高考数学难点之数形结合思想
数形结合思想方法(新课标)

数形结合思想方法一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。
所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。
数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。
2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=214223.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。
二、例题分析例1.2230 13x x kx k k ++=-若关于的方程的两根都在和之间,求的取值范围。
分析:2()23f x x kx k x =++令,其图象与轴交点的横坐标就是方程()0f x =()13y f x =-的解,由的图象可知,要使二根都在,之间, (1)0f ->只需,(3)0f >,()()02bf f k a-=-<同时成立. 10(10)k k -<<∈-解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩2020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222 法二、数形结合解法: 令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。
例谈“数形结合”思想在高考数学中的应用

2024年3月上半月㊀学习指导㊀㊀㊀㊀例谈 数形结合 思想在高考数学中的应用∗◉湖北江汉大学数学与大数据系㊀周㊀岭㊀许㊀璐㊀㊀著名数学家华罗庚曾说过: 数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休 .所谓 数形结合 就是把抽象的数学语言㊁数量关系与直观的几何图形㊁位置关系结合起来,通过 以形助数或 以数解形 ,即通过抽象思维与形象思维的结合,将复杂问题简单化,抽象问题具体化,达到实现优化解题路径的目的,起到事半功倍的效果.下面将结合高考数学试题实例,分析说明 数形结合 思想在解决问题中的作用和简捷.1数形结合思想在解析几何中的应用例1㊀(2023年全国新高考Ⅰ卷)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则s i n α=(㊀㊀).A.1㊀㊀㊀B .154㊀㊀C .104㊀㊀D.64分析:此题可以先将圆的方程化为标准形式,设出切线方程,利用点到直线的距离公式求出两条切线的斜率,最后利用夹角公式求得s i n α的值,但是计算相对复杂.解析:依题意,圆的方程可化为(x -2)2+y 2=5.图1如图1,得到圆心C (2,0),r =5,P (0,-2).所以|P C |=22.设过点P 的两条切线为P A 和P B ,则øA P B =α,可得s i nα2=r |P C |=522=104,c o sα2=1-(s i n α2)2=64.所以s i n α=2s i nα2c o s α2=154.故选:B .例2㊀(2023年新高考I 卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ңʅF 1B ң,F 2A ң=-23F 2B ң,则C 的离心率为.分析:此题常见解法是设出点A ,B 的坐标,利用已知条件列出三个方程,再解出方程求得点A ,B 的坐标,进而得出双曲线C 的离心率.这样计算量会很大,如果利用数形结合的思想结合双曲线的定义求其离心率将会大大简化计算.解析:由F 2A ң=-23F 2B ң,得|F 2A ||F 2B |=23.设|F 2A |=2x ,则|F 2B |=3x ,|A B |=5x ,|F 1B |=|F 2B |=3x .由双曲线的定义,得|A F 1|=|A F 2|+2a =2x +2a .设øF 1A F 2=θ,则s i n θ=3x 5x =35,所以c o s θ=45=2x +2a5x,解得=a ,则|A F 1|=4a ,|A F 2|=2a .图2如图2,在әF 1A F 2中,由余弦定理,可得c o s θ=16a 2+4a 2-4c 216a2=45.整理,得5c 2=9a 2.故e =c a =355.点评:这类题目考查了学生 数学抽象 的核心素养.解决此类题的关键在于将数学符号语言和图形语言相互转化,利用图形的直观性,结合相关定义㊁公式即可快速解题.2数形结合思想在立体几何中的应用例3㊀(2022年新高考I 卷)已知正方体A B C D GA 1B 1C 1D 1,则(㊀㊀).A.直线B C 1与D A 1所成的角为90ʎB .直线B C 1与C A 1所成的角为90ʎC .直线B C 1与平面B B 1D 1D 所成的角为45ʎD.直线B C 1与平面A B C D 所成的角为45ʎ分析:此题可以通过建立空间直角坐标系来判断各选项是否正确,但计算较繁琐.解析:选项A ,B 的判断略.93∗基金项目:江汉大学研究生科研创新基金项目 基于新课标新课改背景下提升中学生数学学科核心素养的探究 ,项目编号为K Y C X J J 202350;教育部产学合作协调育人2022年第一批立项项目 基于P y t h o n 的大数据分析与应用课程混合教学模式探索 ,项目编号为220506627242057.学习指导2024年3月上半月㊀㊀㊀图3如图3所示,连接A1C1,设A1C1ɘB1D1=O,连接B O.由B B1ʅ平面A1B1C1D1,C1O⊂平面A1B1C1D1,得C1OʅB1B.因为C1OʅB1D1,B1D1ɘB1B=B1,所以C1Oʅ平面B B1D1D,所以øC1B O为直线B C1与平面B B1D1D的夹角.设正方体棱长为1,则C1O=22,B C1=2,于是s i nøC1B O=C1O B C1=12.所以直线B C1与平面B B1D1D所成的角为30ʎ,故选项C错误.因为C1Cʅ平面A B C D,所以øC1B C为直线B C1与平面A BC D的夹角,易得øC1B C=45ʎ,故选项D正确.综上所述,此题选:A B D.点评:本题主要考查立体几何中直线与直线的夹角㊁直线与平面的夹角,是对学生 逻辑推理 直观想象核心素养的考查.此题如果通过建系来计算,将比较复杂,耗时较长;若采取 传统 方法,结合图形并运用立体几何㊁三角函数相关知识,即可快速㊁直观作出判断.3数形结合思想在函数中的应用例4㊀(2021年全国乙卷)设aʂ0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则有(㊀㊀).A.a<b B.a>b C.a b<a2D.a b>a2分析:此题如果利用导数知识来求该函数的极大值点,再通过a与b的大小来判断选项将非常复杂.如果通过数形结合先考虑函数的零点情况,注意零点附近左右两侧函数值是否变号,结合极大值点的性质,对a进行分类画出该函数的图象再来判断选项将大大简化了问题,既直观又方便快捷[1].解析:若a=b,则f(x)=a(x-a)3为单调函数,无极值点,不符合题意,故aʂb.所以f(x)有x=a和x=b两个不同零点,且在x=a附近左右两侧不变号,在x=b附近左右两侧变号.因为x=a为函数f(x)=a(x-a)2(x-b)的极大值点,所以f(x)在x=a附近左右都小于0.①当a<0时,由x>b,f(x)ɤ0,画出f(x)的图象如图4所示.由b<a<0,得a b>a2.图4㊀㊀㊀图5②当a>0时,由x>b,f(x)>0,画出f(x)的图象如图5所示.由b>a>0,得a b>a2.综上a b>a2成立.故选:D.例5㊀(2021年新高考I卷)已知O为坐标原点,点A(1,0),P1(c o sα,s i nα),P2(c o sβ,-s i nβ),P3(c o s(α+β),s i n(α+β)),则(㊀㊀).A.|O P1ң|=|O P2ң|B.|A P1ң|=|A P2ң|C.O Aң O P3ң=O P1ң O P2ңD.O Aң O P1ң=O P2ң O P3ң分析:此题如果画出图形,利用数形结合思想解题,既直观又简捷.图6解析:如图6,可得|O P1ң|=|O P2ң|=1,故选项A正确.仅当α=-β时,|A P1ң|=|A P2ң|成立.故选项B错误.由O Aң O P3ң=|O Aң| |O P3ң|c o s(α+β),O P1ң O P2ң=|O P1ң| |O P2ң| c o s(α+β),|O Aң|=|O P3ң|=|O P1ң|=|O P2ң|=1,可知O Aң O P3ң=O P1ң O P2ң.故选项C正确.观察图象,易得‹O Aң,O P1ң›=α,‹O P2ң,O P3ң›=α+2β.故选项D错误.此题应选:A C.例6㊀(2021年新高考I卷)若过点(a,b)可以作曲线y=e x的两条切线,则(㊀㊀).A.e b<a B.e a<bC.0<a<e b D.0<b<e a分析:此题要求作出曲线y=e x的两条切线,通过几何图形进行直观想象,很容易判断各选项是否正确.解析:作出y=e x的图象.易得,若想作出切线,点(a,b)需在曲线y=e x的下方和x轴上方,如图7,即b<e a.图7㊀㊀图8但点(a,b)在x轴及其下方时,仅能作出一条切线,如图8.所以点(a,b)需在y轴上方,即b>0.综上,可得0<b<e a.故选:D.综上所述,在高考数学中利用数形结合思想解题往往可以起到简化计算㊁提高解题效率的作用.因此,平时教学中教师应通过数形结合思想丰富的展现形式不断对其进行渗透,促进学生数与形相互转换的能力,刺激学生学习数学的欲望,引导学生投入到数形结合分析的专题探究中[2],从而达到数学抽象思维具象化㊁发散化的教学目的,最终达到提升学生核心素养和全面发展的教育目的.参考文献:[1]常国良.数学教学中渗透直观想象素养的三重境界[J].教学与管理,2020(31):62G64.[2]李兆芹.探究数形结合思想如何有效运用于高中数学教学[J].数学学习与研究,2018(5):43.Z04。
高考数学数形结合数形结合思想

当a≠0时,函数y=ex+m-1(x≥0)和函数y=ax+b(x<0)都是定高义考域导航内的单调函数, 且函数y=ex+m-1(x≥0)的值域为[m,+∞),
则由题意得函数y=ax+b(x<0)的值域为(m,+∞),
b m,
ex m-1,x 0,
所以a
0,
则函数
f(x)=
ax
m,x
0,
其值域为[m,+∞), |f(x)|的大致图象如图所示,
4
4
当直线l经过点B时,有1=- 1 ×1+a,a5= .
4
4
由图可知,a∈
5 4
,时94 ,
函数y=f(x)的图象与l恰有两个交点.
另外,当直线l与曲线y= 1 ,x>1相切时,
x
恰有两个公共点,
此时a>0.
应用一 栏目索引 高考导航
联立得
y y
1,
x得
-1 x 4
=-
a,
1x+a1,即
x4
栏目索引
以形助数(数题形解)
以数辅形(形题数解)
高考导航
借助形的生动性和直观性来阐述 借助于数的精确性和规范性及严
数之间的关系,把数转化为形,即 密性来阐明形的某些属性,即以数
以形作为手段,数作为目的解决数 作为手段,形作为目的解决问题的
学问题的数学思想.
数学思想.
总纲目录 栏目索引
总纲目录
应用一 数形结合思想在解决方高程考导的航 根或函数 零点问题中的应用 应用二 数形结合思想在求解不等式或参数范 围中的应用 应用三 数形结合思想在向量中的应用 应用四 数形结合思想在解析几何中的应用
数形结合思想在解题中的应用

数形结合思想在解题中的应用主讲人:黄冈中学高级教师汤彩仙一、复习策略1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法.它可以使抽象的问题具体化,复杂的问题简单化.―数缺形时少直观,形少数时难入微‖,利用数形结合的思想方法可以深刻揭示数学问题的本质.2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出―数学科的命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查‖,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能.3.―对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合‖,用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础.4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是―以形示数‖,而解析几何的方程、斜率、距离公式,向量的坐标表示则是―以数助形‖,还有导数更是数形结合的产物,这些都为我们提供了―数形结合‖的知识平台.5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题.用好数形结合的方法,能起到事半功倍的效果,―数形结合千般好,数形分离万事休‖.二、典例分析例1.(07全国II) 在某项测量中,测量结果服从正态分布.若在内取值的概率为0.4,则在内取值的概率为.解:在某项测量中,测量结果服从正态分布N(1,2)(>0),正态分布图象的对称轴为x=1,在(0,1)内取值的概率为0.4,可知,随机变量ξ在(1,2)内取值的概率与在(0,1)内取值的概率相同,也为0.4,这样随机变量ξ在(0,2)内取值的概率为0.8.例2.(2007湖南)函数的图象和函数的图象的交点个数是()A.4B.3C.2D.1解:由图像易知交点共有3个.选B.例3.A. 1个B. 2个C. 3个D. 1个或2个或3个解:出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选(B).例4.曲线y=1+(-2≤x≤2)与直线y=r(x-2)+4有两个交点时,实数r的取值范围___________.解析:方程y=1+的曲线为半圆,y=r(x-2)+4为过(2,4)的直线.答案:(]例5.分析:.例6.求函数的最大值.解:由定义知1-x2≥0且2+x≠0,∴-1≤x≤1,故可设x=cosθ,θ∈[0,π],则有可看作是动点M(cosθ,sinθ)(θ∈[0,π])与定点A(-2,0)连线的斜率,而动点M的轨迹方程,θ∈[0,π],即x2+y2=1(y∈[0,1])是半圆.设切线为AT,T为切点,|OT|=1,|OA|=2.≤.∴,∴0≤kAM即函数的值域为[0,],故最大值为.点评:(1)有些代数式经变形后具备特定的几何意义,此时可考虑运用数形结合求解,如:比值——可考虑与斜率联系;根式——可考虑与距离联系;二元一次式——可考虑与直线的截距相联系.(2)本题也可如下转化:令Y=,X=2+x,则(X+2)2+Y2=1(Y≥0),求的最大值,即求半圆(X-1)2+Y2=1(Y≥0)上的点与原点连线斜率的最大值,易知.变式1解法一(代数法):,....解法二(几何法):........变式2分析:转化出一元二次函数求最值;倘若对式子平方处理,将会把问题复杂化,因此该题用常规解法显得比较困难,考虑到式中有两个根号,故可采用两步换元.解:.第一象限的部分(包括端点)有公共点,(如图).相切于第一象限时,u取最大值....例7.已知A(1,1)为椭圆=1内一点,F1为椭圆左焦点,P为椭圆上一动点.则|PF1|+|PA|的最大值为__________,最小值为_____________。
例谈数形结合思想在解题中的应用

中 的应 用
程组{ L 戈 : 十 : V 一 — 3 j : = 0 U 得
=
—
3
0 雪
曰
根据 函数的图像 ,讨论方程 的解 的个数是一种 重要 的思想方法 ,基本 思想是把方程两边 的代数式 看作是两个熟悉函数的表达式 ,然后在 同一坐标系 中作 出两个 函数的图像 ,图像 的交点个数 即为解 的 个数 。 例1( 2 0 1 2 辽 宁卷 ) 设 函数厂 ( ) ( R) 满 足 ) = 厂 【 ) , ) = 2 ) , 且 当 ∈[ 0 , 1 ] 时, ) , 又 函数 ( ) = l c o s ( ) I , 则 函数h ( ) ( ) - f ( ) 在
实数c 的取 值范围 是( 一 , 一 2 ] u f 一 1 , 一 ÷1 。 故选B 。
运用 数形结 合 的思想解 决一些 抽象 的数 学 问 题, 可起到事半功倍的效果 。 一方面借助“ 形” 的生动 f x + y 一 3≤0 性和 直观性来 阐述 “ 数” 的联系 , 另一 方面 , 也借助 点( , ' , ) 满足约束条件{ 【 一 2 一 3 ≤0 , 则实数m 的最大 “ 数” 的精确性 , 规范性及 严密性来 阐明“ 形” 的某些 ≥ 属性。重点是研究 “ 以形助数 ” , 在学习中要争取“ 胸 值为 ( ) 有成图” , “ 见数想图” , “ 依图判性” , 以开拓 自己解题
r 1 1
1 , 所 以m≤I , 故
/
- y 一 3 = 0
选B 。
一 2 r - 3 = 0 戈 :
三、 数 形 结 合 思 想 在 求 参 数 取 值 范 围 中 的 应 用
例3 ( 2 0 1 1 天 津卷 ) 对 实 数n 和b , 定 义 运 算
高考数学:数学解题七大基本思想方法

高考数学:数学解题七大基本思想方法为您准备“高考数学:数学解题七大基本思想方法”,欢迎阅读参考,更多有关内容请密切关注本网站高考栏目。
高考数学:数学解题七大基本思想方法数学学科有自己独特的思维模式,所以在解决数学问题时,就要以数学的基本方法去考虑,这样才能在最有效的时间内答对题目。
第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础注:高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。
高中高考数学数形结合思想分析与讲解

高考数学数形联合思想剖析与解说所谓数形联合,就是依据数与形之间的对应关系,经过数与形的相互转变来解决数学识题的思想,实现数形联合,常与以下内容相关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;((4)以几何元素和几何条件为背景成立起来的观点,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。
以“形”变“数” 固然形有形象、直观的长处,但在定量方面还一定借助代数的计算,特别是对于较复杂的“形”,不只要正确的把图形数字化,并且还要留意察看图形的特色,挖掘题目中的隐含条件,充足利用图形的性质或几何意义,把“形”正确表示成“数”的形式,进行剖析计算。
解题的基本思路:明确题中所给条件和所求的目标,剖析已给出的条件和所求目标的特色和性质,理解条件或目标在图形中的重要几何意义,用已学过的知识正确的将题顶用到的图形的用代数式表达出来,再依据条件和结论的联系,利用相应的公式或定理等。
“形”“数”互变“形”“数”互变是指在有些数学识题中不只是是简单的以“数”变“形”或以“形”变“数”而是需要“形”“数”相互变换,不只要想到由“形”的直观变成“数”的严实还要由“数”的严实联系到“形”的直观。
解决这种问题常常需要从已知和结论同时出发,仔细剖析找出内在的“形”“数”互变。
一般方法是看“形”思“数”、见“数”想“形”。
本质就是以“数”化“形”、以“形”变“数”的联合。
数形联合思想是一种可使复杂问题简单化、抽象问题详细化的常用的数学思想方法。
要想提高学生运用数形联合思想的能力,需要教师耐心仔细的指引学生学会联系数形联合思想、理解数形联合思想、运用数形联合思想、掌握数形联合思想。
基础自测:1.已知0 a 1,则方程 a x log a x 的实数根的个数为()A.1 个B.2 个C.3 个D.1 个或 2 个或 3 个2.设数集Mx m x m 3x n1,且 M , N 都是集合,数集 N x n4 3x 0 x 1 的子集,假如把 b a叫做会合x a x b 的“长度”,那么会合 M N 的长度的最小值为1B. 2 1 5A.3 C. D.3 12 123.若奇函数 f (x) 在 0, 上的增函数,有f ( 3) 0 ,则x x f ( x) 0 ()A. x x 3或3 x 0B. x 0 x 3或 x 3C. x x 3或x 3D. x 0 x 3或 3 x 04.当x, y知足条件x y 1时,变量u x 的取值范围是()y 3A. 3,3B. 1 , 1C. 1 , 1D. 1 , 13 3 2 3 3 2参照分析:1.分析在同一坐标系下,画出函数y=a|x|,y=|logax| 的图象,则图象有两个交点 .2.分析 由题意知 .会合 M 的“长度”为3,会合 N4的“长度”为1,而会合 {x|0 ≤ x ≤1} 的“长度”331,b为 1;设线段 AB=1 , a, a , b 可在线段44AB 上自由滑动, a , b 重叠部分的长度即为 M ∩ N.如图,明显当 a ,b 各自凑近 AB 两头时,重叠部分最短 ,其值为3 1 1 1 .4 312所以1 1 , 00 , 1.答案 Ck33综上所述,u1 ,1333.分析 由 f(x) 为奇函数且 f(-3)=0 ,得 f(3)=0.又 f(x) 在( 0,+∞ )上是增函数,据上条件做出知足题意的 y=f(x) 草图,如图,如右图中找出f(x) 与 x 异号的部分,能够看出 x · f(x) < 0 的解集为 {x|0 < x < 3 或 -3<x < 0}. 答案 D4.分析由题意在座标系下画出|x|+|y|≤ 1 的图象如右图暗影部分,①若 x=0 时, |y|≤ 1,此时 u=0; ②若 x ≠ 0 时,变量可当作点 A(0, 3)与可行域内的点 B 连线斜率 k 的 倒数 ,而 k ∈ (-∞ ,-3] ∪ [3,+ ∞),典型例题解说题型一代数问题“几何化”——以形助数【例 1】求函数 A 2m 46m 的值域。
高中数学四大数学思想

高中数学四大数学思想1.数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.2.分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决. 分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏. 如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等. 分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.3.函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多. 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系. 掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.4.转化与化归思想化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想. 转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题.转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学难点之数形结合思想数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合.应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决.运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.1.曲线y =1+24x - (–2≤x ≤2)与直线y =r (x –2)+4有两个交点时,实数r 的取值范围 .2.设f (x )=x 2–2ax +2,当x ∈[–1,+∞)时,f (x )>a 恒成立,求a 的取值范围.[例1]设A ={x |–2≤x ≤a },B ={y |y =2x +3,且x ∈A },C ={z |z =x 2,且x ∈A },若C ⊆B ,求实数a 的取值范围.命题意图:本题借助数形结合,考查有关集合关系运算的题目.属★★★★级题目. 知识依托:解决本题的关键是依靠一元二次函数在区间上的值域求法确定集合C .进而将C ⊆B 用不等式这一数学语言加以转化.错解分析:考生在确定z =x 2,x ∈[–2,a ]的值域是易出错,不能分类而论.巧妙观察图象将是上策.不能漏掉a <–2这一种特殊情形.技巧与方法:解决集合问题首先看清元素究竟是什么,然后再把集合语言“翻译”为一般的数学语言,进而分析条件与结论特点,再将其转化为图形语言,利用数形结合的思想来解决.解:∵y =2x +3在[–2, a ]上是增函数 ∴–1≤y ≤2a +3,即B ={y |–1≤y ≤2a +3}作出z =x 2的图象,该函数定义域右端点x =a 有三种不同的位置情况如下:①当–2≤a ≤0时,a 2≤z ≤4即C ={z |z 2≤z ≤4} 要使C ⊆B ,必须且只须2a +3≥4得a ≥21与–2≤a <0矛盾. ②当0≤a ≤2时,0≤z ≤4即C ={z |0≤z ≤4},要使C ⊆B ,由图可知:必须且只需⎩⎨⎧≤≤≥+20432a a解得21≤a ≤2 ③当a >2时,0≤z ≤a 2,即C ={z |0≤z ≤a 2},要使C ⊆B 必须且只需⎩⎨⎧>+≤2322a a a 解得2<a ≤3 ④当a <–2时,A =∅此时B =C =∅,则C ⊆B 成立. 综上所述,a 的取值范围是(–∞,–2)∪[21,3]. [例2]已知a cos α+b sin α=c , a cos β+b sin β=c (ab ≠0,α–β≠k π, k ∈Z )求证:22222cosba c +=-βα. 命题意图:本题主要考查数学代数式几何意义的转换能力.属★★★★★级题目. 知识依托:解决此题的关键在于由条件式的结构联想到直线方程.进而由A 、B 两点坐标特点知其在单位圆上.错解分析:考生不易联想到条件式的几何意义,是为瓶颈之一.如何巧妙利用其几何意义是为瓶颈之二.技巧与方法:善于发现条件的几何意义,还要根据图形的性质分析清楚结论的几 何意义,这样才能巧用数形结合方法完成解题.证明:在平面直角坐标系中,点A (cos α,sin α)与点B (cos β,sin β)是直线l :ax +by =c 与单位圆x 2+y 2=1的两个交点如图.从而:|AB |2=(cos α–cos β)2+(sin α–sin β)2 =2–2cos(α–β)又∵单位圆的圆心到直线l 的距离22||ba c d +=由平面几何知识知|OA |2–(21|AB |)2=d 2即 ba c d +==---2224)cos(221βα∴22222cosb ac +=-βα.应用数形结合的思想,应注意以下数与形的转化: (1)集合的运算及韦恩图 (2)函数及其图象(3)数列通项及求和公式的函数特征及函数图象 (4)方程(多指二元方程)及方程的曲线以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.一、选择题1.(★★★★)方程sin(x –4π)=41x 的实数解的个数是( ) A.2 B.3 C.4 D.以上均不对2.(★★★★★)已知f (x )=(x –a )(x –b )–2(其中a <b ),且α、β是方程f (x )=0的两根(α<β),则实数a 、b 、α、β的大小关系为( )A.α<a <b <βB.α<a <β<bC.a <α<b <βD.a <α<β<b 二、填空题3.(★★★★★)(4cos θ+3–2t )2+(3sin θ–1+2t )2,(θ、t 为参数)的最大值是 .4.(★★★★★)已知集合A ={x |5–x ≥)1(2-x },B ={x |x 2–ax ≤x –a },当A B 时,则a 的取值范围是 .三、解答题5.(★★★★)设关于x 的方程sin x +3cos x +a =0在(0,π)内有相异解α、β. (1)求a 的取值范围; (2)求tan(α+β)的值.6.(★★★★)设A ={(x ,y )|y =222x a -,a >0},B ={(x ,y )|(x –1)2+(y –3)2=a 2,a >0},且A ∩B ≠∅,求a 的最大值与最小值.7.(★★★★)已知A (1,1)为椭圆5922y x +=1内一点,F 1为椭圆左焦点,P 为椭圆上一动点.求|PF 1|+|P A |的最大值和最小值.8.(★★★★★)把一个长、宽、高分别为25 cm 、20 cm 、5 cm 的长方体木盒从一个正方形窗口穿过,那么正方形窗口的边长至少应为多少?参 考 答 案●难点磁场1.解析:方程y =1+24x -的曲线为半圆,y =r (x –2)+4为过(2,4)的直线.答案:(43,125] 2.解法一:由f (x )>a ,在[–1,+∞)上恒成立⇔x 2–2ax +2–a >0在[–1,+∞)上恒成立.考查函数g (x )=x 2–2ax +2–a 的图象在[–1,+∞]时位于x 轴上方.如图两种情况:不等式的成立条件是:(1)Δ=4a 2–4(2–a )<0⇒a ∈(–2,1)(2)⇒⎪⎩⎪⎨⎧>--<≥∆0)1(10g a a ∈(–3,–2],综上所述a ∈(–3,1). 解法二:由f (x )>a ⇔x 2+2>a (2x +1)令y 1=x 2+2,y 2=a (2x +1),在同一坐标系中作出两个函数的图象. 如图满足条件的直线l 位于l 1与l 2之间,而直线l 1、l 2对应的a值(即直线的斜率)分别为1,–3,故直线l 对应的a ∈(–3,1). ●歼灭难点训练一、1.解析:在同一坐标系内作出y 1=sin(x –4π)与y 2=41x 的图象如图.答案:B2.解析:a ,b 是方程g (x )=(x –a )(x –b )=0的两根,在同一坐标系中作出函数f (x )、g (x )的图象如图所示:答案:A二、3.解析:联想到距离公式,两点坐标为A (4cos θ,3sin θ),B (2t –3,1–2t ) 点A 的几何图形是椭圆,点B 表示直线. 考虑用点到直线的距离公式求解. 答案:227 4.解析:解得A ={x |x ≥9或x ≤3},B ={x |(x –a )(x –1)≤0},画数轴可得. 答案:a >3三、5.解:①作出y =sin(x +3π)(x ∈(0,π))及y =–2a 的图象,知当|–2a |<1且–2a ≠23时,曲线与直线有两个交点,故a ∈(–2,–3)∪(–3,2).②把sin α+3cos α=–a ,sin β+3cos β=–a 相减得tan 332=+βα, 故tan(α+β)=3.6.解:∵集合A 中的元素构成的图形是以原点O 为圆心,2a 为半径的半圆;集合B 中的元素是以点O ′(1,3)为圆心,a 为半径的圆.如图所示∵A ∩B ≠∅,∴半圆O 和圆O ′有公共点. 显然当半圆O 和圆O ′外切时,a 最小2a +a =|OO ′|=2,∴a min =22–2当半圆O 与圆O ′内切时,半圆O 的半径最大,即2a 最大. 此时2a –a =|OO ′|=2,∴a max =22+2.7.解:由15922=+y x 可知a =3,b =5,c =2,左焦点F 1(–2,0),右焦点F 2(2,0).由椭圆定义,|PF 1|=2a –|PF 2|=6–|PF 2|,∴|PF 1|+|P A |=6–|PF 2|+|P A |=6+|P A |–|PF 2| 如图:由||P A |–|PF 2||≤|AF 2|=2)10()12(22=-+-知–2≤|P A |–|PF 2|≤2.当P 在AF 2延长线上的P 2处时,取右“=”号; 当P 在AF 2的反向延长线的P 1处时,取左“=”号. 即|P A |–|PF 2|的最大、最小值分别为2,–2. 于是|PF 1|+|P A |的最大值是6+2,最小值是6–2. 8.解:本题实际上是求正方形窗口边长最小值.由于长方体各个面中宽和高所在的面的边长最小,所以应由这个面对称地穿过窗口才能使正方形窗口边长尽量地小.如图:设AE =x ,BE =y ,则有AE =AH =CF =CG =x ,BE =BF =DG =DH =y∴⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+=+225210520222222y x y y x x ∴2225225210=+=+=y x AB .。