fft_原理详解
fft原理通俗易懂

fft原理通俗易懂
快速傅里叶变换(Fast Fourier Transform,FFT)是一种数字信
号处理技术,用于将时域信号转换为频域信号的高效算法。
这意味着
可以将一个连续变化的时域信号变换成一系列的不同频率的频域信号,进而用以检测特定频率所对应的信号分量,对特定频率的信号成分进
行测量以及统计分析。
fft原理非常简单,根据傅里叶变换的原理,任何时域信号都可以
表示为可见太阳的不同的 sin 和 cos 激励函数的正弦波之和组成的
复合函数,并且由于 sin 和 cos 的频率有所不同,所以时域信号会
被分解为不同的频率分量。
而快速傅立叶变换就是一种技术,可以把
这些 sin 和 cos 组合到一起,使其有效地结合在一起,从而及时得
到这些不同频率分量的信号分布,也就是所谓的频谱,根据不同的频
率分量从而获得信号的性质。
FFT 是一种精确、快速的数字信号处理方法,可以用来提取信号
和特征,fft 的本质就是一种直接的数值计算,将时域信号变换为频
域信号,这样能够实现从高频段到低频段的提取,从而更容易检测和
识别出信号中的特殊特征。
它的实施方式明显优于傅里叶变换,可以
减少实现时间和存储空间的占用,这使得 FFT 技术在各类社会应用中
得到了广泛应用。
FFT算法详解

FFT算法详解FFT (Fast Fourier Transform) 是一种高效的离散傅里叶变换算法,用于将时域信号转换为频域信号。
它在信号处理、图像处理、通信领域等具有广泛的应用。
本文将详细介绍FFT算法的原理和实现。
一、傅里叶变换的基本原理傅里叶变换是一种将信号从时域转换到频域的方法。
它将时域信号分解成多个不同频率的正弦和余弦函数的叠加。
傅里叶变换的基本公式为:F(k) = Σ_{n=0}^{N-1} f(n)e^{-2πikn/N}其中,F(k)是频域信号的复数表示,f(n)是时域信号的复数表示,N是信号长度,k是频率。
二、傅里叶变换的问题传统的傅里叶变换算法的时间复杂度为O(N^2),计算量较大,不适用于实时处理大型信号。
FFT算法通过分治的思想,将DFT(Digital Fourier Transform)问题转化为多个子问题,从而降低了计算复杂度。
三、蝶形运算蝶形运算的公式为:y_0=x_0+W_N^k*x_1y_1=x_0-W_N^k*x_1其中,x_0、x_1是输入,y_0、y_1是输出,W_N^k是旋转因子,N是信号长度,k是频率。
四、FFT算法的步骤1.将输入信号分成偶数下标和奇数下标的两个子序列。
2.对两个子序列分别进行FFT变换,得到两个子序列的频域表示。
3.将两个子序列的频域表示合并成完整的频域信号。
4.重复上述步骤,直到得到最终的频域信号。
五、FFT算法的实现1.初始化输入信号和旋转因子。
2.将输入信号按照偶数下标和奇数下标分成两个子序列。
3.对两个子序列分别进行FFT变换,递归调用FFT函数。
4.将两个子序列的频域表示合并成完整的频域信号。
5.返回最终的频域信号。
总结:FFT算法是一种高效的离散傅里叶变换算法,通过分治的思想将DFT问题分解为多个子问题,从而降低了计算复杂度。
它在信号处理、图像处理、通信领域等有着广泛的应用。
掌握FFT算法的原理和实现对于理解信号处理技术和提高算法效率具有重要意义。
简述fft变换的原理

简述fft变换的原理
FFT(快速傅里叶变换)是一种用于计算离散傅里叶变换(DFT)的高效算法。
它能够将离散序列从时域(时间域)转换到频域(频率域),在信号处理、图像处理、通信等领域具有广泛的应用。
FFT通过降低傅里叶变换的计算复杂度,大大提高了计算效率。
FFT的原理可以简述如下:
1.傅里叶变换:傅里叶变换是将时域信号转换为频域信号的方法,它将信号分解为不同频率的正弦和余弦成分。
傅里叶变换的公式表达复杂,计算复杂度较高。
2.分治策略: FFT的核心思想是分治法,将原始信号分成若干子信号,分别计算它们的DFT,然后通过合并这些DFT的结果得到原始信号的DFT。
这样,FFT将原本需要O(N^2)次乘法和加法运算的傅里叶变换降低到了O(N log N)次运算。
3.蝶形运算:在FFT的计算过程中,采用了一种称为“蝶形运算”的策略,将多项式的乘法和加法运算通过重新排列计算,从而减少计算量。
蝶形运算实际上是一个特定的运算单元,它将两个复数相乘并进行加法操作。
4.迭代计算: FFT算法是递归性质的,它将原始信号不断分解为规模更小的子信号,然后逐步合并计算出最终的DFT。
这个过程不断迭代,直至计算出所有频率成分。
总之,FFT通过巧妙的分治策略和蝶形运算,将原本计算复杂度较高的傅里叶变换转化为高效的计算过程,使得在信号处理和频谱分析等领域中,能够更快速、有效地进行频域转换。
1/ 1。
fft的计算原理

fft的计算原理FFT(Fast Fourier Transform)是一种高效地计算离散傅里叶变换(Discrete Fourier Transform, DFT)的算法。
FFT能够将一个时域上的离散信号转换到频域上,并可以用于信号分析、滤波、图像处理以及编码等领域。
FFT的计算原理可以从两个角度来讲解:一是从离散傅里叶变换(DFT)的定义出发,二是从FFT的具体计算过程中各个步骤的推导和实现。
首先,从DFT的定义出发,对一个离散信号x(n)进行DFT计算,可以得到其频域表示X(k),表示为:X(k) = Σ(x(n) * exp(-j2πkn/N))其中,N为信号的长度,k为频域采样点的索引,n为时域采样点的索引。
直接按照DFT的定义计算的复杂度是O(N^2),当信号长度很大时,计算量非常大。
FFT算法通过对DFT的变换矩阵进行分解,将复杂度降低到O(NlogN)。
然后,从FFT的具体计算过程中各个步骤的推导和实现来看。
以下是常见的快速傅里叶变换算法,即Cooley-Tukey算法的计算过程:1. 将信号x(n)分为两个部分:偶数索引部分x_e(n)和奇数索引部分x_o(n),分别由原信号的偶数索引和奇数索引采样得到。
2. 对x_e(n)和x_o(n)分别进行FFT计算,得到频域表示X_e(k)和X_o(k)。
3. 将得到的频域表示X_e(k)和X_o(k)按照以下公式合并得到最终的频域表示X(k):X(k) = X_e(k) + W_N^k * X_o(k)其中,W_N^k = exp(-j2πk/N)为旋转因子,可由欧拉公式得到。
4. 重复以上步骤,直到计算得到所有频域采样点的值。
以上就是FFT算法的基本原理和计算过程。
通过对信号进行分解和合并的方式,FFT算法能够大大减少计算量,快速地计算得到离散信号的频域表示。
后续还有一些对FFT算法进行改进和优化的方法,如快速傅里叶变换的再加工算法(Radix-2 FFT Algorithm)以及快速余弦和正弦变换(Fast Cosine and Sine Transform)等。
fft原理介绍

fft原理介绍《FFT原理介绍》1. 引言你有没有想过,当我们听音乐、看视频或者处理图像的时候,背后有一个超级厉害的数学工具在默默发挥作用呢?这个工具就是快速傅里叶变换(FFT)。
今天啊,咱们就来一起深入了解一下FFT的原理,从它最基础的概念,到它是怎么运行的,再到它在实际生活和高端技术中的应用,还有那些容易让人迷糊的地方,咱们都要搞个清清楚楚。
2. 核心原理2.1基本概念与理论背景FFT其实是一种算法,它是基于傅里叶变换来的。
傅里叶变换呢,是由法国的数学家傅里叶提出来的。
这老兄就像是一个魔法厨师,他发现任何复杂的信号啊,就好比是一道复杂的菜肴,都可以分解成不同频率的简单成分,就像菜肴可以分解成不同的食材一样。
一开始傅里叶变换的计算可复杂了,计算量超级大。
就好像你要从一堆沙子里一颗一颗挑出特定颜色的珠子,效率特别低。
后来呢,人们就发明了FFT算法,这个算法就像是一个超级筛子,能够快速地把那些珠子筛出来,大大提高了计算的速度。
2.2运行机制与过程分析咱们来简单说说FFT的运行过程。
假设我们有一个信号,这个信号就像是一群人在不同时间发出的声音,杂乱无章。
FFT首先把这个信号分成很多小段,就好像把这群人按照一定的规则分成了几个小组。
然后呢,FFT算法会对每个小段进行计算,这个计算过程有点像分析每个小组里人的声音特点。
比如说,是高音多还是低音多,声音是持续的还是断断续续的。
最后,把这些小段的计算结果组合起来,就得到了这个信号在不同频率下的组成情况。
说白了,就像是把一群人的声音按照高低音、长短音等特点进行了分类整理。
3. 理论与实际应用3.1日常生活中的实际应用在我们的日常生活中,FFT无处不在。
就拿音乐播放器来说吧,当你播放一首歌曲的时候,播放器里面的软件可能就用到了FFT。
因为音乐也是一种信号,里面有各种不同的音符,对应着不同的频率。
FFT可以把音乐信号分解,然后根据不同的频率进行调整,比如说增强低音或者高音,这样我们听到的音乐就更加符合我们的喜好了。
fft频谱原理

FFT(快速傅里叶变换)是一种用于将时域信号转换为频域表示的算法。
它是通过将信号分解为不同频率的正弦和余弦成分来实现的。
以下是FFT频谱原理的简要说明:
1.傅里叶分析:傅里叶分析是将一个周期性信号分解为许多不同频率的正弦和余弦波
的过程。
这些正弦和余弦波的幅度和相位表示了信号在不同频率上的贡献。
2.时域与频域:时域表示信号随时间变化的振幅。
频域表示信号在不同频率上的振幅
特性。
傅里叶变换将信号从时域转换为频域,以便更好地理解信号的频率分布。
3.快速傅里叶变换(FFT):FFT是一种高效计算傅里叶变换的算法。
它利用了信号的
对称性和周期性,通过减少计算量来加速傅里叶变换的过程。
4.频谱表示:FFT计算出信号在不同频率上的振幅,生成一个频谱图。
频谱图显示了
信号中各个频率成分的相对强度和相位关系。
频谱图通常以频率(横轴)和振幅或功率(纵轴)表示。
5.应用:FFT被广泛应用于信号处理、音频处理、图像处理等领域。
它可以用于频谱
分析、滤波、降噪、频率识别等任务。
通过FFT频谱分析,我们可以了解信号的频率成分和能量分布,从而对信号进行更深入的分析和处理。
fft 原理

fft 原理
FFT(快速傅里叶变换)是一种计算机算法,它可以将一个时域信号(如一段音频或图像)转换为其频域表示,并且在计算效率上相对于传统傅里叶变换算法有较大优势。
它是由James Cooley和John Tukey在1965年发明的,被广泛应用于信号处理、图像处理、音频处理、视频压缩、计算机图形学等领域。
FFT原理基于傅里叶变换,它将时域信号转换为频域信号,将一段时间内的信号分解成各个频率成分,这样就可以分析信号的频率、频谱等特征。
快速傅里叶变换通过将N点离散傅里叶变换(DFT)分解为多组较小的DFT进行计算,从而大大减少了计算量。
通常使用快速傅里叶变换算法对信号进行频谱分析。
FFT算法的核心思想是将一个N点序列分成两个N/2点序列,分别进行DFT变换,然后将结果合并,得到一个N点DFT的结果。
这个过程可以递归进行下去,直到变成两个1点序列的DFT变换。
将所有小的DFT结果合并起来就得到了最终的DFT结果。
这个过程的时间复杂度为O(NlogN),比传统的DFT算法的时间复杂度O(N^2)快得多。
FFT算法在分析音频、图像等信号时具有广泛的应用,如音频频率分析、图像噪声滤波、图像边缘检测等。
此外,FFT算法也是很多信号处理算法的核心组成部分,如数字滤波、信号压缩等。
快速傅里叶变换(FFT)的原理及公式

快速傅里叶变换(FFT)的原理及公式原理及公式非周期性连续时间信号x(t)的傅里叶变换可以表示为式中计算出来的是信号x(t)的连续频谱。
但是,在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT)。
因此需要利用离散信号x(nT)来计算信号x(t)的频谱。
有限长离散信号x(n),n=0,1,…,N-1的DFT定义为:可以看出,DFT需要计算大约N2次乘法和N2次加法。
当N较大时,这个计算量是很大的。
利用WN的对称性和周期性,将N点DFT分解为两个N/2点的DFT,这样两个N/2点DFT总的计算量只是原来的一半,即(N/2)2+(N/2)2=N2/2,这样可以继续分解下去,将N/2再分解为N/4点DFT等。
对于N=2m点的DFT都可以分解为2点的DFT,这样其计算量可以减少为(N/2)log2N 次乘法和Nlog2N次加法。
图1为FFT与DFT-所需运算量与计算点数的关系曲线。
由图可以明显看出FFT算法的优越性。
将x(n)分解为偶数与奇数的两个序列之和,即x1(n)和x2(n)的长度都是N/2,x1(n)是偶数序列,x2(n)是奇数序列,则其中X1(k)和X2(k)分别为x1(n)和x2(n)的N/2点DFT。
由于X1(k)和X2(k)均以N/2为周期,且WN k+N/2=-WN k,所以X(k)又可表示为:上式的运算可以用图2表示,根据其形状称之为蝶形运算。
依此类推,经过m-1次分解,最后将N点DFT分解为N/2个两点DFT。
图3为8点FFT的分解流程。
FFT算法的原理是通过许多小的更加容易进行的变换去实现大规模的变换,降低了运算要求,提高了与运算速度。
FFT不是DFT的近似运算,它们完全是等效的。
关于FFT精度的说明:因为这个变换采用了浮点运算,因此需要足够的精度,以使在出现舍入误差时,结果中的每个组成部分的准确整数值仍是可辨认的。
为了FFT的舍入误差,应该允许增加几倍log2(log2N)位的二进制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FFT算法FFT是离散傅立叶变换的快速算法,可以将一个信号变换到频域。
有些信号在时域上是很难看出什么特征的,但是如果变换到频域之后,就很容易看出特征了。
这就是很多信号分析采用FFT变换的原因。
另外,FFT可以将一个信号的频谱提取出来,这在频谱分析方面也是经常用的。
虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。
现在圈圈就根据实际经验来说说FFT结果的具体物理意义。
一个模拟信号,经过ADC采样之后,就变成了数字信号。
采样定理告诉我们,采样频率要大于信号频率的两倍,这些我就不在此罗嗦了。
采样得到的数字信号,就可以做FFT变换了。
N个采样点,经过FFT之后,就可以得到N个点的FFT结果。
为了方便进行FFT运算,通常N取2的整数次方。
假设采样频率为Fs,信号频率F,采样点数为N。
那么FFT之后结果就是一个为N点的复数。
每一个点就对应着一个频率点。
这个点的模值,就是该频率值下的幅度特性。
具体跟原始信号的幅度有什么关系呢假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。
而第一个点就是直流分量,它的模值就是直流分量的N倍。
而每个点的相位呢,就是在该频率下的信号的相位。
第一个点表示直流分量(即0Hz),而最后一个点N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,也可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被N-1个点平均分成N等份,每个点的频率依次增加。
例如某点n所表示的频率为:Fn=(n-1)*Fs/N。
由上面的公式可以看出,Fn所能分辨到频率为为Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。
1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到。
如果要提高频率分辨力,则必须增加采样点数,也即采样时间。
频率分辨率和采样时间是倒数关系。
假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是An=根号a*a+b*b,相位就是Pn=atan2(b,a)。
根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为:An/(N/2)*cos(2*pi*Fn*t+Pn),即2*An/N*cos(2*pi*Fn*t+Pn)。
对于n=1点的信号,是直流分量,幅度即为A1/N。
由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。
好了,说了半天,看着公式也晕,下面圈圈以一个实际的信号来做说明。
假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为的交流信号。
用数学表达式就是如下:S=2+3*cos(2*pi*50*t-pi*30/180)+*cos(2*pi*75*t+pi*90/180)式中cos参数为弧度,所以-30度和90度要分别换算成弧度。
我们以256Hz的采样率对这个信号进行采样,总共采样256点。
按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。
我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。
实际情况如何呢我们来看看FFT的结果的模值如图所示。
图1 FFT结果从图中我们可以看到,在第1点、第51点、和第76点附近有比较大的值。
我们分别将这三个点附近的数据拿上来细看:1点: 512+0i2点: -3点: -50点: -51点: - 192i52点: -75点:76点: + 192i77点: +很明显,1点、51点、76点的值都比较大,它附近的点值都很小,可以认为是0,即在那些频率点上的信号幅度为0。
接着,我们来计算各点的幅度值。
分别计算这三个点的模值,结果如下:1点: 51251点:38476点:192按照公式,可以计算出直流分量为:512/N=512/256=2;50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;75Hz信号的幅度为192/(N/2)=192/(256/2)=。
可见,从频谱分析出来的幅度是正确的。
然后再来计算相位信息。
直流信号没有相位可言,不用管它。
先计算50Hz信号的相位,atan2(-192, =,结果是弧度,换算为角度就是180*/pi=。
再计算75Hz信号的相位,atan2(192, =弧度,换算成角度就是180*pi=。
可见,相位也是对的。
根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。
总结:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。
相位的计算可用函数atan2(b,a)计算。
atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。
要精确到xHz,则需要采样长度为1/x 秒的信号,并做FFT。
要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。
解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。
具体的频率细分法可参考相关文献。
[附录:本测试数据使用的matlab程序]实例一:S=2+3cos(2pi*50t-pi/6)+(2pi*75t+pi/2)close all; %先关闭所有图片Adc=2; %直流分量幅度A1=3; %频率F1信号的幅度A2=; %频率F2信号的幅度F1=50; %信号1频率(Hz)F2=75; %信号2频率(Hz)Fs=256; %采样频率(Hz)P1=-30; %信号1相位(度)P2=90; %信号相位(度)N=256; %采样点数t=[0:1/Fs:N/Fs]; %采样时刻%信号S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180); %显示原始信号plot(S);title('原始信号');figure;Y = fft(S,N); %做FFT变换Ayy = (abs(Y)); %取模plot(Ayy(1:N)); %显示原始的FFT模值结果title('FFT 模值');figure;Ayy=Ayy/(N/2); %换算成实际的幅度Ayy(1)=Ayy(1)/2;F=([1:N]-1)*Fs/N; %换算成实际的频率值plot(F(1:N/2),Ayy(1:N/2)); %显示换算后的FFT模值结果title('幅度-频率曲线图');figure;Pyy=[1:N/2];for i=1:N/2Pyy(i)=phase(Y(i)); %计算相位Pyy(i)=Pyy(i)*180/pi; %换算为角度end;plot(F(1:N/2),Pyy(1:N/2)); %显示相位图title('相位-频率曲线图');实例一:S=1+(2pi*20t)+(2pi*60t)close all; %先关闭所有图片Adc=1; %直流分量幅度A1=; %频率F1信号的幅度A2=; %频率F2信号的幅度F1=20; %信号1频率(Hz)F2=60; %信号2频率(Hz)Fs=256; %采样频率(Hz)P1=0; %信号1相位(度)P2=0; %信号相位(度)N=256; %采样点数t=[0:1/Fs:N/Fs]; %采样时刻%信号S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180); %显示原始信号plot(S);title('原始信号');figure;Y = fft(S,N); %做FFT变换Ayy = (abs(Y)); %取模plot(Ayy(1:N)); %显示原始的FFT模值结果title('FFT 模值');figure;Ayy=Ayy/(N/2); %换算成实际的幅度Ayy(1)=Ayy(1)/2;F=([1:N]-1)*Fs/N; %换算成实际的频率值plot(F(1:N/2),Ayy(1:N/2)); %显示换算后的FFT模值结果title('幅度-频率曲线图');Pyy=[1:N/2];for i=1:N/2Pyy(i)=phase(Y(i)); %计算相位Pyy(i)=Pyy(i)*180/pi; %换算为角度end;plot(F(1:N/2),Pyy(1:N/2)); %显示相位图title('相位-频率曲线图');实例三close all; %先关闭所有图片Adc=2; %直流分量幅度A1=3; %频率F1信号的幅度F1=50; %信号1频率(Hz)P1=-30; %信号1相位(度)A2=; %频率F2信号的幅度F2=75; %信号2频率(Hz)P2=90; %信号相位(度)Fs=512; %采样频率(Hz)N=1024; %采样点数t=[0:1/Fs:(N-1)/Fs]; %采样时刻S=Adc+A1*cos(2*pi*F1*t+pi*P1/180)+A2*cos(2*pi*F2*t+pi*P2/180); %% 显示原始信号plot(S);title('原始信号');%% FFT变换后figure;Y = fft(S,N); %做FFT变换Ayy = (abs(Y)); %取模plot(Ayy(1:N)); %显示原始的FFT模值结果title('FFT 模值');%% 幅度频率曲线图figure;Ayy=Ayy/(N/2); %换算成实际的幅度Ayy(1)=Ayy(1)/2;F=([1:N]-1)*Fs/N; %换算成实际的频率值plot(F(1:N/2),Ayy(1:N/2)); %显示换算后的FFT模值结果title('幅度-频率曲线图');%% 相位频率曲线图figure;Pyy=[1:N/2];for i=1:N/2Pyy(i)=phase(Y(i)); %计算相位Pyy(i)=Pyy(i)*180/pi; %换算为角度end;plot(F(1:N/2),Pyy(1:N/2)); %显示相位图title('相位-频率曲线图');实例四关于FFT的相位谱(2011-07-13 11:41:56)转载▼分类:机械技术标签:相位谱正弦信号延拓进行it先看一下我收到的程序,作为研究对象的信号是这样产生的:T=128;N=128;dt=T/N;t=dt*(1:N);x=2*cos(2*t-pi/4);...(我觉得这个信号存在一点问题,因为t是从1开始的,所以它的初相应该和-pi/4有点差别吧。