摄影测量学 空间前方后方交会
单像空间后方交会名词解释

单像空间后方交会名词解释
单像空间后方交会是摄影测量学中的一个重要概念,它是指利用单个影像进行地物测量和定位的方法。
在单像空间后方交会中,通过对单张影像进行分析,可以确定地面上物体的位置和形状。
这个过程涉及到对影像中的特征点进行识别和匹配,然后利用相机内外参数以及影像上的像点坐标来计算地物的三维坐标。
单像空间后方交会的过程包括以下几个步骤,首先是对影像进行预处理,包括去畸变、影像配准等操作;然后是特征点的提取和匹配,这一步是通过计算机视觉算法来实现的,可以利用角点、边缘等特征来进行匹配;接下来是相机内外参数的标定,这一步是为了将像素坐标转换为实际世界坐标而进行的;最后是利用已知的相机参数和像点坐标来计算地物的三维坐标。
单像空间后方交会在航空摄影、遥感影像解译和地图制图等领域有着广泛的应用。
它可以通过对单张影像的处理,实现对地物的测量和定位,为地理信息系统和地图制图提供了重要的数据基础。
同时,随着计算机视觉和图像处理技术的不断发展,单像空间后方交会的精度和效率也在不断提高,为各种应用领域提供了更加可靠和精确的地物信息。
摄影测量空间后方交会

摄影测量空间后方交会以单张影像空间后方交会方法,求解该像的外方位元素一、实验数据与理论基础:1、实验数据:航摄仪内方位元素f=153.24mm,x0=y0=0,以及4对点的影像坐标和相应的地面坐标:影像坐标地面坐标x(mm)y(mm)X(m)Y(m)Z(m)1-86.15-68.9936589.4125273.322195.172-53.4082.2137631.0831324.51728.693-14.78-76.6339100.9724934.982386.50410.4664.4340426.5430319.81757.312、理论基础(1) 空间后方交会是以单幅影像为基础,从该影像所覆盖地面范围内若干控制点的已知地面坐标和相应点的像坐标量测值出发,根据共线条件方程,解求该影像在航空摄影时刻的外方位元素Xs,Ys,Zs,φ,ω,κ。
(2) 每一对像方和物方点可列出2个方程,若有3个已知地面坐标的控制点,可列出6个方程,求取外方位元素改正数△Xs,△Ys,△Zs,△φ,△ω,△κ。
二、数学模型和算法公式1、数学模型:后方交会利用的理论模型为共线方程。
共线方程的表达公式为:)()()()()()(333111S A S A S A S A S A S A Z Z c Y Y b X X a Z Z c Y Y b X X a fx -+-+--+-+--=)()()()()()(333222S A S A S A S A S A S A Z Z c Y Y b X X a Z Z c Y Y b X X a fy -+-+--+-+--=其中参数分别为:κωϕκϕsin sin sin cos cos 1-=aκωϕκϕsin sin sin sin cos 2--=a ωϕcos sin 3-=aκωsin cos 1=b κωcos cos 2=b ωsin 3-=bκωϕκϕsin sin cos cos sin 1+=c κωϕκϕcos sin cos sin sin 2+-=c ωϕcos cos 3=c旋转矩阵R 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321321321c c c b b b a a a R2、 由于外方位元素共有6个未知数,根据上述公式可知,至少需要3个不在一条直线上的已知地面点坐标就可以求出像片的外方位元素。
摄影测量解析基础(后方交会前方交会)

06
结果输出
输出目标点的三维坐标数据。
前方交会方法的优缺点分析
优点 不需要地面控制点,可以在未知环境中进行测量。
可以快速获取大范围的三维空间信息。
前方交会方法的优缺点分析
• 适用于动态目标和快速测量场景。
前方交会方法的优缺点分析
01
缺点
02
03
04
对光照条件敏感,光照变化会 影响测量精度。
对摄影图像的质量要求较高, 需要清晰、分辨率高的图像。
随着科技的不断发展,摄影测量技术也在不断进步和完善,其在各个领域的应用 也日益广泛和深入。
摄影测量的历史与发展
01
摄影测量起源于19世纪中叶,当时人 们开始使用胶片相机进行地形测量。 随着技术的发展,数字相机逐渐取代 了胶片相机,使得摄影测量更加便捷 和高效。
02
近年来,随着计算机技术和人工智能 的飞速发展,摄影测量技术也取得了 重大突破。例如,无人机技术的兴起 使得摄影测量更加灵活、快速和安全 ;计算机视觉和深度学习技术的应用 则提高了影像解析的自动化和智能化 水平。
在复杂地形和遮挡严重的环境 中,前方交会方法可能会失效
。
05 实际应用案例
Hale Waihona Puke 后方交会方法应用案例总结词
通过已知的摄影站和地面控制点,解算出摄影中心和地面点的空间坐标。
详细描述
后方交会方法常用于地图更新、地籍测量和城市三维建模等领域。例如,在城市三维建模中,利用后方交会方法 可以快速准确地获取建筑物表面的空间坐标,为构建真实感强的城市三维模型提供数据支持。
图像获取
获取至少两幅不同角度的摄影图像。
01
02
像片处理
对图像进行预处理,包括图像校正、去噪等 操作。
《摄影测量学》课程笔记

《摄影测量学》课程笔记第一章绪论一、摄影测量学的基本概念1. 定义摄影测量学是一种通过分析摄影图像来获取地球表面及其物体空间位置、形状和大小等信息的科学技术。
它结合了光学、数学、计算机科学和地理信息科学等多个领域的知识,为地图制作、资源管理、环境监测和工程建设等领域提供精确的数据。
2. 分类- 地面摄影测量:使用地面上的摄影设备进行的摄影测量,适用于小范围或精细的测量工作。
- 航空摄影测量:利用飞行器(如飞机、无人机)搭载摄影设备进行的摄影测量,适用于大范围的地形测绘。
- 卫星摄影测量:通过卫星搭载的传感器获取地球表面信息,适用于全球或大区域的环境监测和资源调查。
3. 应用领域- 地图制作:制作各种比例尺的地形图、城市规划图和专题地图。
- 土地调查:进行土地分类、土地权属界定和土地使用规划。
- 城市规划:辅助城市设计和基础设施规划。
- 环境监测:监测环境变化,如森林覆盖、水资源和污染状况。
- 灾害评估:评估自然灾害的影响范围和损失。
- 军事侦察:获取敌对地区的地理信息。
二、摄影测量学的发展历程1. 早期摄影测量(19世纪中叶-20世纪初)- 1839年,法国人达盖尔发明了银版照相法,这是摄影技术的起源。
- 1851年,瑞士工程师普雷斯特勒使用摄影方法绘制了第一张地形图。
- 1859年,法国人布洛克发明了立体测图仪,使得通过摄影图像进行三维测量成为可能。
2. 现代摄影测量(20世纪初-20世纪末)- 20世纪初,德国人奥佩尔提出了像片纠正和像片定向的理论,为摄影测量学的理论基础做出了贡献。
- 1930年代,随着航空技术的发展,航空摄影测量开始广泛应用。
- 1950年代,电子计算机的出现为摄影测量数据的处理提供了新的工具。
- 1960年代,数字摄影测量开始发展,利用计算机技术进行图像处理和分析。
3. 空间摄影测量(20世纪末-至今)- 1970年代,卫星遥感技术开始应用于摄影测量,提供了全球范围内的地理信息。
摄影测量-空间前交、后交【精选文档】

空间后交—前交程序设计(实验报告)姓名:班级:学号:时间:空间后交-前交程序设计一、实验目的用 C 、VB或MATLAB语言编写空间后方交会-空间前方交会程序⑴提交实习报告:程序框图、程序源代码、计算结果、体会⑵计算结果:像点坐标、地面坐标、单位权中误差、外方位元素及其精度二、实验数据f=150。
000mm,x0=0,y0=0三、实验思路1。
利用空间后方交会求左右像片的外方位元素(1).获取m(于像片中选取两点,于地面摄影测量坐标系中选取同点,分别计算距离,距离比值即为m),x,y,f,X,Y,Z(2).确定未知数初始值Xs,Ys,Zs,q,w,k(3).计算旋转矩阵R(4).逐点计算像点坐标的近似值(x),(y)(5)。
组成误差方程式(6)。
组成法方程式(7).解求外方位元素(8)。
检查是否收敛,即将求得的外方位元素的改正数与规定限差比较,小于限差即终止;否则用新的近似值重复步骤(3)-(7)2。
利用求出的外方位元素进行空间前交,求出待定点地面坐标(1).用各自像片的角元素计算出左、右像片的方向余弦值,组成旋转矩阵R1,R2(2)。
根据左、右像片的外方位元素,计算摄影基线分量Bx,By,Bz(3)。
计算像点的像空间辅助坐标(X1,Y1,Z1)和(X2,Y2,Z2)(4).计算点投影系数N1和N2(5)。
计算未知点的地面摄影测量坐标四、实验过程⑴程序框图函数AandL%求间接平差时需要的系数%%%已知%a=像点坐标x,b=像点坐标y,f内方位元素主距%φ=q,ψ=w,κ=k%像空间坐标系X,Y,Z%地面摄影测量坐标系Xs,Ys,Zsfunction [A1,L1,A2,L2]=AandL(a,b,f,q,w,k,X,Y,Z,Xs,Ys,Zs) %%%%%%%%%%%选择矩阵元素a1=cos(q)*cos(k)—sin(q)*sin(w)*sin(k);a2=-cos(q)*sin(k)—sin(q)*sin(w)*cos(k);a3=-sin(q)*cos(w);b1=cos(w)*sin(k);b2=cos(w)*cos(k);b3=—sin(w);c1=sin(q)*cos(k)+cos(q)*sin(w)*sin(k);c2=—sin(q)*sin(k)+cos(q)*sin(w)*cos(k);c3=cos(q)*cos(w);%%%%%%%共线方程的分子分母X_=a1*(X—Xs)+b1*(Y-Ys)+c1*(Z-Zs);Y_=a2*(X-Xs)+b2*(Y—Ys)+c2*(Z-Zs);Z_=a3*(X—Xs)+b3*(Y—Ys)+c3*(Z-Zs);%%%%%%%近似值x=-f*X_/Z_;y=-f*Y_/Z_;%%%%%%%A组成L组成a11=1/Z_*(a1*f+a3*x);a12=1/Z_*(b1*f+b3*x);a13=1/Z_*(c1*f+c3*x);a21=1/Z_*(a2*f+a3*y);a22=1/Z_*(b2*f+b3*y);a23=1/Z_*(c2*f+c3*y);a14=y*sin(w)-(x/f*(x*cos(k)—y*sin(k))+f*cos(k))*cos(w);a15=-f*sin(k)—x/f*(x*sin(k)+y*cos(k));a16=y;a24=—x*sin(w)-(y/f*(x*cos(k)-y*sin(k))—f*sin(k))*cos(w);a25=-f*cos(k)-y/f*(x*sin(k)+y*cos(k));a26=-x;lx=a—x;ly=b-y;%%%%%%%%%组成一个矩阵,并返回A1=[a11,a12,a13,a14,a15,a16];A2=[a21,a22,a23,a24,a25,a26];L1=lx;L2=ly;函数deg2dms%%%%%%%%角度转度分秒function y=deg2dms(x)a=floor(x);b=floor((x-a)*60);c=(x-a—b/60)*3600;y=a+(b/100)+(c/10000);函数dms2deg%%%%%度分秒转度function y=dms2deg(x)a=floor(x);b=floor((x-a)*100);c=(x-a—b/100)*10000;y=a+b/60+c/3600;函数ok%%%%%%%%%%%%%%目的是为了保证各取的值的有效值%%xy为n*1,a为1*nfunction result=ok(xy,a)format short gi=size(xy,1);for n=1:io=xy(n)—floor(xy(n,1));o=round(o*(10^a(n)))/(10^a(n));xy(n,1)=floor(xy(n,1))+o;endformat long gresult=xy;函数rad2dmsxy%%%%求度分秒表现形式的三个外方位元素,三个角度function xydms=rad2dmsxy(xy)[a,b,c,d,e,f]=testvar(xy);d=deg2dms(rad2deg(d));e=deg2dms(rad2deg(e));f=deg2dms(rad2deg(f));xydms=[a,b,c,d,e,f]';函数spacehoujiao%%%%%%%空间后交%%% f%%输入p(2*n,1)%%像点坐标x,y,X,Y,Z,均为(n,1)function [xy,m,R]=spacehoujiao(p,x,y,f,X,Y,Z)format long;%%%%%权的矢量化,这是等精度时的,如果非,将函数参数改为PP=diag(p);%%求nj=size(X,2);%%初始化Xs=0;Ys=0;Zs=0;for n=1:jXs=Xs+X(n);Ys=Ys+Y(n);Zs=Zs+Z(n);endSx=sqrt((x(2)-x(1))^2+(y(2)—y(1))^2);%%%%两像点之间距离Sd=sqrt((X(2)-X(1))^2+(Y(2)-Y(1))^2);%%%%两地面控制点之间距离m=Sd/Sx; %%%%图像比例系数Xs=Xs/j;Ys=Ys/j;Zs=m*f+Zs/j;m0=0;q=0;w=0;k=0;i=0;a=rand(2*j,6);l=rand(2*j,1);%%%%for n=1:j[a(2*n—1,:),l(2*n—1,1),a(2*n,:),l(2*n,1)]=AandL(x(n),y(n),f,q,w,k,X(n),Y(n),Z(n),Xs,Ys,Zs);enddet=inv(a’*P*a)*transpose(a)*P*l;%%%%%%%%%循环体while 1%%%%%%%%%%%%%%%%[dXs,dYs,dZs,dq,dw,dk]=testvar(det);detXs=abs(dXs);detYs=abs(dYs);detZs=abs(dZs);detq=abs(dq);detw=abs(dw);detk=abs(dk);%%%%%%%%%if ((detXs<0。
第2章后方交会

则
f sin H f a22 cos H y y0 a23 H ( x x0 )( y y0 ) ( y y0 ) 2 a24 cos ( f )sin f f a21 ( y y0 ) 2 ( x x0 )( y y0 ) a25 ( f ) cos sin f f
sin sin 0 0 cos cos
cos 0 sin
X Y 1 X X s 0 0 1 X X s Z R R 1 R 1 Y Y R 0 0 0 Y Y s s Z Z s 1 0 0 Z Z s
《摄影测量学》
第2 章
单片空间后方交会
主要内容
一、定义
二、误差方程和法方程 三、计算过程
一、定义 z
y s(Xs, Ys, Zs) Z
b a
x
c
根据影像覆盖范 围内一定数量的 分布合理的地面 控制点(已知其 像点和地面点的 坐标),利用共 线条件方程求解 像片外方位元素 C X
Y
B
A
注:如果我们有每张像片的六个外方位元素,就能恢复航摄像片 与被摄地面之间的几何关 R 1 Y Y s Z Z Z s
0 a 2 c1 a1c2 a c a c 3 1 1 3 0 b3 b 2 b3 0 b1
a1c2 a 2 c1 0 a 3 c 2 a 2 c3 b2 X b1 Y 0 Z
x f X X Z ( ) Z Z f b2 Z b3Y Z Y b2 f b3 f f Z X (b1Y b2 X ) Z X Y X (b1 b2 ) Z Z Z
太原理工大学摄影测量学-第五章双像解析摄影测量1-3

§2.物点坐标的计算―空间前方交会
二、共线条件方程式法(严密解法)
x x0[a3( X X S ) b3(Y YS ) c3(Z ZS )] fa1(X X S ) b1(Y YS ) c1(Z ZS ) y y0[a3(X X S ) b3(Y YS ) c3(Z ZS )] fa2(X X S ) b2(Y YS ) c2(Z ZS )
像点各自像点坐标, 从方程个数来讲,有4 个方程,可以解算。
§1.双像解析摄影测量的方法
一、双像解析摄影测量概念
由于利用单张像片不能唯一确定被摄物体的空间位置。要确定被摄 物体的空间物置,必须利用具有一定重叠的两张像片,构成立体模型来 确定被摄物体的空间位置。 按立体像对与被摄物体的几何关系,以数学计算方式,通过计算机 解求被摄物体的三维空间坐标,称之为双像解析摄影测量,又称立体摄 影测量。
§2.物点坐标的计算―空间前方交会
立体像对前方交会的概念 只有利用立体像对上的同名像点,才能得到两条同名射线 在空间相交的点,即该地面点的空间位置。 空间前方交会:由立体像对中两张像片的内外方位元素和 像点坐标来确定相应地面点的地面坐标的方法。
§2.物点坐标的计算―空间前方交会
z1
y1
x1 S1
§1.双像解析摄影测量的方法
三、双像解析处理立体像对的方法
根据摄得的立体像对的内在几何特性,按物点、摄站点与像点 构成的几何关系,用数字计算方式求解物点的三维空间坐标的 方法有三种: 用单张像片的空间后方与立体像对前方交会方式求解物点的三 维空间坐标。 用相对定向和绝对定向方法求解地面点的三维空间坐标。 采用光束法求解地面点三维坐标。
f f
Z Zs c1x c2 y c3 f
A
《摄影测量学》第10讲-空间后方交会

0 0 Fx ( X S ,YS0 , Z S ,ϕ 0 , ω0 ,κ 0 ) → Fx0
0 (XS − XS ) +
(YS − YS0 ) +
0 (Z S − Z S ) +
(ω − ω0 ) +
∂Fx0 ∂κ
0 0 (κ − κ 0 ) + Fx ( X S , YS0 , Z S ,ϕ 0 , ω0 ,κ 0 )
内 容 安 排
• 单像空间后方交会概述 • 共线方程的线性化(难点) 共线方程的线性化(难点) • 利用共线条件方程解算像片的外方位元 点) ( 点)
[一]概述
1、什么叫单像空间后方交会 什么叫单像空间后方交会 利用地面控制点及其在片像上的像点, 利用地面控制点及其在片像上的像点,确定一 张像片外方位元素的方法。 张像片外方位元素的方法。
2
(
)
求:a = ?
取初值
任取a0=0: da = 6 由于:da = a − a0,a = a0 + da = 6 da = −36 / 13 = −2.8 取a0=6: 由于:da = a − a0,a = a0 + da = 3.2 da = −1 取a0=3.2 由于:da = a − a0,a = a0 + da = 2.2
S S
) + b2 ( Y − Y S ) + c 2 ( Z − Z S ) ) + b3 ( Y − Y S ) + c 3 ( Z − Z S )
a1 ( X − X S ) + b1 (Y − YS ) + c1 ( Z − Z S ) Fx = x + f =0 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S ) Fy = y + f a 2 ( X − X S ) + b2 (Y − YS ) + c 2 ( Z − Z S ) =0 a3 ( X − X S ) + b3 (Y − YS ) + c3 ( Z − Z S )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地球科学与环境工程学院实验报告书
一实习任务
在LPS中采集4个控制点及两个检查点的像平面坐标及其对应物方坐标;编写空间后方前方交会的程序,利用该程序计算出相片的外方位元素,并且利用内外方位元素解算出两个检查点的物方坐标,并与LPS工作站上的对应坐标相比较。
二实验原理
前方交会数学模型及公式
后方交会数学模型,公式
计算时使用迭代计算
附源代码
三实验思路及步骤
利用后方交会得出两张像片各自的外方位元素
1)获取已知数据:从摄影资料中插曲像片比例尺、平均航高、内方位元素以及控制点的地面摄影测量坐标及对应的像点坐标。
2)确定未知数的初始值:在竖直摄影的情况下,胶原素的初始值
为0,线元素其中Zs=m*f+∑Z 41,Xs=∑X 41,Ys=∑Z 4
1。
3) 计算旋转矩阵R 。
4) 逐点计算像点坐标的近似值:利用共线方程。
5) 组成误差方程并法化。
6) 解求外方位元素。
7) 检查计算是否收敛。
利用解求出的外方位元素进行前方交会
1) 用各自像片的角元素计算出左右像片的旋转矩阵R1和R2。
2) 根据左右像片的外方位元素计算摄影基线分量Bx,By ,Bz 。
3) 逐点计算像点的空间辅助坐标。
4) 计算投影系数。
5) 计算未知点的地面摄影测量坐标。
6) 重复以上步骤完成所有点的地面坐标的计算。
四 程序框图
后方交会程序框图
五计算成果
由四个地面控制点求出相片外方位元素的解航向倾角:-0.00398694
旁向倾角:0.00211388
相片旋角:-0.067578
两检查点物方坐标分别为:
2001 160.561 2127.272 2002 2031.232 2185.930
Point ID rX rY rZ
2001 -0.8600 -2.8281 1683.9024
2002 1.4830 -0.0987 2.3181
2001 670969.5900 114812.4019 1883.9024 2
2002 671410.2130 123166.4213 1986.0801 2
误差:2001 +0.000231 -0.000729 +0.001082
2002 -0.000196 -0.000238 +0.000374
六心得体会
通过本次实习,对于LPS有了更深的了解,操作上也更加熟练,同时在翻译操作手册的工程中,对本专业设计到的某些词汇有了初步的掌握
在编写后方交会的程序过程中,对空间后方-前方交会的算法认识的更加深刻,对迭代计算的步骤也更加熟悉。