简谐运动的物理量和表达式

合集下载

2021学年高二上学期物理人教版教材选择性必修第一册习题PPT-2.2简谐运动的描述

2021学年高二上学期物理人教版教材选择性必修第一册习题PPT-2.2简谐运动的描述

答案 (1)10 cm 0.2 s 5 Hz (2)0.05 s (3)1 000 cm 10 cm 解析 (1)从题图可知,振子振动的振幅为 10 cm,t=0.1 s =T2,所以 T=0.2 s.由 f=T1得 f=5 Hz. (2)根据简谐运动的对称性可知,振子由 A 到 O 的时间与振 子由 O 到 B 的时间相等,均为 0.05 s.
(1)求振子的振幅和周期; (2)在图中作出该振子的位移—时间图像; (3)写出振子的振动方程.
答案 (1)10 cm 0.2 s (2)图见解析 (3)y=-10sin(10πt) cm 解析 (1)振幅 A=10 cm,T=120 s=0.2 s. (2)四分之一周期时具有正的最大加速度,故有 负向最大位移,如图所示. (3)设振动方程为 y=Asin(ωt+φ),当 t=0 时,y=0,则 sin φ=0,得 φ=0 或 φ=π,当再过14周期后,y 为负值,所以 φ =π,所以振动方程为 y=10sin(10πt+π) cm=-10sin(10πt) cm.
6.相位差:如果两个简谐运动的频率相同,其初相分别是 φ1 和 φ2,当 φ2>φ1 时,它们的相位差是Δφ=φ2-φ1.
对点训练
考点一 描述简谐运动的物理量 1.关于振幅,下列说法正确的是( C ) A.振幅是矢量,方向是从平衡位置指向最大位移处 B.振幅描述的是物体振动的快慢 C.振动物体离开平衡位置的最大距离叫作振幅,是标量 D.做简谐运动的振子在振动的过程中振幅是不断变化的
若 C 对应 t1 时刻,C′对应 t2 时刻,则 t2-t1=nT+Δt(n= 0,1,2,3,…).
其中Δt 为 t2-t1 的最小值,对应的运动过程是 C→O→C′, 由图所示:0<Δt<T2,根据题意有,t2-t1<T,即 0<t2-t1<T2.进 一步观察:C、C′可无限靠近 0,因此Δt 可无限短,即Δt 可 小于14T,也可大于14T,故 A、B 两项正确.

高二物理03-简谐运动的描述

高二物理03-简谐运动的描述
(1)振幅、周期各为多少? A=10cm,T=4s; (2)写出这个简谐运动的位移随时间变化的关系式;
练2、人教版《选修3-4》P10第1题
有两个简谐运动:
x1
3a
sin
4bt
4
x2
9a sin8bt
2
它们的振幅之比是多少?
它们的频率各是多少?
t=0时它们的相位差是多少?
简谐运动的多解性
第十一章 机械振动 第2节 简谐运动的描述
知识回顾
学习了一个新的物理模型: 弹簧振子 , 认识了一种新的运动形式: 简谐运动 ,
质点的位移与时间关系遵从正弦函数的规律 (振动图象是一条正弦曲线)
第2节 简谐运动的描述
简谐运动是一种周期性运动, 以水平方向弹簧振子的简谐运动为例, O→M → O → M’ → O …… 全振动:振子先后两次运动状态完全相同所经历的过程; 问:若从振子向右经过P点开始计时, 经过怎样的运动才叫完成一次全振动?
再经0.1s第二次通过M点,则质点振动周期的可能值为
多大?
[思路点拨]振子通过O点的速度方向有两种可能: 一种是从O指向M;另一种是背离M。 再利用简谐运动的对称性,找出周期与运动时间的关系。
小结
一、描述简谐运动的物理量
定义 符号 单位 物理意义
振幅 周期 频率 相位
二、简谐运动的表达式: x Asint
例3、把一弹簧振子的弹簧拉长一些,然后由静止释放, 经0.5s,振子经过平衡位置,求该弹簧振子做简谐运动 的周期。
简谐运动的多解性
例3、把一弹簧振子的弹簧拉长一些,然后由静止释放, 经0.5s,振子经过平衡位置,求该弹簧振子做简谐运动 的周期。
练3、一质点在平衡位置O附近做简谐运动,从它经过

简谐运动的表达式动力学表达式

简谐运动的表达式动力学表达式
动的依据) 2.对称性——简谐振动物体具有对平衡位置的对称
性,在关于平衡位置对称的两个位置,动能、势 能相等,位移、回复力、加速度大小相等,方向 相反,速度大小相等,方向可能相同,也可能相 反,振动过程相对平衡位置两侧的最大位移值相等.
3.周期性——简谐运动的物体经过相同时间t=nT(n) 为整数,必回复到原来的状态,经时间t=(2n+1) T2 (n为整数),则物体所处的位置必与原来的位置 关于平衡位置对称,因此在处理实际问题中,
图2 3.简谐运动的能量
简谐运动过程中动能和势能相互转化,机械能 守恒,振动能量与 振幅 有关, 振幅 越大, 能量越大.
二、简谐运动的两种基本模型
弹簧振子(水 平)
单摆
模型示意图
条件 平衡位置
回复力
忽略弹簧质量、 无摩擦等阻力
细线不可伸长、质量 忽略、无空气等阻力、 摆角很小
弹簧处于原长处
最低点
度方向上的力充当向心力,即F向=F-mgcosθ;摆 球重力在平行于速度方向上的分力充当摆球的回复
力.当单摆做小角度摆动时,由于F回=-mgsinθ= - mg x=-kx,所以单摆的振动近似为简谐运动.
l
3.单摆的周期公式 (1)单摆振动的周期公式T=2π l ,该公式提供了
g
一种测定重力加速度g的方法. (2)l为等效摆长,表示从悬点到摆球重心的距离, 要区分摆长和摆线长,悬点实质为摆球摆动所在
2. 简谐运动的描述 (1)描述简谐运动的物理量 ①位移x:由平衡位置指向振动质点所在位置的 有向线段表示振动位移,是矢量. ②振幅A:振动物体离开平衡位置的最大距离, 是标量,表示振动的强弱. ③周期T和频率f:做简谐运动的物体完成 一次 全振动所需要的时间叫周期,而频率则等于单 位时间内完成 全振动的次数 ;它们是表示振动 快慢的物理量.二者互为倒数关系.

高二物理简谐运动的描述

高二物理简谐运动的描述

二、简谐运动的表达式
x A sint
课 堂 练 习 1.右图中是甲乙两弹簧振子的振动图象,两振 动振幅之比为_______ 2∶1 ,频率之比为_______ 1∶1 ,
甲和乙的相差为_____
2
课 堂 练 习 2. 某 简 谐 运 动 的 位 移 与 时 间 关 系 为 :
x=0.1sin ( 100πt +π) cm, 由此可知该振动
50 Hz,零时 刻 振 动 物 体 的 速 度 与 规 定 正 方相反 向 _____ ( 填
的振幅是 ______cm 0.1 ,频率是 “相同”或“相反”).
课 堂 练 习
3、有一个在光滑水平面内的弹簧振子,第一
次用力把弹簧压缩x后释放,第二次把弹簧压 缩2x后释放,则先后两次振动的周期和振幅之 比分别为多少?
T1:T2=1:1 A1:A2=1:2
课 堂 练 习 4、弹簧振子以O点为平衡位置,在B、C两点之 间做简谐振动,B、C相距20cm,某时刻振子处 于B点,经过0.5s,振子首次到达C点,求:
T=1.0s f=1 Hz (2)振子在5s末的位移的大小 10cm (3)振子5s内通过的路程 200cm
x A sint
1、公式中的A 代表什么? 2、ω叫做什么?它和T、f之间有什么关系? 3、公式中的相位用什么来表示? 4、什么叫简谐振动的初相?
二、简谐运动的表达式
相位
x A sin(t )
振幅 圆频率
2 2f T
初相位
2 x A sin( t ) A sin( 2ft ) T
相位每增加2π就意味着发生了一次全振动
2、甲和乙两个简谐运动的相差为 ,意味着什么? 2

简谐运动的表达式

简谐运动的表达式
求它们的振幅之比、各自的频率,以及它 们的相位差。1
简谐运动的表达式
创新微课
【解析】据x=Asin(ωt+ φ )得到:A1=4a,A2=2a。 A1 / A2=4a/2a=2 又ω=4πb及ω=2πf得:f1=f2=2b
1
它们的相位差是: △φ = (4πbt+ 3π/4) - (4πbt+ π/2) =π
创新微课 现在开始
简谐运动的表达式
简谐运动的表达式
一、简谐运动弦函数y=Asin(ωx+φ),简谐运动的位移随时间变化的规律 (振动方程)应为: x=Asin(ωt+φ)
简谐运动的表达式
创新微课
二、各物理量的意义
简谐运动的振动方程 x=Asin(ωt+φ):
1、振幅:A是物体振动的振幅。
别为多少?
1
(2)求振子在5 s内通过的路程。
(3)根据振动图象写出该简谐运
动的表达式。
简谐运动的表达式
创新微课
【解析】(1)由图象可知: 振幅:A=2 cm 周期:T=0.8 s 频率:f==1.25 Hz。 (2)在5 s内通过的路程:
s=×4A= ×4×2 c1m=50 cm。
(3)由图象可知:振子的初相为
0,ω=2πf=2.5π rad/s 表达式为:x=2sin 2.5πt cm。
【答案】(1)2 cm 0.8 s 1.25 Hz
cm
(2)50 cm
(3) x=2sin 2.5πt
简谐运动的表达式
创新微课
【练习】两个简谐振动分别为:
x1=4asin(4πbt+ π/2) 和 x2=2asin(4πbt+ 3π/4)
1

简谐运动的回复力和能量知识讲解

简谐运动的回复力和能量知识讲解

kx2
Ek
1 2
mv2
a kx m
EEk Ep
(1)关于平衡位置的 对称点 ①a、F、X大小相同,方向相反; 动能势能相同
②V大小相同,方向不一定 (2)先后通过同一位置
①a、F、X,动能势能相同
②V大小相同,方向相反
3
(多选)在物体做简谐运动的过程中,t1、t2 两时刻物体 分别处在关于平衡位置对称的两点,则从 t1 至 t2 这段时间物
体的( ABD ) X大小相同 → EP相同 → Ek相同
A.t1、t2 两时刻动能一定相同
B.t1、t2 两时刻势能一定相同
C.速度一定先增大,后减小
D.加速度可能先增大,后减小,再增大
Aa
O
bB
振子连续两次通过P位置,下列 各量哪些是相同的?
位移( √ ) 回复力( √ ) 加速度( √ ) 动能( √ )
势能( √ ) 速率( √ ) 速度( × ) 动量( × )
x
A
O PB
二.简谐运动的能量
简谐运动中动能和势能在发生相互转化,但机械 能的总量保持不变,即机械能守恒。
简谐运动的能量由劲度系数和振幅决定.
E12kA2 12mm2
试画出物体在做简谐运动时的Ek-t和Ep-t及E-t图象
E
机械能
势能
0A O B
证明:平衡状态时有:
KX0 K(X+X0)
mg
mg

F 当向下拉动x长度时弹簧所 受的合外力为
Fk(xx0)-mg kxkx0-mg
kx
振动方向上合力F与位移X 方向相反,故 F= - kx成立, 该振动为简谐运动
分析总结:结合下图完成下表

高中物理:简谐运动

高中物理:简谐运动

高中物理:简谐运动【知识点的认识】简谐运动1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象是一条正弦曲线,这样的振动叫简谐运动。

2.简谐运动的描述(1)描述简谐运动的物理量①位移x:由平衡位置指向质点所在位置的有向线段,是矢量。

②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。

③周期T和频率f:物体完成一次全振动所需的时间叫周期,而频率则等于单位时间内完成全振动的次数,它们是表示振动快慢的物理量。

二者互为倒数关系。

(2)简谐运动的表达式x=Asin(ωt+φ)。

(3)简谐运动的图象①物理意义:表示振子的位移随时间变化的规律,为正弦(或余弦)曲线。

②从平衡位置开始计时,函数表达式为x=Asinωt,图象如图1所示。

从最大位移处开始计时,函数表达式为x=Acosωt,图象如图2所示。

3.简谐运动的回复力(1)定义:使物体返回到平衡位置的力。

(2)方向特点:回复力的大小跟偏离平衡位置的位移大小成正比,回复力的方向总指向平衡位置,即F=﹣kx。

4.简谐运动的能量简谐运动过程中动能和势能相互转化,机械能守恒,振动能量与振幅有关,振幅越大,能量越大。

5.简谐运动的两种基本模型弹簧振子(水平)单摆模型示意图条件忽略弹簧质量、无摩擦等阻力细线不可伸长、质量忽略、无空气等阻力、摆角很小平衡位置弹簧处于原长处最低点回复力弹簧的弹力提供摆球重力沿与摆线垂直(即切向)方向的分力周期公式T =2π(不作要求)T =2π能量转化弹性势能与动能的相互转化,机械能守恒重力势能与动能的相互转化,机械能守恒【命题方向】常考题型是考查简谐运动的概念:简谐运动是下列哪一种运动()A .匀变速运动B .匀速直线运动C .变加速运动D .匀加速直线运动分析:根据简谐运动的加速度与位移的关系,分析加速度是否变化,来判断简谐运动的性质,若加速度不变,是匀变速直线运动;若加速度变化,则是变加速运动。

解:根据简谐运动的特征:a =﹣,可知物体的加速度大小和方向随位移的变化而变化,位移作周期性变化,加速度也作周期性变化,所以简谐运动是变加速运动。

描述简谐运动的物理量

描述简谐运动的物理量

简谐运动的描述一、描述简谐运动的物理量 1.振幅(1)定义:振动物体离开平衡位置的最大距离,用A 表示。

(2)物理意义:表示振动的强弱,是标量。

2.全振动图11-2-1类似于O →B →O →C →O 的一个完整振动过程。

3.周期(T )和频率(f )描述周期性运动在各个时刻所处的不同状态。

二、简谐运动的表达式简谐运动的一般表达式为x =A sin(ωt +φ) 1.x 表示振动物体相对于平衡位置的位移。

2.A 表示简谐运动的振幅。

3.ω是一个与频率成正比的量,表示简谐运动的快慢,ω=2πT =2πf 。

4.ωt +φ代表简谐运动的相位,φ表示t =0时的相位,叫做初相。

1.对全振动的理解(1)全振动的定义:振动物体以相同的速度相继通过同一位置所经历的过程,叫作一次全振动。

(2)全振动的四个特征:①物理量特征:位移(x )、加速度(a )、速度(v )三者第一次同时与初始状态相同。

②时间特征:历时一个周期。

③路程特征:振幅的4倍。

④相位特征:增加2π。

2.简谐运动中振幅和几个物理量的关系(1)振幅和振动系统的能量:对一个确定的振动系统来说,系统能量仅由振幅决定。

振幅越大,振动系统的能量越大。

(2)振幅与位移:振动中的位移是矢量,振幅是标量。

在数值上,振幅与振动物体的最大位移相等,但在同一简谐运动中振幅是确定的,而位移随时间做周期性的变化。

(3)振幅与路程:振动中的路程是标量,是随时间不断增大的。

其中常用的定量关系是:一个周期内的路程为4倍振幅,半个周期内的路程为2倍振幅。

(4)振幅与周期:在简谐运动中,一个确定的振动系统的周期(或频率)是固定的,与振幅无关。

做简谐运动的物体位移x 随时间t 变化的表达式: x =A sin(ωt +φ)(1)x :表示振动质点相对于平衡位置的位移。

(2)A :表示振幅,描述简谐运动振动的强弱。

(3)ω:圆频率,它与周期、频率的关系为ω=2πT =2πf 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 1 页 简谐运动的物理量和表达式
1.做简谐运动的物体,当它每次经过同一位置时,可能不同的物理量是( )
A .位移
B .速度
C .加速度
D .回复力
答案 B
2.某质点做简谐运动,其位移随时间变化的关系式为x =A sin π4
t ,则质点( ) A .第1 s 末与第3 s 末的位移相同
B .第1 s 末与第3 s 末的速度相同
C .第3 s 末至第5 s 末的位移方向都相同
D .第3 s 末至第5 s 末的速度方向都相同
答案 AD
解析
由关系式可知ω=π4 rad/s ,T =2πω
=8 s ,将t =1 s 和t =3 s 代入关系式中求得两时刻位移相同,A 对;作出质点的振动图象,由图象可以看出,第1 s 末和第3 s 末的速度方向不同,B 错;由图象可知,第3 s 末至第4 s 末质点的位移方向与第4 s 末至第5 s 末质点的位移方向相反,而速度的方向相同,故C 错,D 对.
3.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度
减小为原来的12
,则单摆振动的( ) A .频率、振幅都不变
B .频率、振幅都改变
C .频率不变、振幅改变
D .频率改变、振幅不变
答案 C
解析 单摆的周期由摆长和当地的重力加速度决定.由单摆的周期公式T =2πl g ,可知,单摆摆长不变,则周期不变,频率不变;振幅A 是反映单摆运动过程中的能量大小的物理
量,由E k =12
m v 2结合题意可知,摆球经过平衡位置时的动能不变,因质量增大,故振幅减小,所以
C 正确.。

相关文档
最新文档