六年级比和比例知识点复习
小学六年级_比和比例知识点梳理(最新整理)

复习课:比和比例知识点一: 比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9:6=1.5↑↑↑↑前项比号后项比值9:6=3:2↑比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
基本性质化简比的依据。
解比例的依据。
知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)÷除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(是整数、分数或小数)化简比把两个数的比化简成最简单的整数比前项和后项同时乘或除以相同的数(0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。
一个比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:(一定)k xy=2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:(一定)k xy =3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系不同点名称意义不相同变化方向不相同关系式不同相同点正比例两种量中相对应的两个数的比值,也就是商一定一种量扩大(或缩小),另一种量也随之扩大(或缩小)。
(一定)k xy =反比例两种量中相对应的两个数的积一定一种量扩大(或缩小),另一种量也随之缩小(或扩大)。
(完整版)六年级比和比例复习知识点及典型例题

比和比例知识点:2、按比分配的实际应用:例:一辆货车和一列客车同时从相距135km 的两地相向而行,经过1.5小时相遇。
已知货车和客车的速度比是7:8,求货车行驶速度。
135÷1.5×=427153、比例综合应用:例:在一幅比例尺为1:4000000的中国地图上,量得浙江湖州到山东日照的图书距离为15cm 。
陈老师早上6:00从湖州出发开车去日照旅游,下午2:00到达目的地。
途中陈老师开车的平均速度是多少?75练一练:1、北京到济南高速公路距离大约为430km ,北京到天津大约为120km 。
一辆汽车从北京出发开往济南,当行驶到天津时用了1.5小时。
按照这个速度,北京到济南全程需要多少小时?5.3752、刘大伯家养鸡、鸭、鹅共1800只,这三种家禽的只数比是5:3:1.刘大伯家养鸡、鸭、鹅各多少只?3、为创建海华公司,张、王、李三人分别投资100万元、120万元和80万元。
在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?4、在比例尺是1:3000000的地图上,量得A、B两城之间的距离是2.4厘米。
在A、B两城之间有一中途停靠站C,A、B两城到C站的距离比是7:5。
一辆汽车从B城到C站共用了0.6小时,求这辆汽车的速度。
5、甲乙两人分别从相距255千米的两地同时出发相向而行,已知甲乙速度比为10:7,两人相遇时各行了多少千米?6、小淘气看一本科技书,第一天看了全书的,第二天看了42页,这时看了的页数与剩下的页数比是2:5,这本科技书一共有多少页?7、某车间生产了甲、乙、丙三种配套机件共1280只,其中甲乙两种机件只数的比是3∶2,丙种机件比甲种多80只,丙种机件生产了多少只?8、把长35厘米的圆柱体按3∶2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米。
求截成的较长一个圆柱的体积。
9、一批零件分给甲、乙、丙三人完成,甲完成了总任务的30%,其余的由乙、丙按3∶4来做,丙共做了200个,问这批零件共有多少个?10、一本书小明第一天读了全部的40%,第二天比第一天少读了30页。
六年级数学《比和比例》知识点

六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。
2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
3、比的应用通过比可以应用一些问题。
二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。
2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。
在一比例里,两外项的积等于两内项的积。
这叫做比例的基本性质。
3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。
这个求未知项的过程,叫做解比例。
三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。
2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。
3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。
比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。
定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。
比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。
比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。
比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数叫做比例的项。
两外两项叫做内项,中间两项叫做外项。
如果中间的两项是两个相同的数,这样的比例叫做对称比例。
比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。
我们把比例尺分为放大比例尺和缩小比例尺两种。
缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。
六年级下册《比和比例》总复习-

可以用两种方法解答:
(一)用比例解:
设需要X小时,因为工效相等,所以
72:6=120:X 72X=120×6 X=10
(二)用算术方法解: 先求出工作效率,再求工作时间:
120÷(72÷6) =120÷12 =10(小时)
答:需要10小时。
小结:
这两种方法得区别在于解比例只用到一个关 系式:工作量÷工作时间=工作效率,思路简捷;而 列算式解答,除了用到上面这个关系式,还要用到: 工作量÷工作效率=工作时间,思路转折多一些。 请大家以后在解题时,用自己理解得方法解答。
比例尺分为( 数值比例尺)和(
线段比例)尺
9) :1
4
( 2 ):8=0、25=— 1=620÷( 80
)
()
出粉率一定,面粉重量和小麦重量成( )正比例、
被除数一定,除数和商成( 反)比例、
总价一定,单价和数量成( 反)比例、
小明每天看8页书,它看书得总页数和看书得天数成(
已知a×b=c( a、b、c 均不为0)
答:这幅图纸得比例尺是1:5000、
(4)求实际距离。
在比例尺是 1:8000000得地图上,量得A地到B地得距离是 5厘米。求AB两地得实际距离。
解: 设A.B两地之间得距离是x厘米。
图上距离
根据:
———— 实际距离
=比例尺
5:x =1:8000000 1×x= 5×8000000
x= 40000000 40000000厘米=400千米 答:A.B两地实际距离是400千米。
12
答:三条边分别长21厘米,28厘米, 35厘米。 白云居课件
甲乙丙3人和合租一套房子,房 租为990。甲住了 1 得时间
(完整版)小学六年级__比和比例知识点梳理

复习课:比和比例知识点一: 比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9:6=1.5↑↑↑↑前项比号后项比值9:6=3:2↑比的前项和后项同时乘或除以相同的数(0除外),比值不变。
在比例里,两个外项的积等于两个内项的积。
基本性质化简比的依据。
解比例的依据。
知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)÷除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(是整数、分数或小数)化简比把两个数的比化简成最简单的整数比前项和后项同时乘或除以相同的数(0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。
一个比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:(一定)k xy=2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:(一定)k xy =3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系不同点名称意义不相同变化方向不相同关系式不同相同点正比例两种量中相对应的两个数的比值,也就是商一定一种量扩大(或缩小),另一种量也随之扩大(或缩小)。
(一定)kxy=反比例两种量中相对应的两个数的积一定一种量扩大(或缩小),另一种量也随之缩小(或扩大)。
(完整版)小学六年级_比和比例知识点梳理

复习课:比和比例知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:〜 k (一定)x2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:xy k (一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。
(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量, 就不成比例4、正比例、反比例的区别与联系知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。
(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量总份数=平均每份的量(归一)",再用"一份的量各部分量所对应的份数”,求出各部分的量。
用比例知识解答:首先设未知量为。
再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出X。
2、用正、反比例知识解答应用题的步骤(1)分析数量关系。
判断成什么比例。
(2)找等量关系。
如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。
(3)解比例式。
设未知数为X,并代入等量关系式,得正比例式或反比例式。
(4)解比例。
(5)检验并写出答语。
精讲典型题例题1填空(1)一项工程,甲单独做要4天,乙单独做要5天完成,甲和乙的工作效率比是(): ()(2)把2米:4厘米化成最简单的整数比是(),比值是()。
六年级数学知识点:比和比例

六年级数学知识点:比和比例1、比的意义和性质(1) 比的意义:两个数相除又叫做两个数的比。
“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
比值通常用分数表示,也可以用小数表示,有时也可能是整数。
比的后项不能是零。
根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
(3) 求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。
线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。
(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
2、比例的意义和性质(1) 比例的意义表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。
求比例中的未知项,叫做解比例。
3、正比例和反比例(1) 成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
小学六年级--比和比例知识点梳理

复习课:比和比例知识点三:求比值和化简比 知识点四:正比例和反比例的意义和判断方法1、 正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
正比例的关系式:k xy=(一定) 2、 反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。
反比例的关系式:k xy =(一定)3、 判断正、反比例的方法:一找二看三判断(1) 找变量:分析数量关系,确定哪两种量是相关联的量。
(2) 看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。
(3) 判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。
(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)”,再用“一份的量⨯各部分量所对应的份数”,求出各部分的量。
用比例知识解答:首先设未知量为。
再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出x。
2、用正、反比例知识解答应用题的步骤(1)分析数量关系。
判断成什么比例。
(2)找等量关系。
如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。
(3)解比例式。
设未知数为x,并代入等量关系式,得正比例式或反比例式。
(4)解比例。
(5)检验并写出答语。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比和比例知识点复习
一、知识要点
1基本概念
(1)两个数相除,又叫做这两个数的比,“:”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值。
比的后项不能为0。
(2)分数的基本性质:分数的分子和分母冋时乘以或者除以相冋的数( 0除外),
分数的大小不变。
乘积是1的两个数互为倒数。
1的倒数是1,0没有倒数。
(3)商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍( 0除外),商不变。
(4)比的基本性质:比的前项和后项同时乘以或者除以相同的数( 0除外),它们的比值不变。
(5)小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
(6)公因数只有1的两个数叫做互质数。
如(5和7,7和9,8和9)
最简整数比:比的前项和后项是互质数。
(7)比的化简:用商不变的性质、分数的基本性质或比的基本性质来化简。
(8)比例:①表示两个比相等的式子叫做比例。
如:(3 : 4=9: 12) 。
比例有四个项,分别是两个内项和两个外项。
在3 : 4=9: 12中,其中3与12叫做比例的外项,4
与9叫做比例的内项。
比例的四个数均不能为0。
(9)比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。
(10)比、比例、比例尺、百分数的后面不能带单位。
二、练习
1、求比值
2 4 111
14 : 0.72:1 —3:2-
57 723
2、化简比
111
7 : 0.2412.6:0.41-
5205
3、解比例
25:7=X:35 514: 35= 57:x 23:X= 12 : 14
4、填空
1.甲乙两数的比是11:9,甲数占甲、乙两数和的LJ,乙数占甲、乙两数和的
()
是3:2,甲数是乙数的()倍,乙数是甲数的」
()
3
2. 某班男生人数与女生人数的比是-,女生人数与男生人数的比是(
),
4
是()。
女生人数是总人数的比是()。
2
3. 一本书,小明计划每天看一,这本书计划()看完。
7
4. 一根绳长2米,把它平均剪成5段,每段长是匚」米,每段是这根绳子的
()
5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是(
()°
6. 一个正方形的周长是8米,它的面积是()平方米。
5
9 1
7. 吨大豆可榨油-吨,1吨大豆可榨油()吨,要榨1吨油需大豆(
8 3
2 2
8. 甲数的三等于乙数的三,甲数与乙数的比是()。
3 5
LJ。
甲、乙两数的比()
男生人数和女生人数的比,这个比的比值的意义是
)吨。