玻尔兹曼分布

合集下载

玻尔兹曼分布律重力场中粒子按高度分布

玻尔兹曼分布律重力场中粒子按高度分布

玻尔兹曼分布律在物理学中的应用
气体分子运动论
01
玻尔兹曼分布律是气体分子运动论的基础,可以用来描述气体
分子在平衡态下的速度分布和能量分布。
热力学
02
玻尔兹曼分布律在热力学中也有广泛应用,如热力学第二定律、
熵的概念等都涉及到玻尔兹曼分布律。
固体物理
03
在固体物理中,玻尔兹曼分布律可以用来描述电子在金属中的
05 结论与展望
研究结论
玻尔兹曼分布律在重力场中粒 子按高度分布的研究表明,在 一定条件下,粒子分布符合玻
尔兹曼分布。
随着高度的增加,粒子分布 逐渐稀疏,但仍保持玻尔兹
曼分布特征。
重力场对粒子分布的影响表现 为在低处粒子聚集,高处粒子 较少,这与玻尔兹曼分布的特
性相符合。
研究限制与不足
01
本研究仅限于理论分析和模拟,未能进行实际实验验证。
能量状态
根据能量守恒,可以得出 粒子在重力场中的能量状 态由动能和势能共同决定。
能量变化
在重力场中,粒子的能量 会发生变化,主要表现在 动能和势能之间的转换。
03 玻尔兹曼分布律与重力场 的结合
玻尔兹曼分布律在重力场中的适用性
玻尔兹曼分布律适用于粒子在平衡态 下的分布情况,当粒子受到重力作用 时,其分布情况同样适用玻尔兹曼分 布律。
玻尔兹曼分布律重力 场中粒子按高度分布
目录
CONTENTS
• 玻尔兹曼分布律的概述 • 重力场中粒子的运动规律 • 玻尔兹曼分布律与重力场的结合 • 实验验证与结果分析 • 结论与展望
01 玻尔兹曼分布律的概述
定义与特性
定义
玻尔兹曼分布律是描述粒子在平衡态下按能量分布的规律,其数学表达式为f(E) = exp(-E/kT),其中E为粒子能量,k为玻尔兹曼常数,T为绝对温度。

经典统计中的玻尔兹曼分布

经典统计中的玻尔兹曼分布

经典统计中的玻尔兹曼分布玻尔兹曼分布是一种用于描述粒子在不同能级上分布的概率分布函数,其表达式为:f_i = \frac{g_i}{Z}e^{-\frac{E_i}{kT}}其中,f_i表示粒子在能级i上的分布概率,g_i为能级i的简并度,E_i为能级i的能量,k为玻尔兹曼常数,T为温度,Z为配分函数。

由于玻尔兹曼分布包含了简并度、能量和温度等多个变量,因此适用于描述各种物质系统中的粒子分布情况。

下面列举一些应用玻尔兹曼分布的例子:1. 原子和分子的能级分布在原子和分子中,由于能量量子化现象的存在,粒子只能处于特定的能级上。

玻尔兹曼分布可以用于描述这些粒子在不同能级上的分布情况,从而推导出物质的热力学性质,如内能、熵等。

2. 电子在半导体中的分布半导体中的电子可以分为价带和导带两种能级。

由于电子在半导体中的分布对半导体的导电性质有着重要影响,因此玻尔兹曼分布可以用于描述电子在不同能级上的分布情况,从而推导出半导体的电学性质,如载流子浓度、电导率等。

3. 气体分子的速度分布在气体中,分子的速度分布对气体的热力学性质有着重要影响。

玻尔兹曼分布可以用于描述气体分子在不同速度下的分布情况,从而推导出气体的热力学性质,如压强、温度等。

4. 固体中的振动分布在固体中,原子的振动状态对固体的热力学性质有着重要影响。

玻尔兹曼分布可以用于描述原子在不同振动状态下的分布情况,从而推导出固体的热力学性质,如比热容、热膨胀系数等。

5. 热辐射的能量分布热辐射是指物体在热平衡状态下所辐射出的电磁波。

由于热辐射的波长和能量密度对物体的热力学性质有着重要影响,玻尔兹曼分布可以用于描述热辐射在不同波长和不同能量下的分布情况,从而推导出物体的热力学性质,如辐射能量密度、辐射亮度等。

6. 激光中的光子分布激光是指一种能量高、相干性强的光束。

由于光子在激光中的分布对激光的光学性质有着重要影响,玻尔兹曼分布可以用于描述光子在不同能级上的分布情况,从而推导出激光的光学性质,如激光功率、激光波长等。

玻尔兹曼能量分布

玻尔兹曼能量分布

m0
2π kT
⎟⎟⎠⎞3
2 −εk +ε p
e kT
dv x dv y dv z dxdydz
玻尔兹曼能量分布
dN
=
n0 ⎜⎜⎝⎛
m0
2π kT
⎟⎟⎠⎞3
2 −εk +ε p
e kT
dv x dv y dv z dxdydz
能量较大的分子数较小 能量较小的分子数较大
分子总是优先占据低能量状态
由麦克斯韦速率分布的归一化条件:
动能与速度有关,势能与位置有关.
系统处于平衡态时, 坐标、速度介于
空间区域: x → x + dx , y → y + dy , z → z + dz
速度区间: vx → vx + dvx , vy → vy + dvy , vz → vz + dvz
玻耳兹曼能量分布律:
内的分子数为
dN
=
n0 ⎜⎜⎝⎛
解得
dp = γ p dT γ −1T
因为
− m0 gz
p = p0e kT所以d Nhomakorabeap
=

p kT
m0 gdz
dT = − γ −1 m0g = − γ −1 Mg
dz γ k
γR
玻尔兹曼能量分布
空气分子平均摩尔质量: M = 29×10-3 kg. mol-1;
比热容比 : γ = 1.4
dT = −9.8 ×10−3 K ⋅ m −1 dz
大学物理
气体动理论
第4讲 玻尔兹曼能量分布
一、玻耳兹曼能量分布
奥地利物理学家玻耳兹 曼(Boltzmann,1844 — 1906), 在麦克斯韦速率分布的基础 上考虑到外力场对气体分子 分布的影响,建立了气体分子 按能量的分布规律.

玻尔兹曼分布

玻尔兹曼分布

玻尔兹曼分布玻尔兹曼分布律是一种覆盖系统各种状态的概率分布、概率测量或者频率分布。

当有保守外力(如重力场、电场等)作用时,气体分子的空间位置就不再均匀分布了,不同位置处分子数密度不同。

玻尔兹曼分布律是描述理想气体在受保守外力作用、或保守外力场的作用不可忽略时,处于热平衡态下的气体分子按能量的分布规律玻尔兹曼(L.E.Boltzmann)将麦克斯韦分布律推广到有外力场作用的情况。

在等宽的区间内,若E1>E2,则能量大的粒子数dN1小于能量小的粒子数dN2,状态即粒子优先占据能量小的,这是玻尔兹曼分布律的一个重要结果。

经过将近一个世纪的传播,物理学界、化学界渐渐接受了道尔顿的“原子—分子模型”,但原子、分子的确凿证据迟迟没有找到。

恰恰此时,一股更强大的科学成就——热力学第一、第二定律出现了。

热力学原则上解决了一切化学平衡的问题。

1892年,物理化学家奥斯特瓦尔德试图在此基础上证明,将物理学和化学问题还原为原子或分子之间的力学关系是多余的。

他试图将“能量”赋以实物一样的地位,甚至要把物质还原为能量。

他提出“世界上的一切现象仅仅是由于处于空间和时间中的能量变化构成的”。

在统计学中,麦克斯韦- 玻尔兹曼分布是一种特殊的概率分布,以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼的名字命名。

它一开始在物理中定义并使用是为了描述(特别是统计力学中描述理想气体)在理想气体中粒子自由移动的在一个固定容器内与其它粒子无相互作用的粒子速度,除了它们相互或与它们的热环境交换能量与动量所产生的非常短暂的碰撞。

在这种情况下粒子指的是气态粒子(原子或分子),并且粒子系统被假定达到热力学平衡。

在这种分布最初从麦斯威尔1960年的启发性的基础上衍生出来时,玻尔兹曼之后对这种分布的物理起源进行了大量重要调查粒子速度概率分布指出哪一种速度更具有可能性:粒子将具有从分布中随机选择的速度,并且比其它选择方法更可能在速度范围内。

玻尔兹曼分布

玻尔兹曼分布

玻尔兹曼分布定律是覆盖系统各种状态的概率分布,概率测量或频率分布。

当存在保守的外力(例如重力场,电场等)时,气体分子的空间位置不再均匀分布,并且在不同位置分子数密度也不同。

玻尔兹曼分布定律描述了在保守外力或保守外力场的作用下处于热平衡状态的理想气体分子的能量分布。

L. E. Boltzmann将麦克斯韦分布定律扩展到外力场的情况。

在相同的宽度范围内,如果E1> E2,则能量DN1大的粒子的数量少于能量DN2小的粒子的数量,并且状态是粒子优先占据较小的能量,这是玻尔兹曼的重要结果分配法。

经过近一个世纪的传播,物理和化学界逐渐接受道尔顿的“原子分子模型”,但是原子和分子的确凿证据尚未得到发现。

这时,出现了更强大的科学成就,即热力学的第一定律和第二定律。

热力学原则上解决了化学平衡的所有问题。

1892年,物理化学家奥斯特瓦尔德(Ostwald)试图证明没有必要将物理和化学问题减少到原子或分子之间的机械关系。

他试图赋予“能量”与物质对象相同的状态,甚至使物质恢复能量。

他提出“世界上所有现象都仅由时空的能量变化构成”。

在统计中,麦克斯韦·玻尔兹曼分布是一种特殊的概率分布,以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼的名字命名。

它首先被定义并在物理学中用于描述(特别是在统计力学中)粒子在理想气体中自由移动而不与固定容器中的其他粒子相互作用的速度,除了粒子与其热环境之间的非常短时间的碰撞之外通过交换能量和动力。

在这种情况下,粒子是指气态粒子(原子或分子),并且假定粒子系统达到了热力学平衡。

当这种分布最初是从1960年的麦克斯韦启蒙运动中获得的时,玻尔兹曼对这种分布的物理起源进行了许多重要的研究。

粒子速度的概率分布表明哪个速度更有可能:粒子具有从分布中随机选择的速度,并且比其他选择方法更有可能处于速度范围内。

分布取决于系统温度和颗粒质量。

Maxwell Boltzmann分布适用于经典理想气体,这是理想的真实气体。

2.6玻尔兹曼分布

2.6玻尔兹曼分布

p( z) p(0) e
n( z ) n(0) e


Mg z RT
Mg z RT
kT RT 定义大气标高: H mg Mg
p( z) p(0) e

z H
大气标高是粒子按高度分布的特征量,它反映了气体分子热运 动与分子受重力场作用这一对矛盾。
§2.6 玻尔兹曼分布
§2.6 玻尔兹曼分布 *三、悬浮微粒按高度的分布(溶液、气体中悬浮物系统等) 设每一个微粒的质量为m,体积为V,微粒的密度为ρ,
液体密度ρ0,则每一微粒受到的合力方向向下,为:
F mg 0Vg m* g
其中m* m(1
0 ) 称为等效质量
m* gz kT

n( z) n(0) e
第二章
§2.6 玻尔兹曼分布
作业:
§2.6 玻尔兹曼分布 一、等温大气压强公式 重力作用和热运动是一对矛盾。 该系统达到力学平衡的条件为:
p A ( p dp) A z gAdz

(p+dp)A z+dz
系统
zρgdVpA源自p dp z gdz
ω r h
L dr




2


dp r r 2dr
dp m 2 dr p kT
pm r nr m kT
pr p0 e
m 2 r 2 2 kT
nr n0 e
m 2 r 2 2 kT
*四、玻尔兹曼分布 设n1和n2分别表示在温度为T的系统中,处于粒子能量为ε1的 某一状态与ε2的另一状态的粒子数密度,则 1 2 玻尔兹曼分布 n1 n2e

§9.4 玻尔兹曼分布

§9.4  玻尔兹曼分布
§9.4 玻尔兹曼分布
玻耳兹曼(Boltzmann)对独立子系统的平衡分布 做了定量描述:
在系统的N个粒子中,能量为j 的某一量子态 j 上的粒子分布数nj 正比于它的玻尔兹曼因子
nj λ e-ε j /kT
其中: 为比例系数,k 为玻耳兹曼常数,T
为热力学温度。
1
若能级i的简并度为gi ,说明有gi 个量子态具 有同一种能量i ,在系统的N个粒子中,能量为i 的能级 i 上的粒子分布数ni正比于它的玻尔兹曼因 子与统计权重gi的乘积。
既然玻耳兹曼分布即是平衡分布,也是最概然分
布。所以对于N、U、V 确定的系统,微观状态数WD 值
取极大的分布即是玻耳兹曼分布。在9.2节中,已经
得出离域子与定域子在某一套能级分布数 ni 下的WD
的求法,以下只要一eε j /kT
N g eεi /kT
i
j
i
定义以上两式的分母为粒子的配分函数,以 q 表示:
q
def
e
ε
j
/kT
def
gi
eεi /kT
j
i
9.4.4
所以得到玻耳兹曼分布的数学表达式
n
j
N q
eε j /kT
(9.4.5a)
ni
N
q
g eεi /kT
i
(9.4.5b)
g e εi /kT i
ni ginj λ gi eεi /kT
由于系统的总粒子数 N 既是各量子态分布数之和
,也是各能级分布数之和,所以有:
按状态分布加和:
N nj e j /kT
j
j
按能级分布加和:
N
ni
g ei /kT i

12.4.1玻尔兹曼能量分布律平均自由程 - 玻尔兹曼能量分布律平均自由程

12.4.1玻尔兹曼能量分布律平均自由程 - 玻尔兹曼能量分布律平均自由程

d p mgnd z 代入 p = nkT ,得:
d n mg d z n kT
积分: n d n z mg d z n n0 0 kT
ln n mg z n0 kT
n n0emgz/ kT 重力场中分子的分布

p

p emgz/kT 0
——等温气压公式
dN n0e kT dxdydz
三) 四个重要的统计规律
1)压强公式 2)温度公式
p2 3
k
n k
3 kT 2
3)能量均分定理(平衡态时,均分到每个 自由度上的能量均为kT/2)
___
分子的平均总能量:

i
kT
2 一定量理想气体的内能: E内

i
2
RT
4)分子的平均自由程和碰撞频率
n0 是势能为0处的分子数密度
玻尔兹曼分布定律不仅适用于气体,也适用于固
体和液体中的微观粒子。
问题:室温情况下,分子的平均速率可 达数百米每秒。为什么在房间里离开我 们几米远的地方,打开一瓶酒精的塞子, 我们却并不能立刻闻到酒精味?
12-8 分子平均碰撞次数和平均自由程 自由程:分子两次相邻碰撞之间自由通过的路程
四、 玻尔兹曼能量分布律
1. 重力场中分子的分布(设 T = const.)
热运动 浓度n均匀 重力 分子在底部

平衡时有一定分布
z z+dz
z
p+dp
n Sp
薄层气体:底面积 S,厚dz, 分子质量为m,平衡时:
T
0
n0
( p d p)S mgnS d z pS d p mgnd z
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

玻尔兹曼分布
中文名称:麦克斯韦-玻尔兹曼分布
外文名称:Maxwell Boltzmann distribution
麦克斯韦-玻尔兹曼分布是一个概率分布,在物理学和化学中有应用。

最常见的应用是统计力学的领域。

任何(宏观)物理系统的温度都是组成该系统的分子和原子的运动的结果。

这些粒子有一个不同速度的范围,而任何单个粒子的速度都因与其它粒子的碰撞而不断变化。

然而,对于大量粒子来说,处于一个特定的速度范围的粒子所占的比例却几乎不变,如果系统处于或接近处于平衡。

麦克斯韦-玻尔兹曼分布具体说明了这个比例,对于任何速度范围,作为系统的温度的函数。

它以詹姆斯·克拉克·麦克斯韦和路德维希·玻尔兹曼命名。

物理应用:
麦克斯韦-玻尔兹曼分布形成了分子运动论的基础,它解释了许多基本的气体性质,包括压强和扩散。

麦克斯韦-玻尔兹曼分布通常指气体中分子的速率的分布,但它还可以指分子的速度、动量,以及动量的大小的分布,每一个都有不同的概率分布函数,而它们都是联系在一起的。

麦克斯韦-玻尔兹曼分布可以用统计力学来推导,它对应于由大量不相互作用的粒子所组成、以碰撞为主的系统中最有可能的速率分布,其中量子效应可以忽略。

由于气体中分子的相互作用一般都是相当小的,因此麦克斯韦-玻尔兹曼分布提供了气体状态的非常好的近似。

在许多情况下(例如非弹性碰撞),这些条件不适用。

例如,在电离层和空间等离子体的物理学中,特别对电子而言,重组和碰撞激发(也就是辐射过程)是重要的。

如果在这个情况下应用麦克斯韦-玻尔兹曼分布,就会得到错误的结果。

另外一个不适用麦克斯韦-玻尔兹曼分布的情况,就是当气体的量子热波长与粒子之间的距离相比不够小时,由于有显著的量子效应也不能使用麦克斯韦-玻尔兹曼分布。

另外,由于它是基于非相对论的假设,因此麦克斯韦-玻尔兹曼分布不能做出分子的速度大于光速的概率为零的预言。

推导:
麦克斯韦的推导假设了三个方向上的表现都相同,但在玻尔兹曼的一个推导中利用分子运动论去掉了这个假设。

麦克斯韦-玻尔兹曼分布可以轻易地从能量的玻尔兹曼分布推出:其中Ni是平衡温度T时,处于状态i的粒子数目,具有能量EI和简并度GI,N是系统中的总粒子数目,k是玻尔兹曼常数。

(注意有时在上面的方程中不写出简并度HI。

在这个情况下,指标i将指定了一个单态,而不是具有相同能量EI的GI的多重态。

)由于速度和速率与能量有关,因此方程1可以用来推出气体的温度和分子的速度之间的关系。

这个方程中的分母称为正则配分函数。

相关文档
最新文档