摄影测量程序汇总(后方交会+前方交会+单模型光束法平差)
摄影测量解析基础(后方交会前方交会)

06
结果输出
输出目标点的三维坐标数据。
前方交会方法的优缺点分析
优点 不需要地面控制点,可以在未知环境中进行测量。
可以快速获取大范围的三维空间信息。
前方交会方法的优缺点分析
• 适用于动态目标和快速测量场景。
前方交会方法的优缺点分析
01
缺点
02
03
04
对光照条件敏感,光照变化会 影响测量精度。
对摄影图像的质量要求较高, 需要清晰、分辨率高的图像。
随着科技的不断发展,摄影测量技术也在不断进步和完善,其在各个领域的应用 也日益广泛和深入。
摄影测量的历史与发展
01
摄影测量起源于19世纪中叶,当时人 们开始使用胶片相机进行地形测量。 随着技术的发展,数字相机逐渐取代 了胶片相机,使得摄影测量更加便捷 和高效。
02
近年来,随着计算机技术和人工智能 的飞速发展,摄影测量技术也取得了 重大突破。例如,无人机技术的兴起 使得摄影测量更加灵活、快速和安全 ;计算机视觉和深度学习技术的应用 则提高了影像解析的自动化和智能化 水平。
在复杂地形和遮挡严重的环境 中,前方交会方法可能会失效
。
05 实际应用案例
Hale Waihona Puke 后方交会方法应用案例总结词
通过已知的摄影站和地面控制点,解算出摄影中心和地面点的空间坐标。
详细描述
后方交会方法常用于地图更新、地籍测量和城市三维建模等领域。例如,在城市三维建模中,利用后方交会方法 可以快速准确地获取建筑物表面的空间坐标,为构建真实感强的城市三维模型提供数据支持。
图像获取
获取至少两幅不同角度的摄影图像。
01
02
像片处理
对图像进行预处理,包括图像校正、去噪等 操作。
摄影测量-空间前交、后交【精选文档】

空间后交—前交程序设计(实验报告)姓名:班级:学号:时间:空间后交-前交程序设计一、实验目的用 C 、VB或MATLAB语言编写空间后方交会-空间前方交会程序⑴提交实习报告:程序框图、程序源代码、计算结果、体会⑵计算结果:像点坐标、地面坐标、单位权中误差、外方位元素及其精度二、实验数据f=150。
000mm,x0=0,y0=0三、实验思路1。
利用空间后方交会求左右像片的外方位元素(1).获取m(于像片中选取两点,于地面摄影测量坐标系中选取同点,分别计算距离,距离比值即为m),x,y,f,X,Y,Z(2).确定未知数初始值Xs,Ys,Zs,q,w,k(3).计算旋转矩阵R(4).逐点计算像点坐标的近似值(x),(y)(5)。
组成误差方程式(6)。
组成法方程式(7).解求外方位元素(8)。
检查是否收敛,即将求得的外方位元素的改正数与规定限差比较,小于限差即终止;否则用新的近似值重复步骤(3)-(7)2。
利用求出的外方位元素进行空间前交,求出待定点地面坐标(1).用各自像片的角元素计算出左、右像片的方向余弦值,组成旋转矩阵R1,R2(2)。
根据左、右像片的外方位元素,计算摄影基线分量Bx,By,Bz(3)。
计算像点的像空间辅助坐标(X1,Y1,Z1)和(X2,Y2,Z2)(4).计算点投影系数N1和N2(5)。
计算未知点的地面摄影测量坐标四、实验过程⑴程序框图函数AandL%求间接平差时需要的系数%%%已知%a=像点坐标x,b=像点坐标y,f内方位元素主距%φ=q,ψ=w,κ=k%像空间坐标系X,Y,Z%地面摄影测量坐标系Xs,Ys,Zsfunction [A1,L1,A2,L2]=AandL(a,b,f,q,w,k,X,Y,Z,Xs,Ys,Zs) %%%%%%%%%%%选择矩阵元素a1=cos(q)*cos(k)—sin(q)*sin(w)*sin(k);a2=-cos(q)*sin(k)—sin(q)*sin(w)*cos(k);a3=-sin(q)*cos(w);b1=cos(w)*sin(k);b2=cos(w)*cos(k);b3=—sin(w);c1=sin(q)*cos(k)+cos(q)*sin(w)*sin(k);c2=—sin(q)*sin(k)+cos(q)*sin(w)*cos(k);c3=cos(q)*cos(w);%%%%%%%共线方程的分子分母X_=a1*(X—Xs)+b1*(Y-Ys)+c1*(Z-Zs);Y_=a2*(X-Xs)+b2*(Y—Ys)+c2*(Z-Zs);Z_=a3*(X—Xs)+b3*(Y—Ys)+c3*(Z-Zs);%%%%%%%近似值x=-f*X_/Z_;y=-f*Y_/Z_;%%%%%%%A组成L组成a11=1/Z_*(a1*f+a3*x);a12=1/Z_*(b1*f+b3*x);a13=1/Z_*(c1*f+c3*x);a21=1/Z_*(a2*f+a3*y);a22=1/Z_*(b2*f+b3*y);a23=1/Z_*(c2*f+c3*y);a14=y*sin(w)-(x/f*(x*cos(k)—y*sin(k))+f*cos(k))*cos(w);a15=-f*sin(k)—x/f*(x*sin(k)+y*cos(k));a16=y;a24=—x*sin(w)-(y/f*(x*cos(k)-y*sin(k))—f*sin(k))*cos(w);a25=-f*cos(k)-y/f*(x*sin(k)+y*cos(k));a26=-x;lx=a—x;ly=b-y;%%%%%%%%%组成一个矩阵,并返回A1=[a11,a12,a13,a14,a15,a16];A2=[a21,a22,a23,a24,a25,a26];L1=lx;L2=ly;函数deg2dms%%%%%%%%角度转度分秒function y=deg2dms(x)a=floor(x);b=floor((x-a)*60);c=(x-a—b/60)*3600;y=a+(b/100)+(c/10000);函数dms2deg%%%%%度分秒转度function y=dms2deg(x)a=floor(x);b=floor((x-a)*100);c=(x-a—b/100)*10000;y=a+b/60+c/3600;函数ok%%%%%%%%%%%%%%目的是为了保证各取的值的有效值%%xy为n*1,a为1*nfunction result=ok(xy,a)format short gi=size(xy,1);for n=1:io=xy(n)—floor(xy(n,1));o=round(o*(10^a(n)))/(10^a(n));xy(n,1)=floor(xy(n,1))+o;endformat long gresult=xy;函数rad2dmsxy%%%%求度分秒表现形式的三个外方位元素,三个角度function xydms=rad2dmsxy(xy)[a,b,c,d,e,f]=testvar(xy);d=deg2dms(rad2deg(d));e=deg2dms(rad2deg(e));f=deg2dms(rad2deg(f));xydms=[a,b,c,d,e,f]';函数spacehoujiao%%%%%%%空间后交%%% f%%输入p(2*n,1)%%像点坐标x,y,X,Y,Z,均为(n,1)function [xy,m,R]=spacehoujiao(p,x,y,f,X,Y,Z)format long;%%%%%权的矢量化,这是等精度时的,如果非,将函数参数改为PP=diag(p);%%求nj=size(X,2);%%初始化Xs=0;Ys=0;Zs=0;for n=1:jXs=Xs+X(n);Ys=Ys+Y(n);Zs=Zs+Z(n);endSx=sqrt((x(2)-x(1))^2+(y(2)—y(1))^2);%%%%两像点之间距离Sd=sqrt((X(2)-X(1))^2+(Y(2)-Y(1))^2);%%%%两地面控制点之间距离m=Sd/Sx; %%%%图像比例系数Xs=Xs/j;Ys=Ys/j;Zs=m*f+Zs/j;m0=0;q=0;w=0;k=0;i=0;a=rand(2*j,6);l=rand(2*j,1);%%%%for n=1:j[a(2*n—1,:),l(2*n—1,1),a(2*n,:),l(2*n,1)]=AandL(x(n),y(n),f,q,w,k,X(n),Y(n),Z(n),Xs,Ys,Zs);enddet=inv(a’*P*a)*transpose(a)*P*l;%%%%%%%%%循环体while 1%%%%%%%%%%%%%%%%[dXs,dYs,dZs,dq,dw,dk]=testvar(det);detXs=abs(dXs);detYs=abs(dYs);detZs=abs(dZs);detq=abs(dq);detw=abs(dw);detk=abs(dk);%%%%%%%%%if ((detXs<0。
摄影测量学3-3

要将空中摄站及影像放到整个的加密网中,起到 点的传递和构网作用,故被称为空中三角测量。
目的:用摄影测量解析法确定区域内所有影像的外方位元素。
摄影测 量 加密
一、 空中三角测量意义:
(1)不需直接触及被量测的目标或物体.凡是在影像上可 以看到的目标,不受地面通视条件限制,均可以测定其位 臵和几何形状; (2)可以快速地在大范围内同时进行点位测定,从而可节 省大量的野外测量工作; (3)摄影测量平差计算时,加密区域内部精度均匀,且很 少受区域大小的影响;
4个平高控制点:4 4 16
n 各待求点:
4 n 4n
3n 12 未知数的个数:
两张像片的外方位元素:
t1
t2
多余观测数: 6 n
n
2 6 12 各待求点: 3 n 3n
3.9光束法双像解析摄影测量
按未知数的类型将误差方程式写成矩阵形式:
V1 A1 V 0 2 0 A2 t1 B1 l1 t 2 B2 l 2 X
• 要点: 1) 空间后方交会-空间前方交会:由于空间后方交会至少需要3 个平高控制点,通常采用4 个平高控制点,按最小二乘平差 方法解算单张像片6 个外方位元素。故该方法不适合; 2) 相对定向-绝对定向:相对定向完成后,绝对定向通常采用3
个平高控制点按最小二乘平差方法解算7 个绝对定向元素。
上述问题中,控制点数量不足以解决该绝对定向问题。故该 方法不适合; • 3) 光束法:上述问题中,2 个平高控制点和1 个高程控制点 可以确定平差的基准,多余观测个数r=(2×6×2)(6×2+3×3)=3>0,故可用该方法解决上述问题。
N12 ) X (u2 N N
后方交会 前方交会

y2 y1 (Q Q0 )
X 0,Y0,P0,Q0是仪器零位置读数
左右视差:同名像点在各自的像平面坐标系的x坐标之差
p x1 x2
上下视差:同名像点在各自的像平面坐标系的y坐标之差
q y1 y2
(1)摄影测量--通过摄影进行测量--问题:如何恢复影
像的方位;
(2)什么是影像的方位? --内方位元素、外方位元素 (3)怎样恢复外方位元素?
x
(y) f
y
a20 ( X a30 ( X
X s0 ) b20 (Y X s0 ) b30 (Y
Ys0 ) c20 (Z Zs0 ) Ys0 ) c30 (Z Zs0 )
X s
偏导数,系数
dX S,dYS,dZS,d,d,d 外方位元素初始值的改正数,待求未知数
误差方程
vx a11dX s a12dYs a13dZs a14d a15d a16d lx
y cos )
y
a26 x
在竖直摄影的情况下,角元素都很小(<3度),各系数可 简化为:
0 sin 0 cos 1 a1 cos cos sin sin sin 1 a3 sin cos 0
Z ZS H
x 1
f
a11 X s Z (a1 f a3x) H
令
Y
a2
b2
c2
Y
Ys
R 1
Y
Ys
Z a3 b3 c3 Z Zs
Z Zs
X
Y Z
0
a1c2
a2c1
a1c3 a3c1
a2c1 a1c2 0
a2c3 a3c2
a3c1 a3c2
a1c3 a2c3
摄影测量重点总结

摄影测量重点总结1、摄影测量中常用的坐标系有像平面直角坐标系、像空间直角坐标系、像空间辅助坐标系、地面摄影测量坐标系、地面测量坐标系。
2、解求单张像片的外方位元素最少需要3个平高地面控制点。
3、gps辅助空中三角测量的促进作用就是大量增加甚至全然免去地面控制点,缩为图周期,提升生产效率,降低生产成本。
4、两个空间直角坐标系间的坐标变换最少需要2个平高和1个高程地面控制点。
5、摄影测量的发展经历了模拟摄影测量、解析摄影测量和数字摄影测量三个阶段。
6、恢复立体像对左右像片的相互位置关系依据的是共面条件方程。
7、法方程消元的通式为=8、表示航摄像片的外方位角元素可以采用以y轴为主轴的?-ω-κ、以x轴为主轴的ω'-?'-κ'以z轴为主轴的a-a?k三种转角系统。
9、航摄像片是所覆盖地物的中心投影。
10、摄影测量加密按数学模型可以分成航带法、单一制模型法和光束法三种方法。
摄影测量加密按黄赤范围可以分成单模型法、航带法和区域网法三种方法。
11、从航摄像片上量测的像点坐标可能带有摄影材料变形、摄影机物镜畸变、大气折光误差和地球曲率误差四种系统误差。
12、要将地物点在摄影测量坐标系中的模型坐标转换到地面摄影测量坐标系,最少需要2个平高和1个高程地面控制点。
13、带状法方程系数矩阵的带宽是指法方程系数矩阵中主对角线元素起沿某一行到最远处的非零元素间所包含的未知数个数。
14、人眼观察两幅影像能产生立体视觉的基本条件是在不同摄站获取的具有一定重叠的两幅影像、观察时每只眼睛只能看一张像片、两幅影像的摄影比例尺尽量一致和两幅影像上相同地物的连线与眼基线尽量平行。
15、中心投影的共线条件方程抒发了摄影中心、像是点和对应地物点三点坐落于同一直线的几何关系,利用其解求单张像片6个外方位元素的方法称作单片空间后方交会,最少须要3个上恩地面控制点。
16、摄影测量中,为了恢复立体像对两张像片之间的相互位置关系,可以根据左右像片上的同名像点位于同一核面的几何条件,采用相对定向方法来实现,最少需要量测5对同名像点。
双像解析摄影测量三种方法的比较-学习心得

双像解析摄影测量三种⽅法的⽐较-学习⼼得双像解析摄影测量三种⽅法的⽐较为了加强印象,还是要做做笔记的,那继续做电⼦笔记吧双像解析摄影测量三种⽅法的⽐较:后⽅交会-前⽅交会⽅法;相对定向-绝对定向法;⼀步定向法后⽅交会-前⽅交会法主要步骤:⾸先进⾏后⽅交会,利⽤单张影像上3个以上已知控制点分别计算像⽚外⽅位元素,再通过前⽅交会计算出地⾯⽬标的物⽅坐标。
该⽅法的缺点在于每张影像上都必须有3个以上控制点,并且前⽅交会求取的地⾯点坐标的精度取决于后⽅交会所解算外⽅位元素的精度(前⽅交会过程没有充分利⽤多余条件进⾏平差计算)。
因此,该⽅法往往在已知影像的外⽅位元素、需确定少量的待定点坐标时采⽤。
相对定向-绝对定向法主要步骤:⾸先利⽤两张影像重叠区内5对以上同名点,按照共⾯条件⽅程解算相对定向元素,并计算同名点模型坐标,同时要求⾄少2个平⾼点1个⾼程点位于像⽚重叠区内以计算控制点模型坐标。
然后利⽤控制点模型坐标和对应地⾯坐标根据三维相似变换⽅程解算出绝对定向元素。
最后根据绝对定向元素求取⽬标的物⽅坐标。
(计算公式⽐较多,⽤这种⽅法的解算结果不能严格表达⼀幅图像的外⽅位元素)该⽅法的缺点在于需要已知重叠区内最少5对同名点。
同样地,绝对定向的精度取决于相对定向精度。
因此常⽤于航带法解析三⾓测量的应⽤。
⼀步定向法主要步骤:利⽤已有控制点地⾯坐标、像⽚上对应像点坐标,根据共线条件⽅程⼀步解算出像⽚外⽅位元素和⽬标的地⾯坐标。
该⽅法⼀步完成,精度完全由控制点和像点坐标量测精度决定,理论上⽐以上两种⽅法精度⾼。
但该⽅法相较以上两种⽅法,求解过程较复杂。
(待定点的坐标是完全按最⼩⼆乘法原理解求出来的,该⽅法常⽤于光线束法解析空中三⾓测量中的应⽤。
)下⾯简单介绍⼀种影像定位的⽅法:有理函数模型(RFM)有理函数模型可以直接建⽴起像点和空间坐标之间的关系,不需要内外⽅位元素,回避成像的⼏何过程,可以⼴泛⽤于线阵影像的处理中。
摄影测量后方交会

单张相片后方交会目录●作业任务 (3)●解算原理 (3)●具体过程 (4)●算法描述及程序流程 (4)●计算结果 (7)●结果分析 (8)●心得体会及建议 (8)●参考文献 (9)一,作业任务已知摄影机主距f=153.24mm,四对点的像点坐标与相应地面坐标列入下表:表1-1计算近似垂直摄影情况下后方交会解。
二,解算原理【关键词1】中心投影构像方程在摄影测量学中,最重要的方程就是中心投影构像方程(图2-1)。
这个方程将地面点在地面摄影测量坐标系中的坐标(物方坐标)和地面点对应像点的像平面坐标联系起来。
在解析摄影测量与数字摄影测量中是极其有用的。
在以后将要学习到的双像摄影测量光束法、解析测图仪原理及数字影像纠正等都要用到该式。
图2-1在上述公式中:x和y分别为以像主点为原点的像点坐标,相应地面点坐标为X,Y,Z,相片主距f以及外方位元素Xs,Ys,Zs,ψ,ω,κ。
而在此次作业中,就是已知四个地面控制点的坐标以及其对应的像点坐标,通过间接平差原理来求解此张航片的外方位元素。
【关键词2】间接平差在一个平差问题中,当所选的独立参数X的个数等于必要观测值t时,可将每个观测值表达成这t个参数的函数,组成观测方程,然后依据最小二乘原理求解,这种以观测方程为函数模型的平差方法,就是间接平差方法间接平差的函数模型为:随机模型为:平差准则为:VtPV=min【关键词3】单像空间后方交会利用至少三个已知地面控制点的坐标A(Xa,Ya,Za)、B(Xb,Yb,Zb)、Z(Xc,Yc,Zc),与其影像上对应的三个像点的影像坐标a(xa,ya)、b(xb,yb)、c(xc,yc),根据共线方程,反求该像点的外方位元素Xs,Ys,Zs,ψ,ω,κ。
这种解算方法是以单张像片为基础,亦称单像空间后方交会。
在此次作业中,就是已知四个控制点在地面摄影测量坐标系中的坐标和对应的像点坐标。
由此可以列出8个误差方程,存在两个多余观测数,则n=2。
摄影测量学 空间前方后方交会

地球科学与环境工程学院实验报告书一实习任务在LPS中采集4个控制点及两个检查点的像平面坐标及其对应物方坐标;编写空间后方前方交会的程序,利用该程序计算出相片的外方位元素,并且利用内外方位元素解算出两个检查点的物方坐标,并与LPS工作站上的对应坐标相比较。
二实验原理前方交会数学模型及公式后方交会数学模型,公式计算时使用迭代计算附源代码三实验思路及步骤利用后方交会得出两张像片各自的外方位元素1)获取已知数据:从摄影资料中插曲像片比例尺、平均航高、内方位元素以及控制点的地面摄影测量坐标及对应的像点坐标。
2)确定未知数的初始值:在竖直摄影的情况下,胶原素的初始值为0,线元素其中Zs=m*f+∑Z 41,Xs=∑X 41,Ys=∑Z 41。
3) 计算旋转矩阵R 。
4) 逐点计算像点坐标的近似值:利用共线方程。
5) 组成误差方程并法化。
6) 解求外方位元素。
7) 检查计算是否收敛。
利用解求出的外方位元素进行前方交会1) 用各自像片的角元素计算出左右像片的旋转矩阵R1和R2。
2) 根据左右像片的外方位元素计算摄影基线分量Bx,By ,Bz 。
3) 逐点计算像点的空间辅助坐标。
4) 计算投影系数。
5) 计算未知点的地面摄影测量坐标。
6) 重复以上步骤完成所有点的地面坐标的计算。
四 程序框图后方交会程序框图五计算成果由四个地面控制点求出相片外方位元素的解航向倾角:-0.00398694旁向倾角:0.00211388相片旋角:-0.067578两检查点物方坐标分别为:2001 160.561 2127.272 2002 2031.232 2185.930Point ID rX rY rZ2001 -0.8600 -2.8281 1683.90242002 1.4830 -0.0987 2.31812001 670969.5900 114812.4019 1883.9024 22002 671410.2130 123166.4213 1986.0801 2误差:2001 +0.000231 -0.000729 +0.0010822002 -0.000196 -0.000238 +0.000374六心得体会通过本次实习,对于LPS有了更深的了解,操作上也更加熟练,同时在翻译操作手册的工程中,对本专业设计到的某些词汇有了初步的掌握在编写后方交会的程序过程中,对空间后方-前方交会的算法认识的更加深刻,对迭代计算的步骤也更加熟悉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
fprintf(fp,"\n");
}
fprintf(fp,"--------------------------------\n");
fprintf(fp,"---------误差方程系数阵为:--------:\n");
for (int i=0;i<hang*2;i++)
{
for (int j=0;j<6;j++)
程序运行环境为VisualStudio2010.运行前请先将坐标数据放在debug下。
1.单像空间后方交会
原始数据:
内方位元素
x0(/mm)
y0(/mm)
主距f(/mm)
比例尺分母
0
0
153.24
50000
像点坐标(/mm)
物点坐标(/m)
-86.15
-68.99
36589.41
25273.32
2195.17
{
FILE *fp;
char *file1="结算数据.txt";
fp=fopen(file1,"w");
fprintf(fp,"---------原始坐标数据为--------:\n");
for (int i=0;i<hang;i++)
{
for (int j=0;j<5;j++)
{
fprintf(fp,"%7.4lf ",data[i*5+j]);
{ int i,j;
for(i=0;i<m;i++)
for(j=0;j<n;j++)
m2[j*m+i]=m1[i*n+j];
return;
}
void multi(double *mat1,double *mat2,double * result,int a,int b,int c)
{ int i,j,k;
double *cordata=new double[number*5];
for (i=0;i<number;i++)
{
for (j=0;j<5;j++)
{
fscanf(fห้องสมุดไป่ตู้,"%lf",cordata+i*5+j);
}
}
printf("控制点坐标数据读取成功!\n");
return cordata;
-53.4
82.21
37631.08
31324.51
728.69
-14.78
-76.63
39100.97
24934.98
2386.5
10.46
64.43
40426.54
30319.81
757.31
C语言程序:
#include <stdio.h>
#include <math.h>
#include <iostream>
}
void savedata(int hang,double *data,double *xishuarray,double *faxishu,double *l,int i,double xs,double ys,double zs,double fai,double oumiga,double kapa)
for (int i=0;i<hang*2;i++)
{
fprintf(fp,"%lf ",l[i]);
fprintf(fp,"\n");
for(i=0;i<n;i++)
{
if(i!=k)
{
for(j=0;j<n;j++)
{
if(j!=k)
*(a+i*n+j)+=*(a+k*n+j)* *(a+i*n+k);
}
}
}
for(j=0;j<n;j++)
{
if(j!=k)
*(a+k*n+j)*=*(a+k*n+k);
}
}
}
void transpose(double *m1,double *m2,int m,int n) //矩阵转置
{
fprintf(fp,"%7.4lf ",xishuarray[i*5+j]);
}
fprintf(fp,"\n");
}
fprintf(fp,"--------------------------------\n");
fprintf(fp,"---------法方程系数阵为:--------:\n");
for(i=0;i<a;i++)
{for(j=0;j<c;j++)
{result[i*c+j]=0;
for(k=0;k<b;k++)
result[i*c+j]+=mat1[i*b+k]*mat2[k*c+j];
}
}
return;
}
double *readdata()
{
FILE *fp;
int i,j;
for (int i=0;i<6;i++)
{
for (int j=0;j<6;j++)
{
fprintf(fp,"%7.5lf ",faxishu[i*5+j]);
}
fprintf(fp,"\n");
}
fprintf(fp,"--------------------------------\n");
fprintf(fp,"---------误差方程常数项为:--------:\n");
void inverse(double *a,int n)/*正定矩阵求逆*/
{
int i,j,k;
for(k=0;k<n;k++)
{
for(i=0;i<n;i++)
{
if(i!=k)
*(a+i*n+k)=-*(a+i*n+k)/(*(a+k*n+k));
}
*(a+k*n+k)=1/(*(a+k*n+k));
int number;
char datacatolog[100];
//scanf("%s",datacatolog);
if ((fp=fopen("控制点坐标.txt","r"))==NULL)
{
printf("读取数据出错!\n");
return false;
}
fscanf(fp,"%d",&number);
void transpose(double *m1,double *m2,int m,int n);
void inverse(double *a,int n);
void multi(double *mat1,double * mat2,double * result,int a,int b,int c);
double *readdata();
void savedata(int hang,double *data,double *xishuarray,double *faxishu,double *l,int i,double xs,double ys,double zs,double fai,double oumiga,double kapa);