水泵运行工况点与调节
水泵的工况点介绍

线完全不一样。性能曲线反映了水泵自身所具有 的潜在的工作能力。但是,在运用时要发挥水泵 的这种效果,必须把泵出口配上管道才能把水输
样做的,我才跟你同学几天,不过是仅仅知道你叫
2de0f9c9c
体的点,这个点就称为水泵工况点。水泵工况点 反映了水泵瞬时的工作状况。除了水泵本身的能 力外,水泵工况点的具体位置还取决于其他因
样做的,我才跟你同学几天,不过是仅仅知道你叫
素。决定水泵工况的因素有两个方面: 水泵固有的工作能力;②水泵的工作环境,
比如所有污水泵产品输送污水时工况点是依据 清水来计算的,即水泵的管路系统的布置以及水 池、水塔水位的变化等边界条件。
送到高处而不是不接管道就能喷到泵铭牌所标 的扬程数值。那么,对于一个具体的水泵系统, 水泵究竟在性能曲线上的哪一点工作,这就是确
定水泵工况点的问题。 什么是水泵工况点?
样做的,我才跟你同学几天,不过是仅仅知道你叫
水泵工况是指水泵运行时,实际出水量 Q、 扬程 H、轴功率 N、效率 n 等,把这些值绘在扬 程曲线、功率曲线、效率曲线上,就成为一个具
第4章水泵运行工况及水泵工况调节

注: 多级泵,实质上就是n级水泵的串联运行。随着水泵制 造工艺的提高,目前生产的各种型号水泵的扬程,基 本上已能满足给水徘水工程的要求,所以,一般水厂 中已很少采用串联工作的形式。
例:水泵流量Q=120 l /s,吸水管管路长度l1=20m; 压水管管路长度l2=300m;吸水管径Ds=350mm,压 水管径Dd=300mm ;吸水水面标高58.0m;泵轴标 高60.0m ;水厂混合池水面标高90.0m 。 求水泵扬程(P21)。
于某场程下各台泵流量之和。
H
0
Q
2、同型号、同水位的两台水泵的并联工作
H
H’ H
N S
M
Q-ΣH (Q-H)1+2 (Q-H)1,2
N1,2
N’
Q1,2
Q’ Q1+2
Q
步骤:
(1)绘制两台水泵并联后的总和(Q-H)l+2曲线 (2)绘制管道系统特性曲线,求并联工况点M。
H H ST hAO hOG
2 切削律的应用
1、切削律应用的两类问题 (1)已知叶轮的切削量,求切削前后水泵特性曲线的变化。 (2)已知要水泵在B点工作,流量为QB,扬程为HB,B点位 于该泵的(Q-H)曲线的下方。现使用切削方法,使水泵 的新持性曲线通过B点,要求:切削后的叶轮直径D’2 是 多少?需要切削百分之几?是否超过切削限量?
1 H H ST ( S AO SOG )Q12 2 4
(3)求每台泵的工况点N
H H’ H N S (Q-H)1,2 M Q-ΣH (Q-H)1+2
N1,2
N’ Q’ Q1+2 Q
Q1,2
结论: (1)N’>N1,2,因此,在选配电动机时,要根据单条单独工 作的功率来配套。 (2)Q’>Q1,2,2Q’>Q1+2,即两台泵并联工作时,其流量不 能比单泵工作时成倍增加。
第四章 水泵运行工况及工况调节 第三讲

O
Q
3、切削叶轮应注意的问题
应用切削律应该注意以下几点:
1)不同构造的叶轮应取不同切削方式。 (1)低比转数的叶轮,叶轮前后两盖板和叶片切削量都是一样的; (2)高比转数的叶轮,叶轮前后两盖板和叶片切削量是不一样的。 对于高比转数的离心泵,后盖板的切削量应大于前盖板;对于混流 泵的叶轮只切削前盖板的外缘直径,叶片完全不切削,以保持水流 的流线等长。叶轮出口如果有 导流器或减漏环,则切削时, 可只切削叶片。 (3)叶轮切削后对出水 舌面需要进行处理。
H3
- 4° O
Q
(1)如果叶片安装角度为0°。 最高水位时 Q=663L/S,N=38.5Kw,η=81% 常水位时 Q=570L/s,N=48Kw,η>81% 最低水位时 Q=463L/s,N=57Kw,η=73% 由此可以看出,最低水位时水泵出水量较小,效率低, 轴功率较大且有超载的危险,为了避免超载现象的发生, 可以通过改变叶片角度对工况进行人为调节。调节的情况 如下: 1)最高水位时,叶片安装高度调至+4° Q=758L/s,N =46Kw,η>81% 2)常水位时,叶片安装角度调至0° Q=570L/s ,N=48Kw ,η>81% 3)最低水位时,叶片安装角度调至-2° Q=425L/s,N=51.7Kw,η=73%
4.3.2 变径调节 变径调节:是将水泵的原叶轮直径在车床上切削去一 部分再安装好进行运转。切削叶轮是用以改变水泵特 性的一种调节方法。
D2 Q' Q D2
'
D2 – D’2 D’2
H' D'2 2 ( ) H D2
D P' ( 2 )3 P D2
'
D2
水泵运行工况分析

水泵运行工况分析作者:张智学来源:《魅力中国》2018年第08期摘要:在自来水的输配过程中,给水泵站是重要的组成部分,只要其中的一个水泵运行发生错误,都会波及很大。
因此,水泵工矿点的确定就显得尤其重要,在确定的过程中,要保证电机不过载和水泵不发生汽蚀的基础上争取较小的吨百电耗为原则。
同时,还应该配置两种功率的电机,使得用户能够选择最佳的设备组合以此到达减少能耗的目的。
本文主要分析水泵运行的工况情况。
关键词:水泵;运行工况;分析每台水泵都有一个性能曲线,这个曲线是在一定的转速下体现出来的,比如说2900转或者1450转又或者800转,每个转速的时候,它的曲线完全不一样。
性能曲线反映了水泵自身所具有的潜在的工作能力。
但是,在运用时要发挥水泵的这种效果,必须把泵出口配上管道才能把水输送到高处而不是不接管道就能喷到泵铭牌所标的扬程数值。
那么,对于一个具体的水泵系统,水泵究竟在性能曲线上的哪一点工作,这就是确定水泵工况点的问题。
一、水泵工况点的概念水泵工况是指水泵运行时,实际出水量Q、扬程H、轴功率N、效率n等,把这些值绘在扬程曲线、功率曲线、效率曲线上,就成为一个具体的点,这个点就称为水泵工况点。
水泵工况点反映了水泵瞬时的工作状况。
除了水泵本身的能力外,水泵工况点的具体位置还取决于其他因素。
决定水泵工况点的因素有两个方面:水泵固有的工作能力;水泵的工作环境,比如所有污水泵产品输送污水时工况点是依据清水来计算的,即水泵的管路系统的布置以及水池、水塔水位的变化等边界条件。
二、水泵运行工况的调节方法1.节流调节节流调节就是在管路中装设节流件,如阀门。
孔板等通过改变阀门的开度大小来改变管路阻力从而改变了装置扬程性能曲线,也可以加一个小孔的孔板,它用于固定流量的调节常只用在出口管路上,因为在进口管路上易使泵发生汽蚀节流调节方法简单、易行、可靠并且可以再泵运行中动态下随时改变故广泛应用于中小型泵中的调节。
2.变速调节变速调节是改变泵性能曲线来改变泵的工作点的其优点是没有附加损失,所以很是经济变速调节因受泵的强度限制,一般只用于降速调节不得任意提高轉速,以免损坏泵,在降速调节时一般泵的效率会有所下降,并随降速幅度增大而下降增大所以转速降低一般不得低于50%,否则会使泵的效率降低太多。
工况点的确定与调节

nA
nB A(QA ,HA) B(QB ,HB )
Q ~H
0
3 Q(m/s)
(三)变速运行的特点
1)使水泵高效、经济合理地运行。 2)水泵低速起动,可减小起动力矩,易于起动。 **一般水泵降速不超过30%。 **一般不宜采用增速的方法,特殊需要时, 增速不要超过额定转速的5%。 **注意防止引起共振。
叶轮直径实际车削比( %)
D K D Da
90 2 1 80
查图得叶轮实际车削比: 70 91.5% 70 80 90 叶轮直径计算车削比 (100%) 故实际车削量为: 图 4-18 叶轮车削量校正 367×(100-91.5)%=31.195(mm), 1.径流式叶轮;2.混流式叶轮 车削后的叶轮直径: 367×91.5%=335.805(mm)。
叶片角度增加,比较两三角形中的vu2,后者明显增 大,根据基本方程,可见H增加了,即在流量Q不变的情 况下扬程增加。所以H~Q曲线上移,而这时的效率变化 很小。
v 2 v2 w2 w2 vm2
u2
2
vu2 vu2
2
图 4-20 轴流泵的变角调节
(二)叶片角度调节的方式
1)半调节 2)全调节: 液压系统 机械调节
H(m)
Qa 130 Da D 367 329(m m) Q 145 理论车削量为:
D H=KQ
37 30 20
2
Da A
B
D D Da 367 329 38(mm)
H~Q
0
Hale Waihona Puke 130150170
Q(L/s)
图 4-15
例4 - 5图
4)修正:
100
水泵工况调节资料课件

目录
CONTENTS
• 水泵工况调节基本概念 • 离心泵工况调节方法 • 轴流泵和混流泵工况调节方法 • 往复式容积泵工况调节方法 • 其他类型水泵工况调节技术探讨 • 总结与展望
01
水泵工况调节基本 概念
工况调节定义与意义
工况调节定义
根据实际需要,调整水泵的运行 状态,以满足不同工况下的要求 。
应用场景
通过切割离心泵的叶轮,改变叶轮的直径 ,从而改变泵的性能曲线,实现工况调节 。
适用于流量和扬程都需要降低的场合。
优点
缺点
能够在一定程度上提高泵的效率,降低成 本。
叶轮切割后,泵的性能会发生变化,可能 需要进行重新匹配和调整。
03
轴流泵和混流泵工 况调节方法
轴流泵工况调节特点及方法
调节特点:轴流泵的工况调节主要通过 改变泵的转速、叶片角度和流量来实现 。具有调节范围广、效率高等特点。
节流调节:通过调节出口阀门开度来改 变泵的流量和扬程,适用于小流量、高 扬程的场合。
变角调节:通过改变叶片角度来调节泵 的工况点,适用于扬程变化较大、流量 变化较小的场合。
调节方法
变速调节:通过改变泵的转速来调节流 量和扬程,适用于大流量、低扬程的场 合。
混流泵工况调节特点及方法
调节方法
变角调节:通过改变叶片角度来 调节泵的工况点,适用于需要保 持一定扬程、流量变化较小的场 合。
调节原理
采用独特的叶轮结构和流道设计 ,实现大流量、高扬程、无堵塞
排污。
优点
适用于输送含有大量固体颗粒、纤 维等复杂成分的介质,具有高效、 节能、环保等特点。
缺点
结构复杂,维护成本较高,对介质 成分和温度有一定要求。
水泵的最优工况

水泵的最优工况水泵的最优工况,也被称为最佳工作点或最佳效率点,是指水泵在其性能曲线上能够达到最高能效的运行状态。
在这个工况下,水泵的能耗最低,同时能够提供满足系统需求的水流量和扬程。
以下是确定水泵最优工况时需要考虑的几个关键因素:1. 流量:水泵的流量应与系统的需求量相匹配。
选择过大的水泵可能导致频繁启停或长时间低负荷运行,而选择过小的水泵则可能导致无法满足系统需求。
2. 扬程:水泵的扬程应略高于系统所需的扬程,以克服管道阻力、高度差等因素。
但过高的扬程会造成能源浪费。
3. 效率:水泵的效率是衡量其将输入能量转化为输出能量(即泵送水的能力)的指标。
在最优工况下,水泵的效率应尽可能高。
4. 功率:水泵的轴功率与其效率和扬程、流量有关。
最优工况下的水泵应在满足扬程和流量需求的同时,具有较低的轴功率。
5. NPSH(净正吸入头):NPSH是衡量水泵进口处最低允许压力的指标,以避免发生汽蚀现象。
最优工况下的水泵应具有足够的NPSH值。
6. 运行范围:水泵的运行范围应与系统的需求相匹配。
如果可能,最好选择一个能够在较宽范围内高效运行的水泵。
7. 调节方式:水泵可以通过阀门调节、变频调节等方式来改变其运行状态,以适应不同的系统需求。
8. 可靠性和维护:在考虑最优工况时,还应考虑水泵的可靠性和维护成本,以确保长期稳定运行。
9. 成本效益分析:在选择水泵时,应对不同型号和配置进行成本效益分析,以找到最经济有效的解决方案。
综上所述,水泵的最优工况是一个综合考虑多个因素的结果,包括流量、扬程、效率、功率、NPSH等。
在选择水泵时,应根据系统的具体要求和运行条件来确定最优工况,以确保水泵能够高效、稳定地运行。
水泵运行工况及工况调节

特性曲线(Q-H)
‘ Ⅱ
。
(2)绘制 H=HST+SFG∑hFGQ2(曲线记为Q-∑h FG),并由
Q p找到并联等值泵工况点P (Q p, H p)。
(3)过p点作Q轴平行线交(Q-H)′Ⅱ于H,过H点作垂线
交(Q-H)Ⅰ,Ⅱ于J点,J(QⅡ, HⅡ)即为定速泵工况点。
(4)调速泵工况点:QⅠ=Qp-QⅡ,在Q轴上取:QⅠ与过QⅠ 点作垂线与Hp线交于N,调速泵的扬程应为:
3
Ⅲ
O
Q1 Q2
Q3
Q
4.2.1 水泵并联运行工况 一、水泵并联运行,工况点的图解法
1.同型号、同水位对称布置的两台水泵并联运行。 (1)绘制两台水泵并联后扬程 (Q-H)1+2性能曲线
M E
Q,
由于管道对称布置,则 ∑hDF=∑hEF,采用横 加法原理绘制两台水泵并联工作的总和 (Q-H)1+2曲 线,如图所示。
QA
O
QA
Q
总工况点:A点,QA=QB=QC
HA=HB+HC 单泵工况点: Ⅰ B点 (QB ,HⅠ)
Ⅱ C点 (QC ,HⅡ) 注:1)串联泵的流量应接近;
2)串联后边的水泵体强度要满足串联叠加的 水压。
(Q-H) )′Ⅰ+Ⅱ。
(2)绘制需能Q-∑hFG曲线。
(3)求工况点。(Q-H) ′Ⅰ+Ⅱ与Q-∑hFG交点M,即为所求同水位、不 同型号的两泵并联工作的工况点。M点的流量即为并联工作的两台水泵的 总出水量。
I
并联水泵机组的总轴功率P1+2及总效率η1+2分别
为:
P = 1+2 P1 + P2
交点于R点,即为并联运行时水泵的工况点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、节流调节
改变出水管路闸门开度
改变水泵装置需要扬程曲线
适用条件:离心泵和低比转速混流 泵,不适用于比转速较 大的泵
特 点:调节方法可靠、简单易 行,但不经济
作 用:一般用来防止过载和汽 蚀
作业
1、一台离心泵从进水池抽水,流量0.04m3/s,进水池水位低于 水泵轴线5m;出水池水位高于水泵轴线1.6m,进水管长 8m,装有带底阀的莲蓬头,局部损失系数为6,90°弯头一 个,局部损失系数为0.4;出水管长5m,管径150mm,管口 不放大,拍门淹没出流,局部损失系数为1.5,管路上有两个 90°弯头,管路上有一只阀门全开水头损失忽略不计。水泵 效率70%,管道的糙率为0.013,水泵进口直径200mm。试 求:要求水泵进口处真空值不超过6m水柱时,进水管的管径 应选多少?此时水泵的扬程为多少,轴功率为多少?
改变叶轮的直径
改变水泵性能曲线
车削定律
⎧Q ⎪
=
D
⎪Qa Da
⎪
⎪H
⎨ ⎪
H
a
=
⎜⎜⎝⎛
D Da
⎟⎟⎠⎞2
⎪ ⎪N ⎪⎩ Na
=
⎜⎜⎝⎛
D Da
⎟⎟⎠⎞3
适用条件:通常只适用于比转速不超过350的水泵(离心 泵或蜗壳式混流泵)
3、变角调节
改变叶片的安放角
改变水泵性能曲线
适用条件:适用于低扬程水泵(轴流泵、导叶式混流泵)
=
n3 n3
1
水泵变速前后,满足比例律的各工况点均在一条抛物线上,具 有相似的工况,并且效率相等(近似相等)
由 Q1 = n1 , H 1 = n12
Q2
n2 H 2
n2 2
H1 H2
=
⎛ ⎜ ⎝
Q1 Q2
⎞2 ⎟ ⎠
H1 = H 2 = k
Q
2 1
Q2 2
H = kQ2
2、变径调节(车削调节)
第4章 水泵运行工况点与调节
4.1 水泵运行工况点
※管路性能曲线 管路水头损失:沿程水头损失+局部水头损失
hl=SQ2
∑ ∑ S = 10.28
Ln 2 d 5.33
+
0.083
ξ
d4
※需要扬程曲线
Hr=Hst+SQ2
※水泵工况点的确定 图解法
数解法
4.2 水泵并联运行
• ※图解法
4.3 水泵串联运行
2、有一台水泵,试验测得其转速为2950r∕min,流量为3.5 L/s,扬程为33.1m,轴功率为2.13kW,若该水泵的额定转速 为2900r∕min,且不考虑转速对水泵效率的影响,试计算: 水泵在额定转速下运行时的流量、扬程、轴功率与效率。
•Hale Waihona Puke ※图解法4.5 水泵工况的调节
原设计运行工况
水位变化 流量变化
效率降低 功率增加 发生气蚀
工况调节
工况调节
改变水泵装置需要扬程 Q ~ H r 改变水泵性能曲线 Q ~ H
1、变速调节
改变水泵的转速
改变水泵性能曲线
水泵的性能参数与转速的关系
Q Q1
=
n,H n1 H 1
=
n2 n2
1
,P P1
(管径系列(mm):10,15,20,25,32,40,50,65,80,100,125,150,175, 200,
225,250,300,350,400,450,500,600,700,800,900,1000,1100,1200,1300,1400, 1500,1600,1750,1800,2000,2200)