概率论一二章习题详解
概率论一二章习题详解

习题一(A )1. 用三个事件,,A B C 的运算表示下列事件:(1),,A B C 中至少有一个发生; (2),,A B C 中只有A 发生; (3),,A B C 中恰好有两个发生; (4),,A B C 中至少有两个发生; (5),,A B C 中至少有一个不发生; (6),,A B C 中不多于一个发生. 解:(1)A B C (2)ABC (3) ABC ABC CAB(4) ABBC CA (5) A B C (6) ABBC CA2. 在区间[0,2]上任取一数x , 记 1{|1},2A x x =<≤ 13{|}42B x x =≤≤,求下列事件的表达式: (1)AB ; (2)AB ; (3) AB .解:(1){|1412132}x x x ≤≤<≤或 (2)∅(3){|014121x x x ≤<<≤或3. 已知()0.4,()0.2,()0.1P A P BA P CAB ===,求()P A B C .解:0.2()()P A P AB =-,0.1()(())()()()()()()P CAB P C A B P C P CA CB P C P CA P CB P ABC -=-=-=--+()()()()()()()()P A B C P A P B P C P AB P BC P CA P ABC =++---+=0.40.20.10.7++=4. 已知()0.4,()0.25,()0.25P A P B P A B ==-=,求()P B A -与()P AB .解:()()()0.25P A B P A P AB -=-=, ()0.15P AB =, ()()()0.250.150.1P B A P B P AB -=-=-=, ()()1()()()P AB P AB P A P B P AB ==--+10.40.250.150.5=--+=5.将13个分别写有,,,,,,,,,,,,A A A C E H I I M M N T T 的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN ”的概率.解:232224813!13!p ⨯⨯⨯⨯==6. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰好有1件次品的概率.解:1254535099392C C p C == 7. 某学生研究小组共有12名同学,求这12名同学的生日都集中在第二季度(即4月、5月和6月)的概率.解: 1212312p =:8. 在100件产品中有5件是次品,每次从中随机地抽取1件,取后不放回,求第三次才取到次品的概率.解:设i A 表示第i 次取到次品,1,2,3i =, 12395945()0.0461009998P A A A ==9. 两人相约7点到8点在校门口见面,试求一人要等另一人半小时以上的概率.解:1112122214p ⨯⨯⨯== 10. 两艘轮船在码头的同一泊位停船卸货,且每艘船卸货都需要6小时.假设它们在一昼夜的时间段中随机地到达,求两轮船中至少有一轮船在停靠时必须等待的概率.解:22246371()1()24416p -=-=-=11. 任取两个不大于1的正数,求它们的积不大于29,且它们和不大于1的概率. 解:29xy ≤ , 1x y +≤ ,所以 13x =,23x =23131212ln 23939p dx x =+=+⎰12. 设(),(),P A a P B b == 证明:1(|)a b P A B b+-≥. 证明: ()()()()()()()P AB P A P B P A B P A B P B P B +-==()()11()P A P B a b P B b+-+-≥≥13. 有朋自远方来,他坐火车、坐船、坐汽车和坐汽车的概率分别为0.3, 0.2,0.1,0.4 .若坐火车来,迟到的概率是0.25;若坐船来,迟到的概率是0.3;若坐汽车来,迟到的概率是0.1;若坐飞机来,则不会迟到.求他迟到的概率.解:0.30.250.20.30.10.10.145⨯+⨯+⨯=14. 设10个考题签中有4个难答,3人参加抽签,甲先抽,乙次之,丙最后.求下列事件的概率:(1)甲抽到难签;(2)甲未抽到难签而乙抽到难签; (3)甲、乙、丙均抽到难签.解;(1)42105p == (2)64410915p == (3) 4321109830p ==15. 发报台分别以概率0.6和0.4发出信号“*”和“-” .由于通信系统受到干扰,当发出信号“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0.2收到信号“*”和“-”;同样,当发出信号“-”时,收报台分别以0.9和0.1收到信号“-”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收到信号“*”时,发报台确实是发出信号“*”的概率.解:(1)0.60.80.40.10.52⨯+⨯= (2)0.48120.5213= 16. 设,A B 相互独立,()0.6,()0.4P A B P B ==,求()P A .解:()0.6()()()0.4()()P AB P A P B P AB P A P AB ==+-=+-0.2()0.4()P A P A =-, 1()3P A =17. 两两独立的三事件,,A B C 满足,ABC =∅并且1()()()2P A P B P C ==<.若9()16P AB C =,求()P A . 解:293()3()16P A P A =- ,216()16()30P A P A -+= 21()(,()34P A P A ==舍) 18、证明:(1)若(|)()P A B P A >,则(|)()P B A P B >.(2)若(|)(|)P A B P A B =,则事件A 与B 相互独立.证明:(1)()()()P AB P A P B > ,()()()P AB P A P B > ()()()()()()()P AB P A P B P B A P B P A P A >= (2) ()()P A B P A B =,()()()1()P AB P A B P B P B -=-()()()P AB P A P B =19. 甲、乙、丙三人独立地向一架飞机射击.设甲、乙、丙的命中率分别为0.4,0.5,0.7.又飞机中1弹,2弹,3弹而坠毁的概率分别为0.2,0.6,1. 若三人各向飞机射击一次,求:(1)飞机坠毁的概率;(2)已知飞机坠毁,求飞机被击中2弹的概率.解:(1)0.2(0.40.50.30.60.50.30.60.50.7)0.6(0.40.50.30.40.50.70.60.50.7)0.40.50.70.20.360.60.410.140.458⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯+⨯+=(2)0.60.410.540.458⨯=20. 三人独立破译一密码,他们能独立译出的概率分别为0.25,0.35,0.4.求此密码能被译出的概率.解: 0.250.350.40.250.650.60.750.350.60.750.650.40.250.350.60.250.650.40.750.350.4⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯0.0350.09750.15750.1950.05250.0650.1050.7075=++++++=21. 在试验E 中,事件A 发生的概率为()P A p =,将试验E 独立重复进行三次,若在三次试验中“A 至少出现一次的概率为1927”,求p . 解:00333191(1)1(1)27C p p p =--=--,13p = 22. 已知某种灯泡的耐用时间在1000小时以上的概率为0.2,求三个该型号的灯泡在使用1000小时以后至多有一个坏掉的概率.解:31230.20.80.20.0830.80.040.104C +⋅=+⨯⨯=23. 设有两箱同种零件,在第一箱内装50件,其中有10件是一等品;在第二箱内装有30件,其中有18件是一等品.现从两箱中任取一箱,然后从该箱中不放回地取两次零件,每次1个,求:(1)第一次取出的零件是一等品的概率; (2)已知第一次取出的零件是一等品,,第二次取出的零件也是一等品的概率.解: (1) 1011810.4502302+= (2) 5110911817519117[][]225049230294549529+=+ 19512612499()0.4856449295684+=+==(B )1.箱中有α个白球和β个黑球,从中不放回地接连取1(1)k k αβ++≤+次球,每次1个.求最后取出的是白球的概率.解:(1)(2)()()(1)()k k αβαβαβαααβαβαβαβ+-+-+-=++-+-+2. 一栋大楼共有11层,电梯等可能地停在2层至11层楼的每一层,电梯在一楼开始运行时有6位乘客,并且乘客在2层至11层楼的每一层离开电梯的可能性相等,求下列事件的概率:(1)某一层有两位乘客离开;(2)没有两位及以上的乘客在同一层离开; (3)至少有两位乘客在同一层离开.解:(1)42242666199()()101010C C = (2) 61010!P(3) 610110!P -3.将线段(0,)a 任意折成3折,求此3折线段能构成三角形的概率. 解:{}(,)0,0,0x y x a y a x y a Ω=<<<<<+<,(,)0,0,222a a a A x y x y x y a ⎧⎫=<<<<<+<⎨⎬⎩⎭, 21122242a a p a ==4. 设平面区域D 由四点(0,0),(0,1),(1,0),(1,1)围成的正方形,现向D 内随机投10个点,求这10个点中至少有2个落在由曲线2y x =和直线y x =所围成的区域1D 的概率.解: 1201()6p x x dx =-=⎰, 001019101015151()()()()6666C C --91091051055151()()166662929687510.5260466176⨯=--=-=-= 5. 设有来自三个地区的10名、15名、25名考生的报名表,其中女生的报名表分别为3份、7份、5份. 随机地取一个地区的报名表,从中先后抽取两份.(1)求先抽到的一份是女生表的概率;(2)已知后抽到的一份是男生表,求先抽到的是女生表的概率.解:( 1) 1317152931031532590++= (2) 13717815202020310931514325243029616119030++==-6. (Banach 问题)某数学家有两盒火柴,每盒装有N 根,每次使用时,他在任一盒中取一根,问他发现一空盒,而另一盒还有k 根火柴的概率是多少.解:222211112()(1)()2222N k N N N k N NN k N k p C C -----=-=习题二( A )1.同时抛掷3枚硬币,以X 表示出现正面的枚数,求X 的分布律。
第一二章概率论的答案

详解:(1)依题意可知,记 9 个合格品分别为: A1, A2 ,... A9 , 记“不合格”为 B ,
则
A1,A2 ,A1,A3 ,...A1,A9 ,A1,B,A2,A3 ,A2,A4 ...A2,A9 ,A2,B, A3,A4 ,...A3,A9 A3,B
x1, x2 两 点 位 置 确 定 , x3 位 置 也 就 唯 一 确 定 , 故 共 有 C21 种 情 况 , 记
A
x2位于x1与x3之间
,则 P( A) C21C11 A31 A21
21. 63
(2)设线段 AB 为 1 个单位长度, x1, x2 , x3 分别为线段 Ax1, Ax2 , Ax3 的长度, 若
C A8,A9 ,A9,B, 共有
2 个样本点,其中任取两件得一不合格品的样本点集
10
为:A1,B, A2,B...A9,B
(2)记 2 个白球分别为:1,2 ,3 个黑球分别为: a1, a2, a3,4 个红球分别为:
b1, b2 , b3, b4 ,则 1,2 , a1, a2 , a3, b1, b2 , b3, b4,所以(i)= 1,2,
一、习题详解
1.1 写出下列随机试验的样本空间,并表示下列事件的样本点集合: (1) 10 件产品中有一件是不合格,从中任取 2 件得 1 件不合格品。 (2)一个口袋中有 2 个白球、3 个黑球、4 个红球,从中任取一球,(i)得白球; (ii)得红球。 分析:该题考查了样本空间和样本点的基本定义.
1 p P(B) P(AB)
又因为 P( AB) P( AB) P(B) 1 p 详解 2: A与B相互独立 A与B也相互独立
因此, P(AB) P(A)P(B),又 PA p ,故 P A 1 p
第一章概率论解析答案 习题解答

第一章概率论解析答案习题解答第一章概率论解析答案习题解答第一章随机事件与概率i教学基本要求1.理解随机现象和随机实验,理解样本空间的概念,理解随机事件的概念,掌握事件之间的关系和操作;2、了解概率的统计定义、古典定义、几何定义和公理化定义,会计算简单的古典概率和几何概率,理解概率的基本性质;3.了解条件概率,了解概率的乘法公式、全概率公式和贝叶斯公式,并能用它们解决简单问题;4、理解事件的独立性概念.二、解决问题a组1.填写以下随机试验的样本空间(1)抛掷两颗骰子,观察两次点数之和;(2)连续抛掷一枚硬币,直至出现正面为止;(3)某路口一天通过的机动车车辆数;(4)某城市一天的用电量.解决方案:(1)??{2,3,?,12};(2)记抛掷出现反面为“0”,出现正面为“1”,则??{(1),(0,1),(0,0,1),?};(3)??{0,1,2,?};(4)??{t|t?0}.2.设a、B和C为三个事件。
试着表达以下事件:(1)a、B和C全部或全部发生;(2)至少出现a、B和C中的一种;(3)出现的a、B和C不超过两个解:(1)(abc)?(abc);(2)a?b?c;(3)abc或a?b?c.3.在一次击球中,将a记为“打2到4圈”,B记为“打3到5圈”,C记为“打5到7圈”。
写出以下事件:(1)AB;(2) a?b、(3)a(b?c);(4)abc。
解:(1)ab为“命中5环”;(2) a?B是“打0到1环或3到10环”;1(3) A(B?C)是“打0到2圈或5到10圈”;(4) ABC是“打2到4环”4、任取两正整数,求它们的和为偶数的概率?解:记取出偶数为“0”,取出奇数为“1”,则其出现的可能性相同,于是任取两个整数的样本空间为??{(0,0),(0,1),(1,0),(1,1)}.设a为“取出的两个正整数之和为偶数”,则A.{(0,0),(1,1)},那么p(a)?1.25. 从52张牌中取出4张牌,计算以下事件的概率:(1)全是黑桃;(2)同花;(3)没有两张同一花色;(4)同色?解决方案:有C52种可能的方法从52张卡中选择4张卡4c13(1)设a为“全是黑桃”,则a有c种取法,于是p(a)?4;C52413(2)将B设置为“同一朵花”,那么B有4c413种方法,所以44c13p(b)?4;C52134(3)将C设置为“没有两种颜色相同”,那么C有13种方法,那么p(C)呢?4.c52442c26(4)设d为“同色”,则d有2c种取法,于是p(d)?4.C524266。
概率论第二章习题解答(全)

概率论第二章习题1考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。
解设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010;0.9988,于是得分布律为X20(万)5万0xp 0.00020.00100.99882.(1)一袋中装有5只球,编号为1,2,3,4,5。
在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。
解(1)在袋中同时取3个球,最大的号码是3,4,5。
每次取3个球,其总取法:35541021C ⋅==⋅,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。
因而其概率为22335511{3}10C P X C C ====若最大号码为4,则号码为有1,2,4;1,3,4;2,3,4共3种取法,其概率为23335533{4}10C P X C C ====若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法其概率为25335566{5}10C P X C C ====一般地3521)(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为X 345xp 101103610(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,则样本点为S ={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件,X 的取值为1,2,3,4,5,6,最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11{1}36P X ==;最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3),9{2}36P X ==;最小点数为3的共有7种,7{3}36P X ==;最小点数为4的共有5种,5{4}36P X ==;最小点数为5的共有3种,3{5}36P X ==;最小点数为6的共有1种,1{6}36P X ==于是其分布律为X 123456kp 11369367365363361363设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品的次数,(1)求X 的分布律;(2)画出分布律的图形。
概率论1至7章课后答案

一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数;解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω;(2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和;解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω; (4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i(5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离;解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度.解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃;(3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃;(5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃;(6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃; (7) A;B;C 中至多有两个发生;ABC ;(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ;注意:此类题目答案一般不唯一,有不同的表示方式。
概率论与数理统计第一章课后习题详解

概率论与数理统计习题第一章习题1-1(P 7)1.解:(1)}18,4,3{,⋯=Ω (2)}1|),{22<+=Ωy x y x ( (3) {=Ωt |t},10N t ∈≥(本题答案由经济1101班童婷婷提供) 2.AB 表示只有一件次品,-A 表示没有次品,-B 表示至少有一件次品。
(本题答案由经济1101班童婷婷提供) 3.解:(1)A 1∪A 2=“前两次至少有一次击中目标”;(2)2A =“第二次未击中目标”; (3)A 1A 2A 3=“前三次均击中目标”;(4)A 1⋃A 2⋃A 3=“前三次射击中至少有一次击中目标”; (5)A 3-A 2=“第三次击中但第二次未击中”; (6)A 32A =“第三次击中但第二次未击中”; (7)12A A =“前两次均未击中”; (8)12A A =“前两次均未击中”;(9)(A 1A 2)⋃(A 2A 3)⋃(A 3A 1)=“三次射击中至少有两次击中目标”.(本题答案由陈丽娜同学提供)4.解: (1)ABC(2)ABC(3) ABC (4) A B C(5) ABC (6) AB BC AC (7) A B C (8) (AB) (AC) (BC)(本题答案由丁汉同学提供)5.解: (1)A=BC(2)A =B C(本题答案由房晋同学提供)习题1-2(P 11)6.解:设A=“从中任取两只球为颜色不同的球”,则:112538P(A)=/15/28C C C =(本题答案由顾夏玲同学提供)7.解: (1)组成实验的样本点总数为340C ,组成事件(1)所包含的样本点数为 12337C C ,所以P 1=12337340C C C ⋅ ≈0.2022 (2)组成事件(2)所包含的样本点数为33C ,所以P 2=33340C C ≈0.0001(3)组成事件(3)所包含的样本点数为337C ,所以 P 3=337340C C ≈0.7864 (4)事件(4)的对立事件,即事件A=“三件全为正品”所包含的样本点数为337C ,所以P 4=1-P(A)=1-337340C C ≈0.2136(5)组成事件(5)所包含的样本点数为2133373C C C ⋅+,所以P 5=2133373340+C C C C ⋅ ≈0.01134 (本题答案由金向男同学提供)8.解:(1)组成实验的样本点总数为410A ,末位先考虑有五种选择,首位除去0,有8种选择。
1-8章 习题解答

第一章思 考 题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率 1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者沈克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由.4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习 题1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)Ω=正正,正反,反正,反反 (2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω==(3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限内一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”: ;A(2) “甲中靶而乙未中靶”: ;B A(3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”: ;C B A C B A C B A(5)“ 三人中至少有一人中靶”: ;C B A(6)“三人中至少有一人未中靶”: ;C B A 或;ABC(7)“三人中恰有两人中靶”: ;BC A C B A C AB(8)“三人中至少两人中靶”: ;BC AC AB(9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A(11)“三人中至多两人中靶”: ;ABC 或;C B A3 .设,A B 是两随机事件,化简事件 (1)()()A B A B (2) ()()A B A B解:(1)()()A B A B AB AB B B == , (2) ()()A B A B ()AB AB B A A B B ==Ω= .4.某城市的电话号码由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求电话号码由五个不同数字组成的概率. 解:51050.302410P P ==. 5.n 张奖券中含有m 张有奖的,k 个人购买,每人一张,求其中至少有一人中奖的概率。
概率论~第一章习题参考答案与提示

第一章 随机事件与概率习题参考答案与提示1. 设为三个事件,试用表示下列事件,并指出其中哪两个事件是互逆事件:C B A 、、C B A 、、(1)仅有一个事件发生; (2)至少有两个事件发生;(3)三个事件都发生; (4)至多有两个事件发生;(5)三个事件都不发生; (6)恰好两个事件发生。
分析:依题意,即利用事件之间的运算关系,将所给事件通过事件表示出来。
C B A 、、 解:(1)仅有一个事件发生相当于事件C B A C B A C B A 、、有一个发生,即可表示成C B A C B A C B A ∪∪;类似地其余事件可分别表为(2)或AC BC AB ∪∪ABC B A BC A C AB ∪∪∪;(3);(4)ABC ABC 或C B A ∪∪;(5)C B A ;(6)B A BC A C AB ∪∪或。
ABC AC BC AB −∪∪ 由上讨论知,(3)与(4)所表示的事件是互逆的。
2.如果表示一个沿着数轴随机运动的质点位置,试说明下列事件的包含、互不相容等关系:x {}20|≤=x x A {}3|>=x x B {}9|<=x x C{}5|−<=x x D{}9|≥=x x E 解:(1)包含关系: 、 A C D ⊂⊂B E ⊂ 。
(2)互不相容关系:C 与E (也互逆)、B 与、D E 与。
D 3.写出下列随机事件的样本空间:(1)将一枚硬币掷三次,观察出现H (正面)和T (反面)的情况;(2)连续掷三颗骰子,直到6点出现时停止, 记录掷骰子的次数;(3)连续掷三颗骰子,记录三颗骰子点数之和;(4)生产产品直到有10件正品时停止,记录生产产品的总数。
提示与答案:(1);{}TTT TTH THT HTT THH HTH HHT HHH ,,,,,,,=Ω(2); {,2,1=Ω}(3);{}18,,4,3 =Ω(4)。
{} ,11,10=Ω4.设对于事件有C B A 、、=)(A P 4/1)()(==C P B P , ,8/1)(=AC P0)()(==BC P AB P ,求至少出现一个的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题一(A )1. 用三个事件,,A B C 的运算表示下列事件:(1),,A B C 中至少有一个发生; (2),,A B C 中只有A 发生; (3),,A B C 中恰好有两个发生; (4),,A B C 中至少有两个发生; (5),,A B C 中至少有一个不发生; (6),,A B C 中不多于一个发生. 解:(1)A B C (2)ABC (3) ABC ABC CAB (4) ABBC CA (5) A B C (6) ABBCC A2. 在区间[0,2]上任取一数x , 记 1{|1},2A x x =<≤ 13{|}42B x x =≤≤,求下列事件的表达式: (1)AB ; (2)AB ; (3) AB .解:(1){|1412132}x x x ≤≤<≤或 (2)∅(3){|014121x x x ≤<<≤或3. 已知()0.4,()0.2,()0.1P A P BA P CAB ===,求()P AB C .解:0.2()()P A P AB =-,0.1()(())()()()()()()P C AB P C AB PC P CA CB P C P CA P CB P ABC -=-=-=--+ ()()()()()()()()P AB C P A P B P C P AB P BC P CA P ABC =++---+=0.40.20.10.7++=4. 已知()0.4,()0.25,()0.25P A P B P A B ==-=,求()P B A -与()P AB .解:()()()0.25P A B P A P AB -=-=, ()0.15P AB =, ()()()0.250.150P B A P B P AB -=-=-=, ()()1()()()P A B P AB P A P B P A B==--+ 10.40.250.150.5=--+=5.将13个分别写有,,,,,,,,,,,,A A A C E H I I M M N T T 的卡片随意地排成一行,求恰好排单词“MATHEMATICIAN ”的概率.解:232224813!13!p ⨯⨯⨯⨯==6. 从一批由45件正品、5件次品组成的产品中任取3件产品,求其中恰好有1件次品的概率.解:1254535099392C C p C == 7. 某学生研究小组共有12名同学,求这12名同学的生日都集中在第二季度(即4月、5月和6月)的概率.解: 1212312p =:8. 在100件产品中有5件是次品,每次从中随机地抽取1件,取后不放回,求第三次才取到次品的概率.解:设i A 表示第i 次取到次品,1,2,3i =,12395945()0.0461009998P A A A ==9. 两人相约7点到8点在校门口见面,试求一人要等另一人半小时以上的概率.解:1112122214p ⨯⨯⨯== 10. 两艘轮船在码头的同一泊位停船卸货,且每艘船卸货都需要6小时.假设它们在一昼夜的时间段中随机地到达,求两轮船中至少有一轮船在停靠时必须等待的概率.解:22246371()1()24416p -=-=-= 11. 任取两个不大于1的正数,求它们的积不大于29,且它们和不大于1的概率. 解:29xy ≤ , 1x y +≤ ,所以 13x =,23x =23131212ln 23939p dx x =+=+⎰12. 设(),(),P A a P B b == 证明:1(|)a b P A B b+-≥. 证明: ()()()()()()()P AB P A P B P A B P A B P B P B +-==()()11()P A P B a b P B b+-+-≥≥13. 有朋自远方来,他坐火车、坐船、坐汽车和坐汽车的概率分别为0.3,0.2,0.1,0.4 .若坐火车来,迟到的概率是0.25;若坐船来,迟到的概率是0.3;若坐汽车来,迟到的概率是0.1;若坐飞机来,则不会迟到.求他迟到的概率.解:0.30.250.20.30.10.10.145⨯+⨯+⨯=14. 设10个考题签中有4个难答,3人参加抽签,甲先抽,乙次之,丙最后.求下列事件的概率:(1)甲抽到难签;(2)甲未抽到难签而乙抽到难签;(3)甲、乙、丙均抽到难签.解;(1)42105p == (2)64410915p ==(3) 4321109830p ==15. 发报台分别以概率0.6和0.4发出信号“*”和“-” .由于通信系统受到干扰,当发出信号“*”时,收报台未必收到信号“*”,而是分别以概率0.8和0.2收到信号“*”和“-”;同样,当发出信号“-”时,收报台分别以0.9和0.1收到信号“-”和“*”.求:(1)收报台收到信号“*”的概率;(2)当收到信号“*”时,发报台确实是发出信号“*”的概率. 解:(1)0.60.80.40.10.52⨯+⨯= (2)0.48120.5213= 16. 设,A B 相互独立,()0.6,()0.4P A B P B ==,求()P A .解:()0.6()()()0.4()()P AB P A P B P AB P A P AB ==+-=+-0.2()0.4()P A P A =-, 1()3P A = 17. 两两独立的三事件,,A B C 满足,ABC =∅并且1()()()2P A P B P C ==<.若9()16P AB C =,求()P A . 解:293()3()16P A P A =- ,216()16()30P A P A -+= 21()(,()34P A P A ==舍) 18、证明:(1)若(|)()P A B P A >,则(|)()P B A P B >.(2)若(|)(|)P A B P A B =,则事件A 与B 相互独立.证明:(1)()()()P AB P A P B > ,()()()P AB P A P B >()()()()()()()P AB P A P B P B A P B P A P A >=(2) ()()P A B P A B =,()()()1()P AB P A B P B P B -=- ()()()P AB P A P B =19. 甲、乙、丙三人独立地向一架飞机射击.设甲、乙、丙的命中率分别为0.4,0.5,0.7. 又飞机中1弹,2弹,3弹而坠毁的概率分别为0.2,0.6,1. 若三人各向飞机射击一次,求:(1)飞机坠毁的概率;(2)已知飞机坠毁,求飞机被击中2弹的概率.解:(1)0.2(0.40.50.30.60.50.30.60.50.7)0.6(0.40.50.30.40.50.70.60.50.7)0.40.50.70.20.360.60.410.140.458⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=⨯+⨯+=(2)0.60.410.540.458⨯=20. 三人独立破译一密码,他们能独立译出的概率分别为0.25,0.35,0.4.求此密码能被译出的概率.解: 0.250.350.40.250.650.60.750.350.750.650.40.250.350.60.250.650.40.750.350.4⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯0.0350.09750.15750.1950.05250.0650.7075=++++++=21. 在试验E 中,事件A 发生的概率为()P A p =,将试验E 独立重复进行三次,若在三次试验中“A 至少出现一次的概率为1927”,求p .解:00333191(1)1(1)27C p p p =--=--,13p = 22. 已知某种灯泡的耐用时间在1000小时以上的概率为0.2,求三个该型号的灯泡在使用1000小时以后至多有一个坏掉的概率.解:31230.20.80.20.0830.80.040.104C +⋅=+⨯⨯=23. 设有两箱同种零件,在第一箱内装50件,其中有10件是一等品;在第二箱内装有30件,其中有18件是一等品.现从两箱中任取一箱,然后从该箱中不放回地取两次零件,每次1个,求:(1)第一次取出的零件是一等品的概率;(2)已知第一次取出的零件是一等品,,第二次取出的零件也是一等品的概率.解: (1) 1011810.4502302+= (2) 5110911817519117[][]225049230294549529+=+19512612499()0.4856449295684+=+==(B )1.箱中有α个白球和β个黑球,从中不放回地接连取1(1)k k αβ++≤+次球,每次1个.求最后取出的是白球的概率.解:(1)(2)()()(1)()k k αβαβαβαααβαβαβαβ+-+-+-=++-+-+2. 一栋大楼共有11层,电梯等可能地停在2层至11层楼的每一层,电梯在一楼开始运行时有6位乘客,并且乘客在2层至11层楼的每一层离开电梯的可能性相等,求下列事件的概率:(1)某一层有两位乘客离开;(2)没有两位及以上的乘客在同一层离开; (3)至少有两位乘客在同一层离开.解:(1)42242666199()()101010C C = (2) 61010!P(3) 610110!P -3.将线段(0,)a 任意折成3折,求此3折线段能构成三角形的概率. 解:{}(,)0,0,0x y x a y a x y a Ω=<<<<<+<, (,)0,0,222a a a A x y x y x y a⎧⎫=<<<<<+<⎨⎬⎩⎭, 211222142a a p a ==4. 设平面区域D 由四点(0,0),(0,1),(1,0),(1,1)围成的正方形,现向D 内随机投10个点,求这10个点中至少有2个落在由曲线2y x =和直线y x =所围成的区域1D 的概率.解: 121()6p x x dx =-=⎰, 01019101015151()()()()6666C C --91091051055151()()166662929687510.5260466176⨯=--=-=-= 5. 设有来自三个地区的10名、15名、25名考生的报名表,其中女生的报名表分别为3份、7份、5份. 随机地取一个地区的报名表,从中先后抽取两份.(1)求先抽到的一份是女生表的概率;(2)已知后抽到的一份是男生表,求先抽到的是女生表的概率.解:( 1)1317152931031532590++= (2)13717815202020310931514325243029616119030++==- 6. (Banach 问题)某数学家有两盒火柴,每盒装有N 根,每次使用时,他在任一盒中取一根,问他发现一空盒,而另一盒还有k 根火柴的概率是多少.解:222211112()(1)()2222N kNNN k NN N k N k p C C -----=-=习题二( A )1.同时抛掷3枚硬币,以X 表示出现正面的枚数,求X 的分布律。