小学四年级奥数 列方程解应用题

合集下载

小学数学奥数列方程解应用题专项四年级讲课上课PPT教学课件

小学数学奥数列方程解应用题专项四年级讲课上课PPT教学课件

练1:育才小学参加科技小组的同学比参加合唱队的4倍少45人, 参加科技小组的同学比合唱队的人数多105人,求参加科技小 组同学和参加合唱队的人数各有多少人?
练2:果园里种了一批苹果树和桃树,已知苹果树比桃树多 1600棵,苹果树的棵数比桃树的3倍多100棵。苹果树的价格是一把椅子的3倍,购买一张桌子比一把 椅子贵60元。问桌椅各多少元?
练1:小汽车速度是卡车速度的2倍,小汽车每小时比卡车多行 70千米。求卡车每小时行多少千米?
练2:甲车间生产的零件比乙车间多189个,甲车间的机床台数 是乙车间台数的4倍。甲乙两个车间各生产零件多少个?
例5:山坡上有一群羊,其中有绵羊和山羊。已知绵羊比山羊 的3倍多55只,已知绵羊比山羊多345只。两种羊各有多少只?
列方程解应用题二(笔记)
☆与“年龄 ”有关的倍数问题 注意:带“今年、几年前、几年后”;
例1:爸爸今年的年龄比小明大24岁,爸爸年龄比小明年龄的2 倍多12岁。求小明今年多少岁?
练1:爷爷今年的年龄比小明大60岁,爷爷年龄比小明年龄的6 倍多5岁。求小明今年多少岁?
练2:妈妈今年的年龄比乐乐大40岁,妈妈今年的年龄龄比小 明年龄的7倍少2岁。求妈妈今年多少岁?
☆准备工作:找倍数句子解设未知数 1.看倍数句子解设较小的为X,并用字母表示多倍数; 注意:①整倍; ②多倍; ③倍数小尾巴; 2.看倍数句子之外的“共/差”列方程! 类型:①和倍; ②差倍;
挑战:甲桶的酒是乙桶的4倍,如果从甲桶中取出15千克倒入 乙桶,那么两桶酒的重量相等。原来两桶酒各有多少千克?
练1:李大伯养鸡、鸭、鹅共960只,养鸡的只数是鹅的3倍, 养鸭的只数是鹅的4倍。鸡、鸭、鹅各养了多少只?
练2:商店有铅笔、钢笔、圆珠笔共560支,圆珠笔的支数是钢 笔的3倍,铅笔的支数与圆珠笔的支数同样多。铅笔、钢笔和 圆珠笔各有多少支?

四年级奥数教程(十)列方程 解应用题

四年级奥数教程(十)列方程    解应用题
分析 因为题中篮球、足球都与排球进行比较,所以把排球的单价 设为元,这样篮球和足球的单价可分别表示为元和元,三种球各买一个 的总价为元,另一方面,由已知篮球、足球、排球平均每个36元知三种 球各买一个的总价为36×3 = 108元,这就可以列出方程,求出排球的 单价就能求出足球的单价.
解 设每个排球元,根据题意得方程
答 乙每小时生产52个. 随堂练习2 (1)一个畜牧场,每天生产牛奶和羊奶共2346千克,生产的牛奶 量时羊奶的5倍,问:每天生产羊奶和牛奶各多少千克?
(2)两个车间共有工人68人,如果从第一车间调6名到第二车间, 两车间人数就相等.求两个车间原有人数.
例5 已知篮球、足球、排球平均每个36元,篮球比排球每个多10 元,足球比排球每个多8元,每个足球多少元?
分析 此题与前几期所讲的和差问题有些类似,但不属同一类问 题,因为并没有直接.
这道题用方程解非常简单,数量关系是:儿子的年龄×4 = 父亲的 年龄.不过要注意,关系式中的年龄均指几年后的年龄,并且儿子与父 亲的年龄是同步增长的.
解 设年后父亲的年龄是儿子年龄的4倍,到那时,父亲年龄是
例1 班上有37名学生,分成人数相等的两队进行拔河比赛,敲好余 3人当裁判,每个队多少人?
分析 这个问题怎样解呢?我们可以采用两种方法:一种方法是直接 列算式,另一种方法是列方程求解.前者叫算术解法,后者叫做方程解 法.
解法一 (算术解法) 两队的人数:37 - 3 = 34(人) 每队的人数:34÷2 = 17 (人) 或者列一个综合算式: (37 - 7)÷2 = 34÷2 = 17(人)
_______,乙是______.
5、奶奶今年56岁,恰好是小芳年龄的7倍,______年后奶奶年龄是
小芳的3倍.

小学四年级奥数讲义-解方程实际应用题

小学四年级奥数讲义-解方程实际应用题

小学四年级奥数讲义-解方程实际应用题1. 问题描述小明每周有5天的学校课程。

为了计算他每周花在数学上的时间,他询问了他的数学老师。

老师告诉他,每天数学课程的时间可以用方程式表示:$5x = 15$。

请帮助小明解出这个方程,计算他每天的数学课程时间。

2. 解题步骤为了解出这个方程,我们可以采用以下步骤:步骤一:将方程转化为标准形式。

这个方程已经是标准形式,即$5x = 15$。

将方程转化为标准形式。

这个方程已经是标准形式,即$5x = 15$。

步骤二:移项得到$x$的表达式。

将$15$移至方程的右侧,得到$5x = 15$。

移项得到$x$的表达式。

将$15$移至方程的右侧,得到$5x = 15$。

步骤三:求解方程。

将方程两边同时除以5,得到$x =\frac{15}{5}$。

计算结果可得$x = 3$。

求解方程。

将方程两边同时除以5,得到$x = \frac{15}{5}$。

计算结果可得$x = 3$。

3. 答案解释根据解题步骤得到的答案是$x=3$,这意味着小明每天的数学课程时间为3小时。

根据方程式$5x = 15$,当$x=3$时,左侧等式为$5\times 3 = 15$,与右侧等式$15$相等,所以答案是正确的。

4. 总结通过解方程实际应用题,我们可以得到小明每天的数学课程时间为3小时。

解方程是数学中常见的技巧,可以帮助我们解决实际生活中的问题。

希望本讲义对小学四年级的学生有所帮助,并促进对数学的兴趣和理解。

小学四年级奥数列方程100题(整理打印版)

小学四年级奥数列方程100题(整理打印版)

一、填空题1、根据“x的3倍与5的和等于x的10倍与7倍的差”所列出的方程是______________.2、某数的3倍加上8与这个数的10倍减10相等,这个数是____________________.3、某班有女生25人,比男生的3倍少20人,这个班有_________人.4、甲是乙的4倍,若两数各减去20,则甲是乙的6倍,原来甲是_______,乙是______.5、奶奶今年56岁,恰好是小芳年龄的7倍,______年后奶奶年龄是小芳的3倍.6、一次数学竞赛共15道题,每做对一道得8分,做错一道倒扣4分,李晓明所有题目都做了,但只得了72分,他做对了___________道题.1、王老师买了一个足球和6个排球,一共花了470元。

一个足球的价格是80元,一个排球的价格是多少元?2、三、四年级一共有400名学生,四年级人数是三年级的3倍,三、四年级个有学生多少名?3、水果店新进香蕉和菠萝共848千克,香蕉的质量是菠萝的3倍,香蕉和菠萝各有多少千克?4、学校饲养小组今年养鸡123只,比去年养鸡只数的5倍少2只,去年养鸡多少只?5、淘气买了10.5千克的苹果,交给售货员30元,找回4.80元,每千克苹果多少元?6.奶奶买了6千克豆角和5千克茄子,付了20元,找回3.9元,已知每千克豆角1.6元,每千克茄子多少元?7、爸爸今年32岁,比儿子的年龄的3倍还大5岁,儿子今年多少岁?8、36名学生去划船,分乘4条大船和3条小船,每条大船坐6名学生,每条小船坐几名学生?9、一盒牛奶2.4元,一袋豆浆0.8元。

小明家每天要买一盒牛奶和一袋豆浆,一个星期买牛奶和豆浆一共要花多少钱?10、三个好朋友共有邮票180张。

小波:我的邮票数是小玲的2倍。

小玲:我的邮票最少。

小亮:我的邮票数是他们俩的总和。

小波、小玲、小亮各有邮票多少张?1、商店原有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克。

这个商店原有多少千克饺子粉?2、小青买4节五号电池,付出8.5元,找回了0.1元。

小学四年级奥数讲义-列方程解应用题

小学四年级奥数讲义-列方程解应用题

小学四年级奥数讲义-列方程解应用题小学四年级奥数例1:10箱苹果比6箱梨重54千克,每箱梨重16千克,每箱苹果重多少千克?(列方程解)练1:果园里有梨树和桃树,桃树的棵树是梨树的5倍,比梨树多480棵,梨树和桃树各多少棵?(列方程解)练2:汽车上共有千克梨,卸下600千克之后,还有45箱,每箱梨重多少?(列方程解)解析:这些问题都可以通过列方程解来解决。

例如,对于第一个问题,我们可以设每箱苹果重x千克,则每箱梨重16千克,因此10x + 6 × 16 = 54,解得x = 2.因此,每箱苹果重2千克。

练1可以设梨树的数量为x,桃树的数量为5x,因此有x + 5x = x × 6 + 480,解得x = 120,因此梨树有120棵,桃树有600棵。

练2可以设每箱梨重y千克,因此有45y + 600 = ,解得y = 320,因此每箱梨重320/10 = 32千克。

例2:父亲今年32岁,儿子今年5岁,几年之后,父亲的年龄正好是儿子的年龄的4倍?(列方程解)练1:XXX今年9岁,妈妈今年39岁,再过几年妈妈年龄正好是小明年龄的3倍?(列方程解)练2:爸爸今年44岁,XXX今年12岁,多少年前爸爸年龄是XXX年龄的9倍?(列方程解)解析:这些问题也可以通过列方程解来解决。

例如,对于第一个问题,我们可以设几年后父亲的年龄为32 + x,儿子的年龄为5 + x,则有32 + x = 4 × (5 + x),解得x = 28.因此,28年后父亲的年龄正好是儿子的年龄的4倍。

练1可以设几年后妈妈的年龄为39 + x,XXX的年龄为9 + x,则有39 + x = 3 × (9 + x),解得x = 10.因此,10年后妈妈的年龄正好是小明年龄的3倍。

练2可以设多少年前爸爸的年龄为44 - x,XXX的年龄为12 - x,则有44 - x = 9 × (12 - x),解得x = 4.因此,4年前爸爸的年龄正好是XXX年龄的9倍。

小学奥数 四年级奥数入门班 第5讲方程解应用题

小学奥数 四年级奥数入门班 第5讲方程解应用题

方程入门之解应用题一、什么是方程?二、解方程步骤三、列方程解应用题一、什么是方程?听有看无高有低无古有今无后有前无叶有花无凉有热无跳有走无哭有笑无加加有,海海无(打一字)方程:含有未知数的等式叫方程。

二、解方程步骤1.去括号2.移项变号3.合并同类项4.求解移项变号原则:+,+:大-,-:小+,-:+例题精讲例1⑴5+2x=4x+1⑵20-4x=8(4-x)⑶5x-1=14-5(1+x)三、列方程解应用题例2实验室中培养了一种奇特的植物,它生长得非常迅速,每天都会生长到昨天质量的2倍还多3公斤。

培养了2天后,植物的质量达到45公斤,求这株植物原来有多少公斤?例3新学期开始,有一批新的教科书要分发到各位学生手中,这批教科书必须由一个小组的学生来搬,这批教科书如果由小组中的男生来搬,每人搬25本,那么还有15本没人搬,如果由小组中的女生来搬,每人搬20本,那么最后一名女生只需要搬10本。

已知这个小组的学生一共有8人,求男、女生各有多少名?例4一批石油,如果用甲种油罐车装运,需要20辆,如果用乙种油罐车装运,需要25辆。

已知甲种油罐车比乙种油罐车每辆多装2吨。

求这批石油共多少吨?例5甲、乙、丙、丁四个人共做零件270个。

如果甲多做10个,乙少做10个,丙做的个数乘以2,丁做的个数除以2,那么四个人做的零件数恰好相等。

问丙实际做了零件多少个?例6小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完。

正方形每条边比三角形每条边少用5枚硬币。

小红的五分硬币共价值元。

解方程步骤1.去括号2.移项变号3.合并同类项4.求解移项变号原则:+,+:大-,-:小+,-:+易错点:1.去括号时要用乘法分配律2.去括号时要注意前面符号3.移项变号,不移项不变号设元技巧:直接设法:问什么,设什么。

间接设法:问大量,设小量。

四年级奥数 解方程

第10讲第一天1.方程13-x=9的解是x=()。

A.4B.5C.6D.7【答案】A【解析】x=13-9=4。

2.方程x÷4=8的解是x=()。

A.24B.27C.32D.36【答案】C【解析】x=8×4=32。

第二天1.方程9x+3=4x+18的解是x=()。

A.2B.3C.4D.5【答案】B【解析】移项:9x-4x=18-3,合并同类项:5x=15,解得:x=3。

2.方程7x-6=3x+26的解是x=()。

A.5B.6C.7D.8【答案】D【解析】移项:7x-3x=26+6,合并同类项:4x=32,解得:x=8。

第三天1.方程3(5+x)=36的解是x=()。

A.9B.6C.7D.4【答案】C【解析】去括号:15+3x=36,移项、合并同类项:3x=21,解得:x=7。

2.方程5(3x-8)=65的解是x=()。

A.6B.7C.8D.9【答案】B【解析】去括号:15x-40=65,移项、合并同类项:15x=105,解得:x=7。

第四天1.方程14x+(20-5x)=47的解是x=()。

A.4B.2C.5D.3【答案】D【解析】去括号:14x+20-5x=47,移项、合并同类项:9x=27,解得:x=3。

2.方程13x-(8x+18)=42的解是x=()。

A.12B.8C.10D.6【答案】A【解析】去括号:13x-8x-18=42,移项、合并同类项:5x=60,解得:x=12。

第五天1.方程8+5(x-12)=86-x的解是x=()。

A.13B.16C.21D.23【答案】D【解析】去括号:8+5x-60=86-x,移项:5x+x=86+60-8,合并同类项:6x=138,解得:x=23。

2.方程21-2(x-7)=3x的解是x=()。

A.9B.8C.7D.6【答案】C【解析】去括号:21-2x+14=3x,移项:21+14=3x+2x,合并同类项:5x=35,解得:x=7。

四年级奥数列方程解应用题

第11讲第一天1.体育馆的羽毛球和乒乓球共有98个,其中乒乓球比羽毛球的3倍少14个,那么羽毛球有()个。

A.21B.24C.26D.28【答案】D【解析】设羽毛球有x个,则乒乓球有(3x-14)个,列方程:x+3x-14=98,解得:x=28。

2.月亮服装厂有两个车间,共有236名工人,第一车间的工人人数比第二车间的4倍少9人,那么第一车间有()名工人。

A.196B.187C.172D.160【答案】B【解析】设第二车间有x人,则第一车间有(4x-9)人,列方程:x+4x-9=236,解得:x=49,则第一车间的工人人数为4×49-9=196-9=187(人)。

第二天1.有两根绳子,第一根长26米,第二根长14米,用去同样长的一段后,第一根剩下的长度是第二根剩下长度的4倍,那么两根绳子各用去()米。

A.10B.9C.8D.7【答案】A【解析】设两根绳子各用去x米,列方程:26-x=4(14-x),解得:x=10。

2.服装店购进的T恤件数是衬衫件数的3倍。

如果每天卖出9件T恤、5件衬衫,若干天后衬衫全部卖完时,T恤还剩60件。

服装店最初购进了()件T 恤。

A.130B.141C.150D.168【答案】C【解析】设共卖了x天,则最初T恤有(9x+60)件,衬衫有5x件,列方程:9x+60=3×5x,解得:x=10,则最初T恤有9×10+60=150(件)。

第三天1.把一批铅笔分给四(2)班学生,如果每人分4支,则剩余12支,如果每人分5支,则还缺20支。

四(2)班有()名学生。

A.28B.32C.36D.40【答案】B【解析】设四(2)班有x名学生,列方程:4x+12=5x-20,解得:x=32。

2.幼儿园将一筐草莓分给小朋友,若全部分给大班的小朋友,每人分6个,则余下18个;若全部分给小班的小朋友,每人分8个,则缺6个。

已知大班比小班多5人,那么大班有()个小朋友。

《列方程解应用题》(教案)-四年级上册数学人教版奥数

《列方程解应用题》(教案)四年级上册数学人教版奥数当我站在讲台前,面对着一群四年级的学生,我心中充满了期待。

今天,我要教授的内容是《列方程解应用题》。

这是一个充满挑战和乐趣的课题,我将引导学生们走进方程的奇妙世界,让他们体验到解题的快乐。

我选择的教材是数学人教版奥数四年级上册。

在这一章节中,学生们将学习到如何将实际问题转化为方程,并通过解方程得出答案。

具体内容包括:理解等式的概念,学会设置未知数,掌握方程的解法等。

我的教学目标是让学生们能够理解列方程解应用题的基本思路,掌握解题方法,并能够灵活运用到实际问题中。

同时,我也希望他们能够培养出对数学的兴趣和热情。

在教学过程中,我遇到了一些难点和重点。

难点在于学生们对等式和方程的理解,以及如何将实际问题转化为方程。

重点则是学生们需要掌握的解题方法和步骤。

为了帮助学生们更好地理解,我准备了一些教具和学具,包括黑板、粉笔、PPT等。

在教学过程中,我将使用PPT展示一些实际问题,并通过黑板上的方程进行讲解。

在板书设计上,我会将问题和方程清晰地展示在黑板上,并标注出解题的关键步骤。

这样的设计可以帮助学生们更好地理解和记忆。

对于作业设计,我准备了一些详细的题目和答案。

题目包括一些实际问题,要求学生们运用所学知识列出方程并求解。

答案则是为了帮助学生们检查自己的作业,并加深对知识点的理解。

在课后反思及拓展延伸环节,我会鼓励学生们谈谈自己在课堂上的收获和解题过程中的困惑。

通过这样的交流,我可以更好地了解他们的学习情况,并为他们提供进一步的帮助。

同时,我也会给他们布置一些拓展延伸的题目,让他们在课后继续锻炼和提高。

总的来说,我期待着今天的教学。

我相信,通过我的引导和学生们自己的努力,他们一定能够掌握列方程解应用题的方法,并在数学的道路上越走越远。

重点和难点解析在今天的教学《列方程解应用题》中,我认为有几个重点和难点需要我们特别关注。

这些细节对于学生们理解和掌握解题技巧至关重要。

小学奥数之列方程组解应用题(完整版)

1、设未知数的主要技巧和手段:找出与其他量的数量关系紧密的关键量2、用代数法来表示各个量:利用“,x y ”表示出所有未知量或变量3、找准等量关系,构建方程(明显的等量关系与隐含的等量关系)一、列方程解应用题的主要步骤 ⒈ 审题找出题目中涉及到的各个量中的关键量,这个量最好能和题目中的其他量有着紧密数量关系; ⒈ 用字母来表示关键量,用含字母的代数式来表示题目中的其他量;⒈ 找到题目中的等量关系,建立方程;⒈ 解方程;⒈ 通过求到的关键量求得题目最终答案.二、解二元一次方程(多元一次方程)消元目的:即将二元一次方程或多元一次方程化为一元一次方程.消元方法主要有代入消元和加减消元. 模块一、列方程组解应用题【例 1】 30辆小车和3辆卡车一次运货75吨,45辆小车和6辆卡车一次运货120吨。

每辆卡车和每辆小车每次各运货多少吨?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设每辆卡车和每辆小车每次各运货x y 、吨,根据题意可得:30375456120x y x y +=⎧⎨+=⎩,解得25x y =⎧⎨=⎩所以,每辆卡车每次运货2吨,每辆小车每次运货5吨。

【答案】每辆卡车每次运货2吨,每辆小车每次运货5吨【巩固】 甲、乙二人2时共可加工54个零件,甲加工3时的零件比乙加工4时的零件还多4个.问:甲每时加工多少个零件?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲每小时加工x 个零件,乙每小时加工y 个零件.则根据题目条件有:2254344x y x y +=⎧⎨-=⎩,解得1611x y =⎧⎨=⎩所以甲每小时加工16个零件,乙每小时加工11个零件.【答案】甲每小时加工16个零件【例 2】 已知练习本每本0.40元,铅笔每支0.32元,老师让小虎买一些练习本和铅笔,总价正好是老师所给的10元钱.但小虎将练习本的数量与铅笔的数量记混了,结果找回来0.56元,那么老师原来打算让小虎买多少本练习本?教学目标 知识精讲列方程组解应用题【解析】 设老师原本打算让小虎买x 本练习本和y 支铅笔,则由题意可列方程组:0.40.32100.40.32100.56x y y x +=⎧⎨+=-⎩,整理得403210004032944x y y x +=⎧⎨+=⎩,即54125(1)54118(2)x y y x +=⎧⎨+=⎩,将两式相加,得9()243x y +=,则27(2)x y +=, ⑴ 4-⨯⒈,得17x =.所以,老师原打算让小虎买17本练习本.【答案】老师原打算让小虎买17本练习本【巩固】 商店有胶鞋、布鞋共45双,胶鞋每双3.5元,布鞋每双2.4元,全部卖出后,胶鞋比布鞋收入多10元.问:两种鞋各多少双?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设布鞋有x 双,胶鞋有y 双.453.5 2.410x y x y +=⎧⎨-=⎩,解得2025x y =⎧⎨=⎩所以布鞋有20双,胶鞋有25双.【答案】布鞋有20双,胶鞋有25双【例 3】 松鼠妈妈采松子,晴天每天可以采20个,雨天每天可以采12个,它一连几天采了112个松子,平均每天采14个,问这几天当中有几天是下雨天?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 根据题意,松鼠妈妈采的松子有晴天采的,也有雨天采的,总的采集数可以求得,采集天数也确定,因此可列方程组来求解.设晴天有x 天,雨天有y 天,则可列得方程组:()()20121121112214x y x y +=⎧⎪⎨+=⎪⎩ ()1化简为5328x y += …………()3用加减法消元:()()253⨯-得:5()(53)4028x y x y +-+=-解得6y =.所以其中6天下雨.【答案】其中6天下雨【例 4】 运来三车苹果,甲车比乙车多4箱,乙车比丙车多4箱,甲车比乙车每箱少3个苹果,乙车比丙车每箱少5个苹果,甲车比乙车总共多3个苹果,乙车比丙车总共多5个苹果,这三车苹果共有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设乙车运来x 箱,每箱装y 个苹果,根据题意列表如下:()()()()433455x y xy xy x y ⎧+--=⎪⎨--+=⎪⎩,化简为4315(1)5415(2)y x x y -=⎧⎨-=⎩ ⒈+⒈,得:230x =,于是15x =.将15x =代入⒈或⒈,可得:15y =.所以甲车运19箱,每箱12个;乙车运15箱,每箱15个;丙车运11箱,每箱20个.三车苹果的总数是:191215151120673⨯+⨯+⨯=(个).【答案】三车苹果的总数是:673个【例 5】 有大、中、小三种包装的筷子27盒,它们分别装有18双、12双、8双筷子,一共装有330双筷子,其中小盒数是中盒数的2倍.问:三种盒各有多少盒?【解析】 设中盒数为x ,大盒数为y ,那么小盒数为2x ,根据题目条件有两个等量关系:227181282330x x y y x x ++=⎧⎨++⨯=⎩ 该方程组解得69x y =⎧⎨=⎩,所以大盒有9个,中盒有6个,小盒有12个. 【答案】大盒有9个,中盒有6个,小盒有12个【巩固】 用62根同样长的木条钉制出正三角形、正方形和正五边形总共有15个.其中正方形的个数是三角形与五边形个数和的一半,三角形、正方形和五边形各有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设三角形的个数为x ,五边形的个数为y ,那么正方形的个数为2x y +⎛⎫ ⎪⎝⎭,由此可列得方程组: 152345622x y x y x y x y ⎧+⎛⎫++= ⎪⎪⎪⎝⎭⎨+⎛⎫⎪++= ⎪⎪⎝⎭⎩该方程组解得:46x y =⎧⎨=⎩,所以52x y +⎛⎫= ⎪⎝⎭,因此三角形、正方形、五边形分别有4、5、6个. 【答案】三角形、正方形、五边形分别有4、5、6个【例 6】 有1克、2克、5克三种砝码共16个,总重量为50克;如果把1克的砝码和5克的砝码的个数对调一下,这时总重量变为34克.那么1克、2克、5克的砝码有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】5克砝码比1克砝码每多1个,对调后总重量将减少514-=克,所以5克砝码比1克砝码多()503444-÷=(个). 在原来的砝码中减掉4个5克砝码,此时剩下12个砝码,且1克砝码与5克同样多,总重量为30克.设剩下1克、5克各x 个,2克砝码y 个,则212(15)230x y x y +=⎧⎨++=⎩,解得36x y =⎧⎨=⎩所以原有1克砝码3个,2克砝码6个,5克砝码347+=个.【答案】原有1克砝码3个,2克砝码6个,5克砝码347+=个【巩固】 某份月刊,全年共出12期,每期定价2.5元.某小学六年级组织集体订阅,有些学生订半年而另一些学生订全年,共需订费1320元;若订全年的同学都改订半年,而订半年的同学都改订全年,则共需订费1245元.则该小学六年级订阅这份月刊的学生共有 人.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设订半年的x 人,订全年的y 人,则:2.5(612)13202.5(126)1245x y x y ⨯+=⎧⎨⨯+=⎩,得288283x y x y +=⎧⎨+=⎩,两式相加,得3()171x y +=, 所以57x y +=,即该小学六年级订阅这份月刊的学生共有57人.【答案】小学六年级订阅这份月刊的学生共有57人【例 7】 有两辆卡车要将几十筐水果运到另一个城市,由于可能超载,所以要将两辆卡车中的一部分转移到另外一辆车上去,如果第一辆卡车转移出20筐,第二辆卡车转移出30筐,那么第一辆卡车剩下的水果筐数是第二辆的1.2倍,如果第一辆卡车转移出21筐,第二辆卡车转移出25筐,那么第三辆车上的水果筐数是前面两辆车水果筐数和的一半,求原来两辆车上有多少筐水果?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设第一辆卡车上的水果有x 筐,第二辆卡车上的水果有y 筐,则有()()2030 1.2(1)212521252(2)x y x y ⎧-=-⨯⎪⎨-+-=+⨯⎪⎩,由⒈得 1.216x y =-,代入⒈得2.26292y -=,解得70y =,所以 1.21668x y =-=,原来两辆车上分别装有68筐水果和70筐水果.【答案】两辆车上分别装有68筐水果和70筐水果【巩固】 大、小两个水池都未注满水.若从小池抽水将大池注满,则小池还剩5吨水;若从大池抽水将小池注满,则大池还剩30吨水.已知大池容量是小池的1.5倍,问:两池中共有多少吨水?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设大池中有x 吨水,小池中有y 吨水.则根据题目条件,两池一共有x y +吨水,大池可装5x y +-吨水,小池可装30x y +-吨水,所以可列得方程5(30) 1.5x y x y +-=+-⨯,方程化简为80x y +=,所以两池中共有80吨水.【答案】两池中共有80吨水【例 8】 某公司花了44000元给办公室中添置了一些计算机和空调,办公室每月用电增加了480千瓦时,已知,计算机的价格为每台5000元,空调的价格为2000元,计算机每小时用电0.2千瓦时,平均每天使用5小时,空调每小时用电0.8千瓦时,平均每天运行5小时,如果一个月以30天计,求公司一共添置了多少台计算机,多少台空调?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设添置了x 台计算机,y 台空调.则有5000200044000(1)0.25300.8530480(2)x y x y +=⎧⎨⨯⨯+⨯⨯=⎩⒈式整理得416x y +=,则164x y =-;代入⒈得()5000164200044000y y -+=,解得2y =,则8x =,所以公司一共添置了8台计算机和2台空调.【答案】8台计算机和2台空调【巩固】 甲、乙两件商品成本共600元,已知甲商品按45%的利润定价,乙商品按40%的利润定价;后来甲打8折出售,乙打9折出售,结果共获利110元.两件商品中,成本较高的那件商品的成本是多少?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲、乙两件商品成本分别为x 元、y 元.根据题意,有方程组:600(145%)0.8(140%)0.9600110x y x y +=⎧⎨+⨯+⨯+⨯-=⎩,解得460140x y =⎧⎨=⎩所以成本较高的那件商品的成本是460元.【答案】成本较高的那件商品的成本是460元【巩固】 某市现有720万人口,计划一年后城镇人口增涨0.4%,农村人口增长0.7%,这样全市人口增加0.6%,求这个城市现在的城镇人口和农村人口.【解析】 假设这个城市现在的城镇人口是x 万人,农村人口是y 万人,得:7200.4%0.7%7200.6%x y x y +=⎧⎨+=⨯⎩,解得240480x y =⎧⎨=⎩, 即这个城市现在的城镇人口有240万,农村人口有480万.【答案】城镇人口有240万,农村人口有480万【例 9】 某次数学竞赛,分两种方法给分.一种是先给40分,每答对一题给4分,不答题不给分,答错扣1分,另一种是先给60分,每答对一题给3分,不答题不给分,答错扣3分,小明在考试中只有2道题没有答,以两种方式计分他都得102分,求考试一共有多少道题?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设小明答对了x 道题,答错了y 道题.由题目条件两种计分方式,他都得102分,可得到两条等量关系式:4041026033102x y x y +-=⎧⎨+-=⎩ 解得162x y =⎧⎨=⎩,所以考试一共有162220++=道题. 【答案】考试一共有162220++=道题【巩固】 某次数学比赛,分两种方法给分.一种是答对一题给5分,不答给2分,答错不给分;另一种是先给40分,答对一题给3分,不答不给分,答错扣1分.某考生按两种判分方法均得81分,这次比赛共多少道题?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设答对a 道题,未答b 道题,答错c 道题,由条件可列方程()()52811403812a b a c +=⎧⎪⎨+-=⎪⎩由()1式知,a 是奇数,且小于17.()2式可化简为()3413c a =-由()3式知,a 大于13.综合上面的分析,a 是大于13小于17的奇数,所以15a =.再由()()13式得到3b =,4c =. 153422a b c ++=++=,所以共有22道题.【答案】共有22道题【巩固】 下表是某班40名同学参加数学竞赛的分数表,如果全班平均成绩是2.5分,那么得3分和5分的各有多少人?【考点】列方程组解应用题【解析】 根据题意,只要设得3分和5分的各有多少人,即可利用总人数和总分数而列方程组求解,等量关系有两条:一是各分数段人数之和等于总人数,各分数段所有人得分之和等于总分数.设得3分的人数有x 人,得5分的人数有y 人,那么:471084017210348540 2.5x y x y +++++=⎧⎨⨯+⨯++⨯+=⨯⎩,化简为:()()11135412x y x y +=⎧⎪⎨+=⎪⎩ ()()213-⨯,得到28y =,即4y =,再代入()1,最后得到方程组得解47x y =⎧⎨=⎩,所以40名学生当中得3分的有7人,得5分的有4人.【答案】得3分的有7人,得5分的有4人【例 10】 在S 岛上居住着100个人,其中一些人总是说假话,其余人则永远说真话,岛上的每一位居民崇拜三个神之一:太阳神、月亮神和地球神.向岛上的每一位居民提三个问题:⑴您崇拜太阳神吗?⑴您崇拜月亮神吗?⑴您崇拜地球神吗?对第一个问题有60人回答:“是”;对第二个问题有40人回答:“是”;对第三个问题有30人回答:“是”.他们中有多少人说的是假话?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 我们将永远说真话的人称为老实人,把总说假话的人称为骗子.每个老实人都只会对一个问题“是”.而每个骗子则都对两个问题答“是”.将老实人的数目计为x ,将骗子的数目计为y .于是2130x y +=.又由于在S 岛上居住着100个人,所以100x y +=,联立两条方程,解得30y =.所以岛上有30个人说的是假话.【答案】30个人说的是假话【例 11】 甲、乙两人生产一种产品,这种产品由一个A 配件与一个B 配件组成.甲每天生产300个A 配件,或生产150个B 配件;乙每天生产120个A 配件,或生产48个B 配件.为了在10天内生产出更多的产品,二人决定合作生产,这样他们最多能生产出多少套产品?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 假设甲、乙分别有x 天和y 天在生产A 配件,则他们生产B 配件所用的时间分别为(10)x -天和(10)y -天,那么10天内共生产了A 配件(300120)x y +个,共生产了B 配件150(10)48(10)198015048x y x y ⨯-+⨯-=--个.要将它们配成套,A 配件与B 配件的数量应相等,即300120198015048x y x y +=--,得到7528330x y +=,则3302875y x -=. 此时生产的产品的套数为330283001203001201320875y x y y y -+=⨯+=+,要使生产的产品最多,就要使得y 最大,而y 最大为10,所以最多能生产出132********+⨯=套产品.【答案】最多能生产出1400套产品【巩固】 某服装厂有甲、乙两个生产车间,甲车间每天能生产上衣16件或裤子20件;乙车间每天能生产上衣18件或裤子24件.现在要上衣和裤子配套,两车间合作21天,最多能生产多少套衣服?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 假设甲、乙两个车间用于生产上衣的时间分别为x 天和y 天,则他们用于生产裤子的天数分别为(21)x -天和(21)y -天,那么总共生产了上衣(1618)x y +件,生产了裤子20(21)24(21)9242024x y x y ⨯-+⨯-=--件.根据题意,裤子和上衣的件数相等,所以16189242024x y x y +=--,即67154x y +=,即15476y x -=.那么共生产了15472216181618410633y x y y y -+=⨯+=-套衣服.要使生产的衣服最多,就要使得y 最小,则x 应最大,而x 最大为21,此时4y =.故最多可以生产出22410440833-⨯=套衣服. 【答案】最多可以生产出408套衣服【例 12】 一片青草,每天长草的速度相等,可供10头牛单独吃20天,供60只羊单独吃10天.如果1头牛的吃草量等于4只羊的吃草量,那么,10头牛与60只羊一起吃草,这片草可以吃________天.【考点】列方程组解应用题 【难度】3星 【题型】填空【解析】 把1只羊每天的吃草量当作单位“1 ”,则1头牛每天的吃草量为4,设原有草量为x ,每天的长草量为y ,那么:20410201016010x y x y +=⨯⨯⎧⎨+=⨯⨯⎩解得400x =,20y =,如果10头牛与60只羊一起吃草,这片草可以吃400(41016020)5÷⨯+⨯-=(天).【答案】5【例 13】 甲、乙、丙沿着环形操场跑步,乙与甲、丙的方向相反.甲每隔19分钟追上丙一次,乙每隔5分钟与丙相遇一次.如果甲4分钟跑的路程与乙5分钟跑的路程相同,那么甲的速度是丙的速度的多少倍?甲与乙多长时间相遇一次?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 把环形操场的周长看作1,设甲每分钟跑的路程为x ,丙每分钟跑的路程为y .根据题意可知乙每分钟跑的路程为45x .有: 1194155x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩,解得857557x y ⎧=⎪⎪⎨⎪=⎪⎩. 所以甲的速度是丙的速度的85 1.65757÷=倍; 甲与乙相遇一次所用的时间为884231()35757524÷+⨯=分钟. 【答案】甲的速度是丙的速度的1.6倍;甲与乙相遇一次所用的时间为23324分钟【例 14】 甲、乙二人从相距60千米的两地同时出发,沿同一条公路相向而行,6小时后在途中相遇.如果两人每小时所行走的路程各增加1千米,则相遇地点距前一次地点差1千米.求甲、乙两人的速度.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲速为每小时x 千米,乙速为每小时y 千米.根据第一次相遇的条件,可知:()660x y +=,则10x y +=,即甲、乙两人的速度和为10千米/小时,所以第二次相遇两人的速度和为12千米/小时.第二次相遇时,甲走的路程可能比第一次少1千米或多1千米,即(61)x -千米,或(61)x +千米.由此可列第二条方程:5(1)61x x +=-或5(1)61x x +=+.因此可列的方程组有:105(1)61x y x x +=⎧⎨+=-⎩解得64x y =⎧⎨=⎩,或105(1)61x y x x +=⎧⎨+=+⎩解得46x y =⎧⎨=⎩. 所以甲、乙(或乙、甲)两人的速度分别为6千米/小时和4千米/小时.【答案】甲、乙(或乙、甲)两人的速度分别为6千米/小时和4千米/小时【例 15】 从甲地到乙地的公路,只有上坡路和下坡路,没有平路.一辆汽车上坡时每小时行驶20千米,下坡时每小时行驶35千米.车从甲地开往乙地需9小时,从乙地到甲地需7.5小时,问:甲乙两地公路有多少千米?从甲地到乙地须行驶多少千米的上坡路?【考点】列方程组解应用题 【难度】3星 【题型】解答【关键词】华杯赛,复赛【解析】 (法1)从甲地到乙地的上坡路,就是从乙地到甲地的下坡路;从甲地到乙地下坡路,就是从乙地到甲地的上坡路.设从甲地到乙地的上坡路为x 千米,下坡路为y 千米,依题意得:920351735202x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得140x =,70y =,所以甲、乙两地间的公路有14070210+=千米,从甲地到乙地须行驶140千米的上坡路.答:甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路.【答案】甲、乙两地间的公路有210千米,从甲地到乙地须行驶140千米的上坡路【巩固】 从A 村到B 村必须经过C 村,其中A 村至C 村为上坡路,C 村至B 村为下坡路,A 村至B 村的总路程为20千米.某人骑自行车从A 村到B 村用了2小时,再从B 村返回A 村又用了1小时45分.已知自行车上、下坡时的速度分别保持不变,而且下坡时的速度是上坡时速度的2倍.求A 、C 之间的路程及自行车上坡时的速度.【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设A 、C 之间的路程为x 千米,自行车上坡速度为每小时y 千米,则C 、B 之间的路程为(20)x -千米,自行车下坡速度为每小时2y 千米.依题意得:2022203124x x y y x x yy -⎧+=⎪⎪⎨-⎪+=⎪⎩, 两式相加,得:202032124y y +=+,解得8y =;代入得12x =. 故A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米.【答案】A 、C 之间的路程为12千米,自行车上坡时的速度为每小时8千米【巩固】 华医生下午2时离开诊所出诊,走了一段平路后爬上一个山坡,给病人看病用了半小时,然后原路返回,下午6时回到诊所.医生走平路的速度是每小时4千米,上山的速度是每小时3千米,下山的速度是每小时6千米,华医生这次出诊一共走了 千米.【考点】列方程组解应用题 【难度】3星 【题型】填空【关键词】2004年,南京市,冬令营【解析】 设平路长a 千米,山坡长b 千米,则共走了2()a b +千米,根据题意,列方程3.54346a b a b +++=,1() 3.52a b +=, 2()14a b +=.所以,华医生这次出诊一共走了14千米.【答案】14【例 16】 小明从自己家到奶奶家时,前一半路程步行,后一半路程乘车;他从奶奶家回家时,前13时间乘车,后23时间步行.结果去奶奶家的时间比回家所用的时间多2小时.已知小明步行每小时行5千米,乘车每小时行15千米,那么小明从自己家到奶奶家的路程是多少千米?【考点】列方程组解应用题 【难度】3星 【题型】解答【关键词】迎春杯,决赛【解析】 设小明家到奶奶家的路程为x 千米,而小明从奶奶家返回家里所需要的时间是y 小时,那么根据题意有:112225*********x x y x y y ⎧⎪+=+⎪⎨⎪=⨯+⨯⎪⎩,解得: 15018x y =⎧⎨=⎩ 答:小明从自己家到奶奶家的路程是150千米.【答案】小明从自己家到奶奶家的路程是150千米【例 17】 (保良局亚洲区城市小学数学邀请赛)米老鼠从A 到B ,唐老鸭从B 到A ,米老鼠与唐老鸭行走速度之比是65∶,如下图所示.M 是A 、B 的中点,离M 点26千米的C 点有一个魔鬼,谁从它处经过就要减速25%,离M 点4千米的D 点有一个仙人,谁从它处经过就能加速25%.现在米老鼠与唐老鸭同时出发,同时到达,那么A 与B 之间的距离是 千米.【考点】列方程组解应用题 【难度】3星 【题型】填空【解析】 设AM MB x ==,米老鼠的行走速度为6k ,则唐老鸭的行走速度为5k (0k ≠),如下图,则有米老鼠从A 到B 需要时间 2630466(125%)6(125%)(125%)x x k k k --++⨯-⨯-⨯+ 11614(4)615x x k ⎧⎫=++-⎨⎬⎩⎭, 唐老鸭从B 到A 需要时间4302655(125%)5(125%)(125%)x x k k k --++⨯+⨯-⨯+ 11620(26)515x x k ⎧⎫=++-⎨⎬⎩⎭. 因为米老鼠与唐老鸭用的时间相同,所以列方程11611614(4)20(26)615515x x x x k k ⎧⎫⎧⎫++-=++-⎨⎬⎨⎬⎩⎭⎩⎭, 解得46x =.所以,A 、B 两地相距92千米.【答案】A 、B 两地相距92千米x -430x -26A C M D【例 18】 甲、乙两人分别从A 、B 两地同时出发相向而行,5小时后相遇在C 点.如果甲速度不变,乙每小时多行4千米,且甲、乙还从A 、B 两地同时出发相向而行,则相遇点D 距C 点10千米.如果乙速度不变,甲每小时多行3千米,且甲、乙还从A 、B 两地同时出发相向而行,则相遇点E 距C 点5千米.问:甲原来的速度是每小时多少千米?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 甲速度不变,乙每小时多行4千米,相遇点D 距C 点10千米,出发后5小时,甲到达C ,乙到达F ,因为乙每小时多行4千米,所以4520FC =⨯=千米,那么10FD DC ==千米,也就是说相遇后相同的时间内甲、乙走的路程相同,也就是说原来甲比乙每小时多行4千米. 乙速度不变,甲每小时多行3千米,相遇点E 距C 点5千米,出发后5小时乙到达C ,甲到达G ,因为甲每小时多行3千米,所以3515GC =⨯=千米.那么10GE =千米,5EC =千米.所以2EG EC =,即相遇后在相同的时间甲走的路程是乙的2倍,所以甲每小时多行3千米后,速度是乙的两倍.于是可列得方程组:432v v v v =+⎧⎪⎨+=⎪⎩乙甲乙甲,解得117v v =⎧⎨=⎩甲乙,所以甲原来每小时11千米. 【答案】甲原来每小时11千米【例 19】 甲、乙二人共存款100元,如果甲取出49,乙取出27,那么两人存款还剩60元.问甲、乙二人各有存款多少元?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲存款x 元,乙存款y 元,根据题目条件有两条等量关系,一是两人存款加起来等于100元,二是取钱后两人存款加起来有60元.由此可列得方程组:100421006097x y x y +=⎧⎪⎨+=-⎪⎩ 方程组最终解得7228x y =⎧⎨=⎩,所以甲存款72元,乙存款28元. 【答案】甲存款72元,乙存款28元【巩固】 甲、乙两个容器共有溶液2600克,从甲容器取出14的溶液,从乙容器取出15的溶液,结果两个容器共剩下2000克.问:两个容器原来各有多少溶液?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设甲容器有溶液x 克,乙容器有溶液y 克,根据题目条件有两条等量关系,一是两容器溶液加起来等于2600克,二是取溶液后两容器加起来有2000克.由此可列得方程组: 26001111200045x y x y +=⎧⎪⎨⎛⎫⎛⎫-+-= ⎪ ⎪⎪⎝⎭⎝⎭⎩ 方程组最终解得16001000x y =⎧⎨=⎩,所以甲容器中有溶液1600克,乙容器中有溶液1000克. 【答案】甲容器中有溶液1600克,乙容器中有溶液1000克【例 20】 某班有45名同学,其中有6名男生和女生的17参加了数学竞赛,剩下的男女生人数正好相等.问:这个班有多少名男生?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设有x 名男生和y 名女生,那么根据题目条件有两条等量关系:一是原来男女生人数和为45人,二是剩下的男女生人数相等,由此可列得方程组:451617x y x y +=⎧⎪⎨⎛⎫-=- ⎪⎪⎝⎭⎩该方程组解得2421x y =⎧⎨=⎩,所以这个班有24名男生.【答案】这个班有24名男生【巩固】 甲、乙两班人数都是44人,两班各有一些同学参加了数学小组的活动,甲班参加的人数恰好是乙班未参加人数的13,乙班参加的人数恰好是甲班未参加人数的14,那么共有多少人未参加数学小组?【考点】列方程组解应用题 【难度】3星 【题型】解答 【解析】 设甲、乙两班参加数学小组的人数分别为x 人、y 人,未参加人数分别为()44x -人、()44y -人,由题设已知条件可以得到:1(44)31(44)4x y x y⎧=-⎪⎪⎨⎪-=⎪⎩,解之得128x y =⎧⎨=⎩ 所以未参加兴趣小组的人数()()444468x y =-+-=人.【答案】未参加兴趣小组的人数68人【例 21】 一群小朋友去春游,男孩戴小黄帽,女孩戴小红帽.在每个男孩看来,黄帽子比红帽子多5顶;在每个女孩看来,黄帽子是红帽子的2倍.问:男孩、女孩各有多少人?【考点】列方程组解应用题 【难度】3星 【题型】解答【解析】 设男孩有x 人,女孩有y 人.根据条件可列方程:(1)52(1)x y x y --=⎧⎨=-⎩由第一条方程可以得到6x y =+,代入第二条方程得到62(1)y y +=- .解得8y =,再代入第一条方程.方程解得148x y =⎧⎨=⎩.所以男孩有14人,女孩有8人.【答案】男孩有14人,女孩有8人【巩固】 有大小两盘苹果,如果从大盘中拿出一个苹果放在小盘里,两盘苹果一样多;如果从小盘里拿出一个苹果放在大盘里,大盘苹果的个数是小盘苹果数的3倍.大、小两盘苹果原来各有多少个?【考点】列方程组解应用题 【难度】3星 【题型】解答 【解析】 设原来大盘有苹果x 个,小盘有苹果y 个.那么可列方程组:()11131x y x y -=+⎧⎪⎨+=-⎪⎩,方程组解得53x y =⎧⎨=⎩,所以大盘原来有苹果5个,小盘原来有苹果3个.【答案】大盘原来有苹果5个,小盘原来有苹果3个【巩固】 教室里有若干学生,走了10名女生后,男生是女生人数的2倍,又走了9名男生后,女生是男生人数的5倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解应用题【判断】下面的式子是否是方程?
⑴30+70=100
⑵x-6
⑶x+8>9
⑷7a-3=18
一、什么是方程?
含有未知数的等式是方程。

【例1】(★★) 三、移项规则
解下列方程:18-2(2x-5)=x-2 看未知数前的符号
+,+:大
-,-:小
+,-:+
四、易错点
二、解方程的步骤
1.去括号时要用乘法分配律
①去括号
2.去括号时要注意前面符号
②移项
3.移项变号,不移项不变号
③合并同类项
④求解
1
五、列方程解应用题的步骤【例3】(★★★)
①“审”:审清题意;实验室中培养了一种奇特的植物,它生长得非常迅速,每天都会生长
②“设”:设未知数;到昨天质量的2 倍还多3 公斤。

培养了2 天后,植物的质量达到45
③“列”:根据题目等量关系列方程;公斤,求这株植物原来有多少公斤?
④“解”:解方程;
⑤“答”:检验作答。

【例2】(★★★)(希望杯试题) 【例4】(★★★) (2010 希望杯初赛试题)
把一堆糖果分给几位小朋友,若每人2 块,将剩余12 块;每人3 块,某养鸡场的母鸡只数是公鸡只数的 6 倍,后来公鸡、母鸡各增加60
将缺少5 块,那么小朋友共多少位?只,母鸡的只数变为公鸡只数的4 倍,则养鸡场原来一共养了多少只
鸡?
【例5】(★★★★)(希望杯试题) 【例6】(★★★★)
某学校组织师生去春游,准备租用如图所示的两种客车。

若租若干辆四年级学生去秋游,要分成15 个组,一部分由8 人组成一个小组,另45 座的客车,则有15 人没有座位;若租60 座的客车,则可少租一辆一部分由5 个人组成一个小组,8 人组成小组的总人数比5 人组成小
且恰好全部坐满。

按照最省钱的方案租车,租金至少需_____元。

组的总人数多3 人,求四年级共有多少名同学参加秋游?
本讲总结
三个易错点:分配律;去括号;移项变号
移项三原则:++大;--小;+-+
设元两方法:直接设元法;间接设元法
重点例题:例1,例2,例4,例5
2。

相关文档
最新文档