3题4、如图已知BC=6BD ,AB=5BE ,三角形BDE 的面积是1,则三角形ABC 的面积是多少?第4题5、如图ABCD 是平行四边形,AE=32AB ,则梯形EBCD 的面积是三角形AED 的面积是多少倍?6、如图所示,三角形ABC 中,BD=DC ,ED=2AE ,BF=FD ,三角形ABC 的面积是1,三角形DFE 的面积是多少?第6题[能力拓展平台]1、如图E 、F 分别为平行四边形ABCD 两条邻边的中点,若平行四边行的面积是1,则图中面积为41的三角形有多少个。
【精品】五年级奥数培优教程讲义第12讲-长方体和正方体(教师版)
第12讲长方体和正方体教学目标1、能够以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2、依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;3、求一些不规则的物体体积时,可以通过变形的方法来解决。
知识梳理一、专题简析在数学竞赛中,有许多有关长方体、正方体的问题。
解答稍复杂的立体图形问题要注意几点:1、必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2、依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;3、求一些不规则的物体体积时,可以通过变形的方法来解决。
二、常见问题在长方体、正方体问题中,我们还会常常遇到这样一些情况:把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。
解答上述问题,必须掌握这样几点:1、将一个物体变形为另一种形状的物体(不计损耗),体积不变;2、两个物体熔化成一个物体后,新物体的体积是原来物体体积的和;3、物体浸入水中,排开的水的体积等于物体的体积。
解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
典例分析考点一:重合或者挖出立体的面积及体积例1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)【解析】(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80×2=160(立方厘米);(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12讲长方体和正方体教学目标1、能够以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2、依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;3、求一些不规则的物体体积时,可以通过变形的方法来解决。
知识梳理一、专题简析在数学竞赛中,有许多有关长方体、正方体的问题。
解答稍复杂的立体图形问题要注意几点:1、必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2、依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;3、求一些不规则的物体体积时,可以通过变形的方法来解决。
二、常见问题在长方体、正方体问题中,我们还会常常遇到这样一些情况:把一个物体变形为另一种形状的物体;把两个物体熔化后铸成一个物体;把一个物体浸入水中,物体在水中会占领一部分的体积。
解答上述问题,必须掌握这样几点:1、将一个物体变形为另一种形状的物体(不计损耗),体积不变;2、两个物体熔化成一个物体后,新物体的体积是原来物体体积的和;3、物体浸入水中,排开的水的体积等于物体的体积。
解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。
典例分析考点一:重合或者挖出立体的面积及体积例1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)【解析】(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80×2=160(立方厘米);(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。
因此,此零件的表面积就是(10×6+10×4+2×2)×2=232(平方厘米)。
例2、有一个长方体形状的零件,中间挖去一个正方体的孔(如图),你能算出它的体积和表面积吗?(单位:厘米)【解析】(1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去了一个孔,所以体积减少了2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米);(2)长方体完整的表面积是(8×5+8×6+6×5)×2=236(平方厘米),但由于挖去了一个孔,它的表面积减少了一个(2×2)平方厘米的面,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+2×2×4=252(平方厘米)。
例3、一个正方体和一个长方体拼成了一个新的长方体,拼成的长方体的表面积比原来的长方体的表面积增加了50平方厘米。
原正方体的表面积是多少平方厘米?【解析】一个正方体和一个长方体拼成新的长方体,其表面积比原来的长方体增加了4块正方形的面积,每块正方形的面积是50÷4=12.5(平方厘米)。
正方体有6个这样的面,所以,原来正方体的表面积是12.5×6=75(平方厘米)。
考点二:已知面积求体积或者已知体积求面积例1、把11块相同的长方体砖拼成一个大长方体。
已知每块砖的体积是288立方厘米,求大长方体的表面积。
【解析】要求大长方体的表面积,必须知道它的长、宽和高。
我们用a、b、h分别表示小长方体的长、宽、高,显然,a=4h,即h=1/4a,2a=3b即b=2/3a,砖的体积是a*2/3a*1/4a=1/6a3。
由1/6a3=288可知,a=12,b=2/3*12=8,h=1/4*12=3。
大长方体的长是12×2=24厘米,宽12厘米,高是8+3=11厘米,表面积就不难求了。
例2、一个长方体,前面和上面的面积之和是209平方厘米,这个长方体的长、宽、高以厘为为单位的数都是质数。
这个长方体的体积和表面积各是多少?【解析】长方体的前面和上面的面积是长×宽+长×高=长×(宽+高),由于此长方体的长、宽、高用厘米为单位的数都是质数,所以有209=11×19=11×(17+2),即长、宽、高分别为11、17、2厘米。
知道了长、宽、高求体积和表面积就容易了。
考点三:体积转换例1、有两个无盖的长方体水箱,甲水箱里有水,乙水箱空着。
从里面量,甲水箱长40厘米,宽32厘米,水面高20厘米;乙水箱长30厘米,宽24厘米,深25厘米。
将甲水箱中部分水倒入乙水箱,使两箱水面高度一样,现在水面高多少厘米?【解析】由于后来两个水箱里的水面的高度一样,我们可以这样思考:把两个水箱并靠在一起,水的体积就是(甲水箱的底面积+乙水箱的底面)×水面的高度。
这样,我们只要先求出原来甲水箱中的体积:40×32×20=25600(立方厘米),再除以两只水箱的底面积和:40×32+30×24=2000(平方厘米),就能得到后来水面的高度。
例2、有一个长方体容器,从里面量长5分米、宽4分米、高6分米,里面注有水,水深3分米。
如果把一块边长2分米的正方体铁块浸入水中,水面上升多少分米?【解析】铁块的体积是2×2×2=8(立方分米),把它浸入水中后,它就占了8立方分米的空间,因此,水上升的体积也就是8立方分米,用这个体积除以底面积(5×4)就能得到水上升的高度了。
例3、有一个长方体容器(如下图),长30厘米、宽20厘米、高10厘米,里面的水深6厘米。
如果把这个容器盖紧,再朝左竖起来,里面的水深应该是多少厘米?【解析】首先求出水的体积:30×20×6=3600(立方厘米)。
当容器竖起来以后,水流动了,但体积没有变,这时水的形状是一个底面积是20×10=200平方厘米的长方体。
只要用体积除以底面积就知道现在水的深度了。
例4、长方体不同的三个面的面积分别为10平方厘米、15平方厘米和6平方厘米。
这个长方体的体积是多少立方厘米?【解析】长方体不同的三个面的面积分别是长×宽、长×高、宽×高得来的。
因此,15×10×6=(长×宽×高)×(长×宽×高),而15×10×6=900=30×30。
所以,这个长方体的体积是30立方厘米。
考点四:分割图形例1、一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?【解析】把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。
因此,锯好后表面积增加432平方厘米。
例2、有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?【解析】把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。
所以原正方体的表面积是12×6=72平方厘米。
例3、一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:(1)三个面涂有红色的有几个?(2)二个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有几个?【解析】按题中的要求切,切成的小正方体一共有3×3×3=27个。
(1)三个面涂有红色的小正方体在大正方体的顶点处,共有8个;(2)二个面涂有红色的小正方体在大正方体的棱上,共有1×12=12个;(3)一个面涂有红色的小正方体在大正方体的六个面上,共有1×6=6个;(4)六个面都没有涂色的在大正方体的中间,有27-(8+12+6)=1个。
例4、一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?【解析】这个长方体原来的表面积是(6×5+6×4+5×4)×2=148平方厘米,每切割一刀,增加2个面。
切成三个体积相等的小长方体要切2刀,一共增加2×2=4个面。
要求表面积和最大,应该增加4个6×5=30平方厘米的面。
所以,三个小长方体表面积和最大是148+6×5×4=268平方厘米。
实战演练?课堂狙击1、一个长5厘米,宽1厘米,高3厘米的长方体,被切去一块后(如图),剩下部分的表面积和体积各是多少?【解析】表面积与原来相等。
体积比原来少了一个长、宽、高都是1厘米的一块。
原来表面积=剩下部分的表面积=(5×1+1×3+3×5)×2=46(平方厘米),原来体积=5×1×3=15(立方厘米),剩下部分的体积=15-1×1×1=14(立方厘米)。
2、有一个形状如下图的零件,求它的体积和表面积。
(单位:厘米)。
【解析】表面积就是正方体与长方体表面积之和减去2个正方体的底面面积。
体积就是长方体与正方体体积之和。
表面积=2×(2×6+2×4+4×6)+2×2×2×3=112(平方厘米),体积=2×6×4+2×2×2=56(立方厘米)3、有一个棱长是4厘米的正方体,从它的一个顶点处挖去一个棱长是1厘米的正方体后,剩下物体的体积和表面积各是多少【解析】表面积没有发生变化,体积就是大正方体减去挖去的小正方体。
表面积=4×4×6=48(平方厘米),体积=4×4×4-1×1×1=63(立方厘米)4、把两个完全一样的长方体木块粘成一个大长方体,这个大长方体的表面积比原来两个长方体的表面积的和减少了46平方厘米,而长是原来长方体的2倍。
如果拼成的长方体的长是24厘米,那么它的体积是多少立方厘米?【解析】由图可以看出,减少的表面积就是原来2倍的长方体的宽×高。
所以大长方体侧面表面积是23平方厘米。
所以大长方体的体积=23×24=552立方厘米。