江苏大数学分析--格林公式.曲线积分与路径无关性共44页

合集下载

格林(Green)公式曲线积分与路径无关的条

格林(Green)公式曲线积分与路径无关的条
数学与其他学科的交叉应用
格林公式在数学物理方程、电动力学、流体力学等领域有 广泛的应用,是连接数学与物理世界的重要桥梁。
格林公式的历史背景
发展历程
格林公式是微积分学中的重要内 容,它的起源可以追溯到19世纪 上半叶,当时数学家开始研究如 何将线积分转化为面积分的问题。
贡献人物
乔治·格林(George Green)在 1830年代对这一领域做出了重大 贡献,他通过引入所谓的“格林 函数”来研究平面上向量场的性 质。
格林公式在解决曲线积分问题中的优势
简化计算过程
通过格林公式,可以将复杂的曲线积分问题 转化为面积分问题,从而简化计算过程。
提供解决问题的新思路
格林公式为解决曲线积分问题提供了新的思 路和方法,有助于拓展解题思路。
04
曲线积分与路径无关的应用实例
物理学中的磁场问题
磁场线闭合
在磁场中,如果曲线积分的路径无关,那么磁场线必然是闭合的。这意味着磁场没有源点或漏点,即不存在磁单 极。
磁通量不变
在磁场中,如果曲线积分的路径无关,那么通过某一区域的磁通量将保持不变。这意味着磁场不会因为路径的改 变而发生改变。
电学中的电场问题
电势差恒定
在电场中,如果曲线积分的路径无关,那么电势差将保持恒定。这意味着电场不会因为路径的改变而 发生改变。
电场线闭合
在电场中,如果曲线积分的路径无关,那么电场线必然是闭合的。这意味着电场没有源点或漏点,即 不存在电荷聚集点。
通过格林公式,可以判断一个曲线积分是否 与路径无关,为解决相关问题提供依据。
格林公式与曲线积分的关系证明
利用向量场的散度性质
通过向量场的散度性质,可以推导出格林公 式,从而证明其与曲线积分的关系。

格林公式与路径无关的条件

格林公式与路径无关的条件

格林公式与路径无关的条件
格林公式是求解曲线上某一点极线的公式,它描述了一个函数$f(x,y)$ 在两个坐标系 $x$ 和 $y$ 之间的变换关系。

与路径无关的条件指的是在求解格林公式时,需要满足以下条件:
1. 曲线在两个坐标系之间的变换是线性的。

即对于任意两条曲线,它们变换后的位置是线性相关的。

2. 坐标系是平移不变的。

即当曲线在两个坐标系之间移动时,坐标系的平移量是不变的。

3. 极线是经过曲线上某一点的邻域内最短径路的直线。

即当曲线上一点被移动时,它的极线经过该点所连接的邻域内任意一点,且这条直线是曲线上某一点的最短径路。

如果曲线在两个坐标系之间的变换满足以上三个条件,那么可以用格林公式求解曲线上某一点的极线。

需要注意的是,如果曲线在两个坐标系之间的变换不满足以上三个条件,则格林公式将无法正确地求解极线。

高等数学第三节 格林公式 平面上曲线积分与路径无关条件

高等数学第三节 格林公式 平面上曲线积分与路径无关条件
D Q x P ydLPdxQ dy, ①
其中曲线积分是按沿L的正向计算的,公式 ①
称为格林公式.
其中曲线积分是按沿L的正向计算的,公式 ①
称为格林公式.
y
C y = 2(x) L
B D
A y =1(x)
E
Oa
bx
证明 假定穿过区域 D 内部且平行于坐标轴的直
线与 D 的边界曲线的交点不超过两个 (如图所示).
于是根据二重积分
的计算法,有

D
P y
d

b a

12((xx))Py dydx
y
C y = 2(x) L
D
B
ቤተ መጻሕፍቲ ባይዱ
A y =1(x)
E
Oa
bx
a b{P [x,2(x) ]P [x,1(x)d ]x.}
第十一章 曲线积分与曲面积分
*第三节 格林公式 平面上曲线积分与路径无 关的条件
一、格林(Green)公式
二、平面上曲线积分与路径 无关的条件
一、格林(Green)公式
定理(格林定理) 设 D 是以分段光滑曲线 L 为边界的平面有界闭区域,函数 P(x, y) 及 Q(x, y) 在 D 上具有一阶连续的偏导数,则
解 显然,用这段路径来计算是很复杂且困难.
能否换一条路径呢?为此计P算 ,Q. 其中 P(x, y) y x
= x2y + 3xex, Q(x,y)1x3ysiny,
3

Px2Q.
y
x
显P(然 x,y)Q ,(x,y) ,P,Q在 全D 平 上面 连 . 域 续 y x
mdmπa2mπa2.
D

格林公式、曲线积分与路径无关的条件

格林公式、曲线积分与路径无关的条件
下页
定理3
设函数P(x y)及Q(x y)在单连通域G内具有一阶连续偏导
数 则P(x y)dxQ(x y)dy在G内为某一函数u(x y)的全微分的
充分必要条件是等式
在G内恒成立 >>>
P Q y x
原函数
如果函数u(x y)满足du(x y)P(x y)dxQ(x y)dy 则函数
首页
三、二元函数的全微分求积
二元函数u(x y)的全微分为 du(x y)ux(x y)dxuy(x y)dy
表达式P(x y)dxQ(x y)dy与函数的全微分有相同的结构 但它未必就是某个函数的全微分
那么在什么条件下表达式P(x y)dxQ(x y)dy是某个二元 函数u(x y)的全微分呢?当这样的二元函数存在时 怎样求出 这个二元函数呢?
解 记L所围成的闭区域为D
当(0 0)D时 由格林公式得
L
x
dy x2
ydx y2

0

提示:
这里
P

y x2 y2

Q
x2
x
y2

当x2y20时 有
Q x

y2 x2 (x2 y2)2

P y

下页
例 4
计算
L
xdy x2
ydx y2

线
L的方向为逆时针方向

L
xdy x2
ydx y2

0
是否一定成立?
提示: >>>
下页
L
Pdx
Qdy与路径无关

L
Pdx
Qdy

0

3格林(Green)公式曲线积分与路径无关的条件

3格林(Green)公式曲线积分与路径无关的条件
ydx
A
例 4
计算抛物线(x y)
2
ax ( a 0 ) 与 x 轴 所
M
围成的面积.

y
ONA 为 直 线 y 0 .
A ( a ,0 )
曲 线 AMO 由 函 数
N
ax x , x [ 0 , a ] 表 示 ,
1 xdy 2 L ydx
A

1
2 ONA

L2 Pdx Qdy

L Pdx Qdy 0.
L L1 ( L2 )
定理 21.12 设开区域 D 是一个单连通闭区域, 函 数 P ( x , y ), Q ( x , y ) 在 D 内具有一阶连续偏导数 , 则以下 四个条件等价:
(i )沿D 内任一按段光滑封闭曲线L,有

D
Q x
d
dxdy
c
d
dy


2
( y)
Q x
1 ( y )
dx



c
Q ( 2 ( y ), y ) dy
Q ( x , y ) dy
Q ( x , y ) dy
c
d
Q ( 1 ( y ), y ) dy
y
CBE
CBE
CAE
EAC
Q ( x , y ) dy
)( Pdx Qdy )
1

L Pdx
Qdy
( L 1 , L 2 , L 3 对 D 来说为正方向
沟通了沿闭曲线的积分与
)
格林公式的实质:
二重积分之间的联系.
便于记忆形式:

数学分析21.3格林公式、曲线积分与路线的无关性(含习题及参考答案)

数学分析21.3格林公式、曲线积分与路线的无关性(含习题及参考答案)

第二十一章 重积分3格林公式、曲线积分与路线的无关性一、格林公式概念:当区域D 的边界L 由一条或几条光滑曲线所组成时,规定边界曲线的正方向为:当人沿边界行走时,区域D 总在他的左边. 与正方向相反的方向称为负方向,记为-L.定理21.11:若函数P(x,y), Q(x,y)在闭区域D 上连续,且有连续的一阶偏导数,则有格林公式:⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D d y P x Q σ=⎰+L Qdy Pdx . L 为区域D 的边界曲线,并取正方向.证:根据区域D 的不同形状,可分三种情形来证明: (1)若区域D 既是x 型区域,又是y 型区域(如图1),即 平行于坐标轴的直线和L 至多交于两点,该区域D 可表示为: φ1(x)≤y ≤φ2(x), a ≤x ≤b 或ψ1(x)≤x ≤ψ2(x), c ≤y ≤d.这里y=φ1(x)和y=φ2(x)分别为曲线⌒ACB 和⌒AEB 的方程, x=ψ1(x)和x=ψ2(x) 分别为曲线⌒CAE 和⌒CBE的方程, ∴⎰⎰∂∂Dd x Qσ=⎰⎰∂∂)()(21y y d c dx x Q dy ψψ=⎰d c dy y y Q )),((2ψ-⎰d c dyy y Q )),((1ψ=⎰⋂CBE dy y x Q ),(-⎰⋂CAE dy y x Q ),(=⎰⋂CBE dy y x Q ),(+⎰⋂EAC dy y x Q ),(=⎰L dy y x Q ),(.同理可证:-⎰⎰∂∂Dd y Pσ=⎰L dx y x P ),(. 即有⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D d y P x Q σ=⎰+L Qdy Pdx . (2)若区域D 是一条按段光滑的闭曲线围成(如图2),则先用几段光滑曲线将D 分成有限个既是x 型又是y 型的子区域,然后逐块按(1)得到它们的格林公式,相加即可.图2中区域D 可分成三个既是x 型又是y 型的区域D 1,D 2,D 3,则有⎰⎰⎪⎪⎭⎫⎝⎛∂∂-∂∂D d y P x Q σ=⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂1D d y P x Q σ+⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂2D d y P x Q σ+⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂3D d y P x Q σ =⎰+1L Qdy Pdx +⎰+2L Qdy Pdx +⎰+3L Qdy Pdx =⎰+L Qdy Pdx.(3)若区域D 由几条闭曲线所围成(如图3), 可适当添加直线AB, CE,把区域转化为(2)的情况处理.图D 的边界线由AB,L 2,BA,⌒AFC ,CE,L 3,EC 及⌒CGA构成. 由(2)知 ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D d y P x Q σ=⎪⎭⎫ ⎝⎛+++++++⎰⎰⎰⎰⎰⎰⎰⎰⋂⋂CGA EC l CE AFCBA l AB32(Pdx+Qdy)=()⎰⎰⎰++132L L L (Pdx+Qdy)=⎰+L Qdy Pdx .注:格林公式可写为:⎰⎰∂∂∂∂Dd QP y x σ=⎰+L Qdy Pdx .例1:计算⎰AB xdy ,其中曲线AB 为半径为r 的圆在第一象限部分. 解:如图,对半径为r 的四分之一圆域D 应用格林公式有⎰⎰-D d σ=⎰-L xdy =⎰OA xdy +⎰AB xdy +⎰BO xdy =⎰AB xdy . ∴⎰AB xdy =⎰⎰-Dd σ=-41πr 2.例2:计算I=⎰+-Ly x ydxxdy 22, 其中L 为任一不包含原点的闭区域的边界线.解:⎪⎪⎭⎫ ⎝⎛+∂∂22y x x x =22222)(y x x y +-, ⎪⎪⎭⎫ ⎝⎛+-∂∂22y x y y =22222)(y x x y +- 在上述区域D 上连续且有界,∴⎰⎰⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-∂∂-⎪⎪⎭⎫ ⎝⎛+∂∂Dd yx yx y x x x σ2222=0. 由格林公式可得I=0.注:在格林公式中,令P=-y, Q=x ,则得到一个计算平面区域D 的面积S D 的公式:S D =⎰⎰Dd σ=⎰-L ydx xdy 21.例3:如图,计算抛物线(x+y)2=ax (a>0)与x 轴所围的面积.解:曲线⌒AMO由函数y=x ax -, x ∈[0,a], 直线OA 为直线y=0, ∴S D =⎰-ydx xdy 21=⎰-OA ydx xdy 21+⎰⋂-AMO ydx xdy 21=⎰⋂-AMO ydx xdy 21=dx x ax ax ax a ⎰⎥⎦⎤⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛-0)(1221=dx ax a ⎰-02121=dx x a a⎰4=62a .二、曲线积分与路线的无关性概念:若对于平面区域D 上任一封闭曲线,皆可不经过D 以外的点而连续收缩于属于D 的某一点,则称此平面区域为单连通区域,否则称为复连通区域。

21-3格林公式曲线与路径的无关性

21-3格林公式曲线与路径的无关性

一 问题的提出 二 区域的连通性及分类 格林(Green) 三 格林(Green)公式 格林(Green) 四 格林(Green)公式的简单应用 五 曲线积分与路径的无关 六 二元函数的全微分求积 七 小结与思考判断题
一 问题的提出
在一元函数的微积分中我们通过 Newton-lebiniz公式可以把定积分和原 Newton-lebiniz公式可以把定积分和原 函数联系起来.在曲线积分中, 函数联系起来.在曲线积分中,我们是否 有相似的联系呢?下面的Green Green公式告诉 有相似的联系呢?下面的Green公式告诉 我们,在曲线积分中,也有相似的联系. 我们,在曲线积分中,也有相似的联系. 即二重积分与曲线积分的联系, 即二重积分与曲线积分的联系,这就是 我们所要讲授的Green公式. Green公式 我们所要讲授的Green公式.
格林公式的实质:
( L1, L2 , L3对D来说为正方向 )
沟通了沿闭曲线的积分与
二重积分之间的联系 .
于 忆 式: 便 记 形 式
∫∫ x ydxdy = ∫L Pdx + Qdy. D P Q
四 应用
1) 简化曲线积分
例 1 计算 ∫
AB
y
A
D
xdy ,其中曲 其中曲
o L
B
线 AB 是半径为r 的圆在 第一象限部分. 第一象限部分
N
1 0 a = ∫a x ( 1)dx ( ax x )dx 2 2 ax
a a 1 2 = ∫0 xdx = 6 a . 4
五 曲线积分与路径的无关
如果在区域G内有 如果在区域 内有
y
L 1
∫L Pdx + Qdy
1
B

格林公式·曲线积分与线路的无关性

格林公式·曲线积分与线路的无关性
D内的函数 u ( x, y) :
du( x, y) P( x, y)dx Q( x, y)dy.
P( x, y ) Q( x, y ) . y x
(iv) 在D的每一点处, 有
由(iii)有
ux ( x, y) P( x, y), uy ( x, y) Q( x, y)
[ P( x, ( x)) P( x, ( x))]dx
b

a
AEB
P( x, y )dx
ACB
P( x, y )dx
Q( x, y)dy
ACBEA
P( x, y )dx
同理可证:
Q dxdy x D

L
(ii)
若D由一条按段光滑的闭曲线围成
u( x x , y ) u( x , y ) P ( x , y ), x 0 x lim
u( x x, y) u( x, y) ABC P ( x , y )dx Q( x , y )dy AB P ( x , y )dx Q( x , y )dy


L
P( x, y )dx Q( x, y )dy.
B
S
与线路无关, 只与L的起点终点有关; 设ARB与ASB为联结点A, B的任两条光滑曲线. 由(i)
L
P ( x , y )dx Q( x , y )dy 0
Pdx Qdy ) (
ASB
(
ARB
Pdx Qdy ) 0
P( x, y )dx Q( x, y )dy
BC
u( x , y y ) u( x , y ) lim Q( x , y ). y 0 y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档