玻尔兹曼分布律
玻尔兹曼分布律重力场中粒子按高度分布

玻尔兹曼分布律在物理学中的应用
气体分子运动论
01
玻尔兹曼分布律是气体分子运动论的基础,可以用来描述气体
分子在平衡态下的速度分布和能量分布。
热力学
02
玻尔兹曼分布律在热力学中也有广泛应用,如热力学第二定律、
熵的概念等都涉及到玻尔兹曼分布律。
固体物理
03
在固体物理中,玻尔兹曼分布律可以用来描述电子在金属中的
05 结论与展望
研究结论
玻尔兹曼分布律在重力场中粒 子按高度分布的研究表明,在 一定条件下,粒子分布符合玻
尔兹曼分布。
随着高度的增加,粒子分布 逐渐稀疏,但仍保持玻尔兹
曼分布特征。
重力场对粒子分布的影响表现 为在低处粒子聚集,高处粒子 较少,这与玻尔兹曼分布的特
性相符合。
研究限制与不足
01
本研究仅限于理论分析和模拟,未能进行实际实验验证。
能量状态
根据能量守恒,可以得出 粒子在重力场中的能量状 态由动能和势能共同决定。
能量变化
在重力场中,粒子的能量 会发生变化,主要表现在 动能和势能之间的转换。
03 玻尔兹曼分布律与重力场 的结合
玻尔兹曼分布律在重力场中的适用性
玻尔兹曼分布律适用于粒子在平衡态 下的分布情况,当粒子受到重力作用 时,其分布情况同样适用玻尔兹曼分 布律。
玻尔兹曼分布律重力 场中粒子按高度分布
目录
CONTENTS
• 玻尔兹曼分布律的概述 • 重力场中粒子的运动规律 • 玻尔兹曼分布律与重力场的结合 • 实验验证与结果分析 • 结论与展望
01 玻尔兹曼分布律的概述
定义与特性
定义
玻尔兹曼分布律是描述粒子在平衡态下按能量分布的规律,其数学表达式为f(E) = exp(-E/kT),其中E为粒子能量,k为玻尔兹曼常数,T为绝对温度。
玻尔兹曼能量分布

m0
2π kT
⎟⎟⎠⎞3
2 −εk +ε p
e kT
dv x dv y dv z dxdydz
玻尔兹曼能量分布
dN
=
n0 ⎜⎜⎝⎛
m0
2π kT
⎟⎟⎠⎞3
2 −εk +ε p
e kT
dv x dv y dv z dxdydz
能量较大的分子数较小 能量较小的分子数较大
分子总是优先占据低能量状态
由麦克斯韦速率分布的归一化条件:
动能与速度有关,势能与位置有关.
系统处于平衡态时, 坐标、速度介于
空间区域: x → x + dx , y → y + dy , z → z + dz
速度区间: vx → vx + dvx , vy → vy + dvy , vz → vz + dvz
玻耳兹曼能量分布律:
内的分子数为
dN
=
n0 ⎜⎜⎝⎛
解得
dp = γ p dT γ −1T
因为
− m0 gz
p = p0e kT所以d Nhomakorabeap
=
−
p kT
m0 gdz
dT = − γ −1 m0g = − γ −1 Mg
dz γ k
γR
玻尔兹曼能量分布
空气分子平均摩尔质量: M = 29×10-3 kg. mol-1;
比热容比 : γ = 1.4
dT = −9.8 ×10−3 K ⋅ m −1 dz
大学物理
气体动理论
第4讲 玻尔兹曼能量分布
一、玻耳兹曼能量分布
奥地利物理学家玻耳兹 曼(Boltzmann,1844 — 1906), 在麦克斯韦速率分布的基础 上考虑到外力场对气体分子 分布的影响,建立了气体分子 按能量的分布规律.
玻尔兹曼分布律

分布函数的概念有着普遍的意义,在速度空间有 麦克斯韦速度分布函数。
6
*力学量的平均值
x
xdN
N
xf ( x)dx
g( x)
g( x)dN
N
g( x) f ( x)dx
7
4.2 玻尔兹曼分子数密度分布
重力场中粒子按高度的分布( P )mgh
热运动使分子趋于均匀分布而重力使之位于低处。 在重力加速度可以认为不变的范围,取地面为势能 零点.分布在高度为h的地方单位体积内的分子数?
上式右方仅与速率有关.与速度方向无关.具有各向同性的特点.
分布在任一速率v ~ v +dv区间的体积是
4v2 dv 17
结论:在平衡态下,当气体分子间的相互作用 可以忽略时,分布在任一速率区间v ~ v +dv 的 分子数占总分子数的比率为
dN v (
m
3
) 2 e mv2 2kT 4v2 dv
§4 玻尔兹曼分布律
4.1 统计分布律与分布函数的概念 • 分布函数
4.2 玻尔兹曼分子数密度分布 • 等温大气压强公式(高度计原理)
• 玻尔兹曼密度分布律
• 玻尔兹曼分子按能量分布律
§5 麦克斯韦速度分布律
5.1 麦克斯韦速度分布律
5.2 麦克斯韦速率分布律
平均速率 v和方均根速率 v2, 最可几速率vp
3
• 分布函数 以伽尔顿板实验为例说明。
设一定量的分子总数为N
dN(x) 表示分布在某区间 x~ x +d x 内的分子数, dN (x) /N表示分布在此区间内的分子数占总分子数 的比率(或百分比)。
dN(x)/N 是 x 的函数,在不同区间附近取相等的 间隔,此比率一般不相等。
玻尔兹曼速度分布律

分子平均动能与温度的关系
分子平均动能是气体分子动能的平均值,与温度T有关。根据 玻尔兹曼速度分布律,分子平均动能随着温度的升高而增大 。这是因为高温下气体分子运动速度更快,具有更高的动能 。
分子平均动能与温度的关系可以用公式E=3/2kT表示,其中E 是分子平均动能,k是玻尔兹曼常数,T是绝对温度。这个公 式反映了气体分子平均动能与温度的正比关系。
高温高压下的适用性
当温度和压力较高时,玻尔兹曼速度分布律可能不再适用。这是因为高温和高压条件下,气体分子间 的相互作用以及分子与容器壁之间的相互作用变得更加复杂,需要考虑量子效应和相对论效应的影响 。
在高温高压条件下,可能需要采用其他理论模型,如量子统计力学或相对论统计力学,来描述气体分 子的速度分布。
适用范围
玻尔兹曼速度分布律适用于稀薄气体,即在分子数密度较低的情况 下,气体分子的运动行为可以用该定律来描述。
02 玻尔兹曼速度分布律的数 学表达式
表达式概述
玻尔兹曼速度分布律是描述气体分子在平衡态下速度分布的统计规律,其数学表达 式为:f(v) = (m/2πkT)^(3/2) * 4πv^2 * e^(-mv^2/2kT),其中m是分子质量,k 是玻尔兹曼常数,T是绝对温度。
玻尔兹曼速度分布律
目录
CONTENTS
• 引言 • 玻尔兹曼速度分布律的数学表达式 • 玻尔兹曼速度分布律的物理意义 • 玻尔兹曼速度分布律的应用 • 玻尔兹曼速度分布律的局限性 • 玻尔兹曼速度分布律的发展与展望
01 引言
背景介绍
气体分子运动论
气体分子运动论是物理学的一个重要 分支,主要研究气体分子在空间中的 运动规律和相互作用。
大学物理 12-7 玻尔兹曼能量分布律

ε = εk ε P = 0
氏分布(按动能分布 速率分布 — M氏分布 按动能分布 氏分布 按动能分布) 均匀” 空间分布 — “均匀” 均匀
有力场作用) 实际气体 — 非自由粒子 (有力场作用 有力场作用 按动能分布) 速率分布 — M氏分布(按动能分布 氏分布 按动能分布
ε = εk + ε P
二. 重力场等温气压公式
n = n0e
mgz kT
P = Pe 0
mgz kT
kT P z= ln 0 mg P
概述理想气体m氏分布按动能分布空间分布均匀实际气体非自由粒子有力场作用m氏分布按动能分布空间分布不均匀按势能分布与力场方向有关速率空间坐标空间处单位体积内分子数统计意义
12-7 玻尔兹曼能量分布律 - 等温气压公式 一. Boltzmann能量分布率
1.Байду номын сангаас概述
无力场作用) 理想气体 — 自由粒子(无力场作用 无力场作用
坐标空间
x x + dx,y y + dy,z z + dz
3 2
m kT dNvx ,vy ,vz ,x, y,z = n0 dvxdvydvzdxdydz e 2πkT 速率空间 坐标空间 n0 — ε P = 0 处单位体积内分子数
εk +ε p
统计意义: 如分子) 统计意义:微观粒子(如分子 占据能量较低状态概率 如分子 >占据能量较高状态概率 占据能量较高状态概率
不均匀” 按势能分布 按势能分布) 空间分布 — “不均匀” (按势能分布 不均匀
(与力场方向有关 与力场方向有关) 与力场方向有关
2. Boltzmann分布 分布
3 M氏分布 氏分布 εk m 2 kT dN = N e 4π v2dv = Nf (εk )dεk 2πkT B氏分布 式中 εk 用ε = εk +εP 代之 氏分布 速率区间 vx vx + dvx,vy vy + dvy,vz vz + dvz
玻尔兹曼分布

玻尔兹曼分布定律是覆盖系统各种状态的概率分布,概率测量或频率分布。
当存在保守的外力(例如重力场,电场等)时,气体分子的空间位置不再均匀分布,并且在不同位置分子数密度也不同。
玻尔兹曼分布定律描述了在保守外力或保守外力场的作用下处于热平衡状态的理想气体分子的能量分布。
L. E. Boltzmann将麦克斯韦分布定律扩展到外力场的情况。
在相同的宽度范围内,如果E1> E2,则能量DN1大的粒子的数量少于能量DN2小的粒子的数量,并且状态是粒子优先占据较小的能量,这是玻尔兹曼的重要结果分配法。
经过近一个世纪的传播,物理和化学界逐渐接受道尔顿的“原子分子模型”,但是原子和分子的确凿证据尚未得到发现。
这时,出现了更强大的科学成就,即热力学的第一定律和第二定律。
热力学原则上解决了化学平衡的所有问题。
1892年,物理化学家奥斯特瓦尔德(Ostwald)试图证明没有必要将物理和化学问题减少到原子或分子之间的机械关系。
他试图赋予“能量”与物质对象相同的状态,甚至使物质恢复能量。
他提出“世界上所有现象都仅由时空的能量变化构成”。
在统计中,麦克斯韦·玻尔兹曼分布是一种特殊的概率分布,以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼的名字命名。
它首先被定义并在物理学中用于描述(特别是在统计力学中)粒子在理想气体中自由移动而不与固定容器中的其他粒子相互作用的速度,除了粒子与其热环境之间的非常短时间的碰撞之外通过交换能量和动力。
在这种情况下,粒子是指气态粒子(原子或分子),并且假定粒子系统达到了热力学平衡。
当这种分布最初是从1960年的麦克斯韦启蒙运动中获得的时,玻尔兹曼对这种分布的物理起源进行了许多重要的研究。
粒子速度的概率分布表明哪个速度更有可能:粒子具有从分布中随机选择的速度,并且比其他选择方法更有可能处于速度范围内。
分布取决于系统温度和颗粒质量。
Maxwell Boltzmann分布适用于经典理想气体,这是理想的真实气体。
玻尔玆曼分布定律

玻尔兹曼分布定律是一个描述一定温度下微观粒子运动速度的概率分布的定律,以奥地利物理学家路德维希·玻尔兹曼命名。
在物理学和化学中,这个定律被广泛应用于描述气体分子的速度分布。
任何宏观物理系统的温度都是组成该系统的分子和原子的运动的结果。
这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其他粒子的碰撞而不断变化。
然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例几乎不变,如果系统处于或接近处于平衡状态。
玻尔兹曼分布定律具体说明了处于任何速度范围的粒子数量与系统温度的关系,这个关系由一个数学公式表示。
这个公式表明,随着系统温度的升高,高速运动的粒子数量会增加,而低速运动的粒子数量会减少。
这个定律在物理学中有广泛应用,不仅限于气体分子的研究,还涉及到其他领域如电磁学、热力学等。
此外,它也为统计力学的理论框架提供了基础,使得我们能够更好地理解物质的热性质和动力学行为。
玻尔兹曼分布律

n » 2.7 ´1025 m-3
对氢气分子取 d » 2 ´10-10 m ,则
Z » 7.95´109 s-1
常温常压下,一个分子在一秒内平均要碰撞几十亿次,可 见气体分子之间的碰撞是多么的频繁!
11/13
例 真空管的线度为 10-2 m ,其中真空度为 1.33× 10-3 Pa。 设空气分子的有效直径为 3×10-10 m。
用宏观量pt表示的分子平均自由程为说明在标准状态下各种气体分子的平均碰撞频率的数量级约为101113估算氢气分子在标准状态下的平均碰撞频率10701095常温常压下一个分子在一秒内平均要碰撞几十亿次可见气体分子之间的碰撞是多么的频繁
§12.8 玻耳兹曼分布律
问题: 麦克斯韦速率分布律是关于无外力场时,气体分子 的速率分布。此时,分子在空间的分布是均匀的。 若有外力场存在,分子按密度如何分布呢?
dN (rv,vv) = Ce-e / kTdvxdvydvzdxdydz
式中e =ek+ep 是分子的总能量, C 是与位置坐标和速度无关 的比例系数。 这一结论,称为麦克斯韦–玻耳兹曼分布定律。它给出了 分子数按能量的分布规律。
5/13
例 在大气中取一无限高的直立圆柱体,截面积为A , 设柱体
在这种情况下气体分子相互之间很少发生碰撞,只是不断 地来回碰撞真空管的壁,因此气体分子的平均自由程就应 该是容器的线度。 即
l = 10-2 m
v=
8kT πm
= 468.7 m/s
Z = v = 4.68 ´104 s-1 l
13/13
中分子数为 N 。设大气的温度为T ,空气分子的质量μ 。
就此空气柱求玻耳兹曼分布律中的n0
解 根据玻耳兹曼分布律,在重力场中,存在于x~x+dx , y~y+dy , z~z+dz 区间内,具有各种速度的分子数为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 玻尔兹曼分布律
当分子处于保守力场时,麦克斯韦速率分 布律中的指数项应以总能量 E Ek E p 2 1 E mv 代替动能 k ,这样在保守力场 2 中分子的空间分布也不均匀。
玻尔兹曼
玻尔兹曼计算得到系统在某一微小区域 x-x+dx, y-y+dy,z-z+dz 及 vx-vx+dvx, vy-vy+dvy, vz-vz+dvz 的分 子数 dN 设 Ep=0 处分子数密度为n0
ε p kT e dxdydz
设 Ep=0 处分子数密度为 n0 ,
在保守力场中,分子总是优先占据势能较低的 状态。
2. 重力场中气体分子按高度分布
重力场中考虑一竖直空气柱, 设Ep=0 处分子数密度为n0 , ε p 据dN n e kT dxdydz
0
z
0
n
在 Z 处分子数密度为
设Z=0处分子数密度为P0 ,重力场中气体
的压强随高度的增加按指数规律减小。
重力场中气体分子按高度分布
恒温气压公式(高度计)
设温度不随高度变化 根据压强变化测高度,实际温度也随高度 变化,测大气温度有一定的范围,是近似测量。 由上式可得高度 h 为:
z ln( p0 / p) RT / M mol g
n n0e
mgz kT
n0
重力场中气体分子按高度分布
当大气温度均匀时, 分子数密度随高度增 加按指数规律减小。
z
0
n
在同一高度
m
T
n 减小更快 n 减小更慢
n0
ቤተ መጻሕፍቲ ባይዱ
重力场中气体分子按高度分布
又据p nkT
将分子数密度代入,得:
p p0e
mgz kT
p0e
M mol gz RT
m dN n0 e 2kT
3 2
k p
kT
dvxdv y dvz dxdydz
玻尔兹曼分布律
设气体分子处于某一保守力场中,分子势能 为 p ,则其分子数密度仍遵从上式。 在空间某一微小区域 x-x+dx,y-y+dy,z-z+dz 的分子数dN’
dN n0
重力场中气体分子按高度分布
恒温气压公式(高度计)
设温度不随高度变化 根据压强变化测高度,实际温度也随高度 变化,测大气温度有一定的范围,是近似测量。 由上式可得高度h为:
z ln( p0 / p) RT / M mol g