新人教版六年级数学下册比和比例知识点

合集下载

六年级数学下册概念公式(新人教版)(比和比例)

六年级数学下册概念公式(新人教版)(比和比例)

新人教版六年级数学下总复习概念——(比和比例)姓名: 学号:一、比 1、两个数的比表示两个数相除。

2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的前项除以后项的商,叫做比值。

例: 12 ∶ 20 =2012= 12÷20 = 53 = 0.6 12∶20读作:12比20 区分比和比值:比值是一个数,通常用分数表示,也可以用小数或整数表示。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。

3、两个数的比也可以写成分数形式。

例如:15:10也可以写成1015,仍读作“15比10”。

4、比的前项和后项同时乘或除以相同的数(0除外),比值不变。

这叫做比的基本性质。

5、化简比:化简之后结果还是一个比,不是一个数。

(最简单的整数比:前项和后项是互质关系)(1) 整数比:前项和后项同时除以它们的最大公因数。

(2) 分数比:前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

也可以求出比值,再写成比的形式。

(3)小数比:向右移动小数点的位置,也就是先化成整数比。

4、求比值的方法:前项÷后项。

结果是一个数(整数、小数或分数)。

5、比和除法、分数的区别:前项 后项 比号 比值 比值附:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。

二、比例1、① 比:两个数相除又叫做两个数的比。

② 比值:比的前项除以后项所得的商叫做比值。

③ 比例:表示两个比相等的式子叫做比例。

④ 组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。

⑤ 在比例里,两个外项的积等于两个内项的积。

这叫做比例的基本性质。

⑥ 根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

2、 正比例和反比例① 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

六年级下册数学比例知识点

六年级下册数学比例知识点

六年级下册数学比例知识点
在六年级下册的数学课程中,比例是一个重要的知识点。

以下是一些关于比例的重要
知识和技能:
1. 比例的概念:比例是指两个或多个相同种类的量之间的关系,在比例中我们将这些
量用分数表示。

2. 比例的性质:比例的两个分数称为一个比例,比例中各个分数的相等关系称为比例
的性质。

例如:如果a:b = c:d,则称a、b、c、d构成一个比例。

3. 比例的基础运算:比例可以进行加、减、乘、除等运算。

例如:如果a:b = c:d,则有a+c:b+d = a-b:b-d = a/b:c/d。

4. 比例的化简和维持:在比例中,我们可以约分或扩大分数的值,得到一个全等的比例。

例如:将2:3化简为2/3:1,将2:3扩大为4:6。

5. 比例的图形应用:比例可以用来解决与图形形状和尺寸相关的问题。

例如:通过比
例可以计算矩形的边长、面积等。

6. 比例和百分数的关系:百分数是一种特殊的比例,其中分子是一个非负整数。

例如:25%表示为25/100或1/4。

7. 比例的应用:比例在日常生活中有很多应用,例如计算折扣、利率、比赛成绩等。

以上是六年级下册数学课程中关于比例的一些重要知识点。

学生可以通过练习题和实
际应用问题来巩固和应用这些知识。

小学六年级--比和比例知识点梳理

小学六年级--比和比例知识点梳理

复习课:比和比例知识点三:求比值和化简比 知识点四:正比例和反比例的意义和判断方法1、 正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:k xy=(一定) 2、 反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:k xy =(一定)3、 判断正、反比例的方法:一找二看三判断(1) 找变量:分析数量关系,确定哪两种量是相关联的量。

(2) 看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3) 判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。

(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)”,再用“一份的量⨯各部分量所对应的份数”,求出各部分的量。

用比例知识解答:首先设未知量为。

再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出x。

2、用正、反比例知识解答应用题的步骤(1)分析数量关系。

判断成什么比例。

(2)找等量关系。

如果成正比例,则按等比找等量关系式;如果成反比例,则按等积找等量关系式。

(3)解比例式。

设未知数为x,并代入等量关系式,得正比例式或反比例式。

(4)解比例。

(5)检验并写出答语。

小学六年级_比和比例知识点梳理(最新整理)

小学六年级_比和比例知识点梳理(最新整理)

复习课:比和比例知识点一: 比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9:6=1.5↑↑↑↑前项比号后项比值9:6=3:2↑比的前项和后项同时乘或除以相同的数(0除外),比值不变。

在比例里,两个外项的积等于两个内项的积。

基本性质化简比的依据。

解比例的依据。

知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)÷除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的商用前项除以后项一个数(是整数、分数或小数)化简比把两个数的比化简成最简单的整数比前项和后项同时乘或除以相同的数(0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。

一个比知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:(一定)k xy=2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:(一定)k xy =3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。

(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系不同点名称意义不相同变化方向不相同关系式不同相同点正比例两种量中相对应的两个数的比值,也就是商一定一种量扩大(或缩小),另一种量也随之扩大(或缩小)。

(一定)k xy =反比例两种量中相对应的两个数的积一定一种量扩大(或缩小),另一种量也随之缩小(或扩大)。

比和比例的应用(课件)-六年级下册数学人教版

比和比例的应用(课件)-六年级下册数学人教版

3. (阳江市江城区)被减数、减数与差的和是100,差与减数的比是 1∶4,差是( 10 ),减数是( 40 ),被减数是( 50 )。
4. (佛山市三水区)小明看一本故事书,已看的页数与未看页数的比是 3∶5,未看的有40页,这本书共有( 64 )页,已看( 24 )页。 5. (潮州市湘桥区)如图是一张地图上的比例尺,将它转换为数值比 例尺是( 1∶3000000 )。在这张地图上量得两地之间的距离为8.5 厘米,则两地之间的实际距离是( 255 )千米。
2. (深圳市福田区)《庄子·天下篇》中“一尺之棰,日取其半,万世 不竭”的意思是∶一尺长的木棒,第一天截取它长度的一半,以后每天 都截取它前一天的一半,那么将永远也截取不完。如果按照这种截取方 法,那么第3天截取的木棒长度与原来的木棒总长度的比是( D )。
A. 1∶2 C. 1∶6
B. 1∶3 D. 1∶8
x=35 答∶这些A4纸实际可用35天。
跟踪训练 1. 北京到济南高速公路距离大约为430 km,北京到天津大约为120 km。一辆汽车从北京出发开往济南,当行驶到天津时用了1.5小时。按 照这个速度,北京到济南全程需要多少小时?(用比例解) 解∶设北京到济南全程需要x小时。 120∶1.5=430∶x
解∶设小芳6分钟能做x道题。 x∶6=25∶2
2x=6×25 x=75
2. 一间房子要用方砖铺地,用面积是9平方分米的方砖,需用96块,如 果改用边长是4分米的方砖,需用多少块?(用比例解) 解∶设需要x块。 4×4x=9×96
x=54
3. (济南市市中区)公园里有一个花坛,面积是100平方米,其中的 30%种月季,剩下的面积按3∶4的比分别种玫瑰与牡丹,种玫瑰的面积 是多少平方米? 100×(1-30%)×3+34=30(平方米)

人教版六年级数学下册第四单元《比例》知识点梳理

人教版六年级数学下册第四单元《比例》知识点梳理

人教版六年级数学下册第四单元《比例》知识点梳理1、比的意义(1)两个数相除又叫做两个数的比(2)“:”是比号,读作“比”。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

(5)比的后项不能是零。

(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

5、比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。

这叫做比例的基本性质。

7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

人教版数学六年级(下册)第7课时 比和比例

人教版数学六年级(下册)第7课时  比和比例

4.某造纸厂每小时造纸1.5吨,2小时、3小时…… 各造纸多少吨?
造纸时间/时 1 2 3 4 … 造纸吨数/吨 1.5 3 4.5 6 …
(3)造纸吨数 与造纸时间成 正比例关系吗? 为什么?
造纸吨数与造纸时间成正比 例关系。因为“造纸吨数÷ 造纸时间=每小时造纸吨 数”,每小时造纸吨数一定。
5.在一幅比例尺是1∶5000000的地图上,量得两地之 间 的 距 离 是 2.4 厘 米 。 如 果 将 这 两 地 画 在 比 例 尺 是 1∶15000000的地图上,两地之间的图上距离是多少 厘米?
因为6a=5b,所以6a÷6b=5b÷6b,可得a∶b=5∶6; 同理,可得b∶c=3∶5,根据比例的基本性质,可得 b∶c=6∶10; 所以a∶b∶c=5∶6∶10。
三个或三个以上的数组成的比叫作这几个数 的连比。
2.解比例。
(1)-47 ∶x=-34 ∶0.5 解: -34 x=0.5×-47
-34 x×-43 =-12 ×-47 ×-43 x=-281
(2) 6—x.5 = —3.42—5 解:3.25x=6.5×4
3.25x=26 3.25x÷3.25=26÷3.25
x=8
先根据比例的基本性质,把比例式改写成等积式, 再利用等式的性质解方程,求出未知数的值。
3.一支工程队铺一段铁路,原计划每天铺3.2千米,实 际每天比原计划多铺25%,实际铺完这段铁路用了 12天,原计划用多少天才能铺完?
(4)0.75∶-23 化成最简整数比是( 9∶8 ), 比值是( -98 )。
也可可以以根用据求比比的值基的本方性法质化简比。
0.75∶-23 =-34 ∶-23 =(-34 ×12)∶(-23 ×12)

六年级下册数学知识点解析:比和比例

六年级下册数学知识点解析:比和比例

次火车自北京西站开往安庆西站,行驶至全程的511再向前56千米处所用时间比提速前减少了60分钟,而到达安庆西站比提速前早了2小时.问北京西站、安庆西站两地相距多少千米两地相距多少千米? ?【分析与解】设北京西站、安庆西站相距多少千米?设北京西站、安庆西站相距多少千米?(511x+56)x+56)::x=60x=60::120120,即,即,即((511x+56)x+56)::x=1x=1::2,即x=1011x+112x+112,解得,解得x=1232x=1232.. 即北京西站、安庆西站两地相距即北京西站、安庆西站两地相距1232千米,千米,3.两座房屋A 和B 各被分成两个单元.若干只猫和狗住在其中.已知:各被分成两个单元.若干只猫和狗住在其中.已知:A A 房第一单元内猫的比率房第一单元内猫的比率((即住在该单元内猫的数目与住在该单元内猫狗总数之比在该单元内猫的数目与住在该单元内猫狗总数之比))大于B 房第一单元内猫的比率;并且A 房第二单元内猫的比率也大于B 房第二单元内猫的比率.试问是否整座房屋A 内猫的比率必定大于整座房屋B 内猫的比率的比率? ?【分析与解】 如下表给出的反例指出:如下表给出的反例指出:如下表给出的反例指出:对所提出问题的回答应该是否定的.对所提出问题的回答应该是否定的.对所提出问题的回答应该是否定的.表中具体写出了各个表中具体写出了各个单元及整座房屋中的宠物情况和猫占宠物总数的比率.单元及整座房屋中的宠物情况和猫占宠物总数的比率. 小升初数学知识点解析:比和比例两个数相除又叫做两个数的比.两个数相除又叫做两个数的比.一、比和比例的性质性质1:若a: b=c a: b=c::d ,则,则(a + c)(a + c)(a + c)::(b + d)= a (b + d)= a::b=c b=c::d ;性质2:若a: b=c a: b=c::d ,则,则(a - c)(a - c)(a - c)::(b - d)= a (b - d)= a::b=c b=c::d ;性质3:若a: b=c a: b=c::d ,则,则(a +x c)(a +x c)(a +x c)::(b +x d)=a (b +x d)=a::b=c b=c::d ;(x 为常数)性质4:若a: b=c a: b=c::d ,则a ×d ×d = = = b×b×b×c c ;(即外项积等于内项积即外项积等于内项积) )正比例:如果a ÷b=k(k 为常数为常数)),则称a 、b 成正比;成正比;反比例:如果a ×b=k(k 为常数为常数)),则称a 、b 成反比.成反比.二、比和比例在行程问题中的体现在行程问题中,因为有在行程问题中,因为有速度速度=路程时间,所以:,所以: 当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.当一组物体行走时间相等,那么行走的速度比等于对应路程的正比.1.A 和B 两个数的比是8:5,每一数都减少34后,后,A A 是B 的2倍,试求这两个数.倍,试求这两个数.【分析与解】方法一:设A 为8x 8x,则,则B 为5x 5x,于是有,于是有,于是有(8x-34):(5x-34)=2(8x-34):(5x-34)=2(8x-34):(5x-34)=2::1,x=17x=17,所以,所以A 为136136,,B 为8585.. 方法二:因为减少的数相同,所以前后A A 、、B 的差不变,开始时差占3份,后来差占1份且与B 一样多,也就是说减少的3434,占开始的,占开始的3-1=2份,所以开始的1份为34÷2=17,所以A 为17×8=136,B 为17×5=85.17×5=85.2.近年来.近年来火车火车大提速,大提速,142714274.家禽场里鸡、鸭、鹅三种家禽中公篱与母篱数量之比是2:3,已知鸡、鸭、鹅数量之比是8:7:5,公鸡、母鸡数量之比是1:3,公鸭、母鸭数量之比是3:4.试求公鹅、母鹅的数量比..试求公鹅、母鹅的数量比.【分析与解】 公鸡占家禽场家禽总数的公鸡占家禽场家禽总数的公鸡占家禽场家禽总数的 =21124615:(3544)45:46:(3544)46:47.333345´´+´´=´´+´´=8118751310´=+++,母鸡占总数的310; 公鸭占总数的8338753420´=+++,母鸭占总数的420; 公鹅占总数的213332102020-+=+(),母鹅占总数的234232102020-+=+(),公鹅、母鹅数量之比【分析与解】70cm 的杆子产生影子的长度为175cm;所以影子的长度与杆子的长度比为:所以影子的长度与杆子的长度比为:175175175::70=2.5倍.为322020::3:2.5.在古巴比伦的在古巴比伦的金字塔金字塔旁,旁,其朝西下降的阶梯旁其朝西下降的阶梯旁6m 的地方树立有1根走子,其影子的其影子的前端前端正好到达阶梯的第3阶(箭头箭头)).另外,此时树立l 根长70cm 自杆子,其影子的长度为175cm 175cm,设阶梯各阶的高度,设阶梯各阶的高度与深度都是50cm 50cm,求柱子的高度为多少?,求柱子的高度为多少? 于是,影子的长度为6+1.5+1.6+1.5+1.5×25×25×2.5=11.25.5=11.25.5=11.25,所以杆子的长度为,所以杆子的长度为11.11.25÷225÷225÷2.5=4.5m .5=4.5m .5=4.5m..6.已知三种.已知三种混合物混合物由三种成分A 、B 、C 组成,第一种仅含成分A 和B ,重量比为3:5;第二种只含成分B 和C ,重量比为I :2;第三种只含成分A 和C ,重量之比为2:3.以什么.以什么比例比例取这些混合物,才能使所得的混合物中A ,B 和C ,这三种成分的重量比为3:5:2 ?【分析与解】注意到第一种混合物种A 、B 重量比与最终混合物的A 、B 重量比相同,均为3:5.5.所以,所以,k=65. 标准的时钟每隔56511分钟重合一次.分钟重合一次. 假设经历了假设经历了x 分钟.分钟. 于是,甲钟每隔于是,甲钟每隔52460651124605´´´-分钟重合一次,甲钟重合了246052460´-´×x 次;次; 同理,乙钟重合了同理,乙钟重合了246052460´+´×x 次;次; 于是,需要乙钟比甲钟多重合于是,需要乙钟比甲钟多重合于是,需要乙钟比甲钟多重合 246052460´+´×x-246052460´-´×x=102460´×x=10; 所以,所以,x=24x=24x=24×60;×60;×60; 所以要经历24×60×65511分钟,则为5246065 51165246011´´=´天.于是为65天510(24)10()1111´=天.后来,由一队工人23与二队工人13组成新一队,其余的工人组成新二队.其余的工人组成新二队.两支新队又同时分别接受两项工作量与条件完全相同的工程,两支新队又同时分别接受两项工作量与条件完全相同的工程,两支新队又同时分别接受两项工作量与条件完全相同的工程,结果新二队结果新二队先将第二种、第三种先将第二种、第三种混合物混合物的A 、B 重量比调整到重量比调整到 3 3 3::5,再将第二种、第三种混合物中A 、B 与第一种混合物中A 、B 视为单一物质视为单一物质. .第二种混合物不含第二种混合物不含A ,第三种混合物不含B ,所以1.5倍第三种混合物含A 为3,5倍第二种混合物含B 为5,即第二种、第三种混合物的重量比为5:1.51.5..于是此时含有于是此时含有C 为5×2+15×2+1..5×3=145×3=14.5.5.5,在最终混合物中,在最终混合物中C 的含量为3A 3A//5B 含量的2倍.有14.14.5÷25÷25÷2-1=6.25-1=6.25-1=6.25,所以含有第一种混合物,所以含有第一种混合物6.256.25..即第一、二、三这三种混合物的即第一、二、三这三种混合物的比例比例为6.256.25::5:1.5=251.5=25::2020::6.7.现有男、女职工共1100人,其中全体男工和全体女工可用同样人,其中全体男工和全体女工可用同样天数天数完成同样的工作;若将男工人数和女工人数对调一下,则全体男25天完成的工作,全体女工需36天才能完成,问:男、女工各多少人女工各多少人? ?【分析与解】 直接设出男、女工人数,然后在通过直接设出男、女工人数,然后在通过直接设出男、女工人数,然后在通过方程方程求解,过程会比较繁琐.求解,过程会比较繁琐.设开始男工为“1”,此时女工为“设开始男工为“1”,此时女工为“k k ”,有1名男工相当k 名女工.男工、女工人数对调以后,则男工为“男工为“k k ”,相当于女工“,相当于女工“k k 2”,女工为“I”.,女工为“I”.有k 2:1=361=36::2525,所以,所以于是,开始有男工数为11k+×1100=500人,女工600人.人.8.有甲乙两个钟,甲每天比.有甲乙两个钟,甲每天比标准时间标准时间慢5分钟,而乙每天比标准时间快5分钟,在3月15日的日的零点零点零分的时候两钟正好对准.若已知在某一时刻,乙钟和甲钟时针与分针都分别重合,且在从3月15日开始到这个时候,乙钟时针与分针重合的次数比甲钟多10次,那么这个时候的标准时间是多少次,那么这个时候的标准时间是多少? ?【分析与解】 小时106(60)541111´=分钟.分钟.9.一队和二队两个.一队和二队两个施工施工队的人数之比为3:4,每人工作效率之比为5:4,两队同时分别接受两项工作量与条件完全相同的工程,结果二队比一队早完工96÷147=282´´´´282×4645天.天.144:(282×:(282×4645)=(144×45):(282×46))=(144×45):(282×46)=540。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2/2
如. 2 :0.2= 2 : 5 =25:2 或 2 :0.2=2.5:0.2=25:2
5
5
5
5
53
如. 6 :0.3 中的 6 不能化成有限小数 .所以把 6 :0.3 先化为分数比。 6 :0.3= 6 : 10 =25:9
判断两个比成不成比例的方法
方法一。看这两个比的比值是否相等
方法一。看两个外项的积是否会等于两个内项的积。
外项
(共有 4 个项)
在比例中.两个外项的积等于两个内项的积。
如.90 : 60
=3 :2
90 × 2 = 60 × 3
两个外项的积
两个内项的积
求比值 化简比
化简比的依据
解比例的依据
如.90:60=(90÷15):(60÷15) 如.5:x=1.6:3.2
=6:4
1.6x=5×3.2
1.6x=16
x=10
长方形的周长
2 又如.梯形的上底和下底不变.面积和高·可以这样写关系式: (a+b)×h÷2=s→(a+b)×h÷2÷h=s÷h→(a+b)÷2 =s÷h→ s÷h=(a+b)÷2.因为上底和下底不变.(a+b)÷2的结果也是一定的.所以梯形的上底和下底 不变.面积和高成正比例· 3.还有些数量之间是无法写关系式的· 如.“小明的身高和跳高的高度成正比例”是无法写出关系式的· 二.看(1.看是否相关联 2.看是否能Байду номын сангаас化 3.看是否商(积)一定) 1.看是否相关联:也就是一个量变化了.另一个量是否也会随着变化· 如.长方形的面积一定.长和宽就是相关联的量.因为长变化了.宽也会随着变化· 又如.圆的周长一定.π和直径就不是相关联的量·因为不管直径怎么变.π总是等于3.14…….不会 随直径而改变· 2.看是否能变化:也就是这两个量都是能变化的.不是固定的· 如.上例的π就不是能变化的量· 如.“边长×边长=正方形的面积(一定)”.因为正方形的面积(一定).所以边长也只能是固定 的.不是变量·所以.正方形的面积(一定).边长和边长不成比例· 3.看是否商(积)一定:也就是这两个量相除(或相乘)的结果是否固定不变的· 如.圆的周长和直径成正比例·因为圆的周长和直径的比值等于π.π是固定的数.即圆的周长和直 径的比值一定的·
分数比
先把比的前项和后项同时乘以它们分母的最小公倍数.变成整数比;再把整数比化成最简比
53 5
3
如. 6 : 8 =( 6 ×24):( 8 ×24)=20:9
1/2
混合比
先把混合比变成小数比或分数比(如果比中的分数不能化成有限小数的.一般化为分数比).
再变成整数比.最后把整数比化成最简比
5
51
5
意义
方法
结果
比的前项除以比的后项所得 前项除以后项
结果是一个数(整数、小数、分
的商叫做比值。
数).不能写成比的一般形式。
如.60:50=1.2 不能写成 60:50=6:5
把两个数的比化成最简单的 前 项 和 后 项 都 乘 或 结果是一个比.不能写成整数和小
整数比
除以相同的数(0 除 数。
外)
18:6=3:1 不能写成 18:12=3
---------判断两个量是否成正比例.反比例或不成比例 一.写(写出数量关系式) 1.根据数量间的关系或公式.写出数量关系式· 如.①宽一定.长方形的面积和长是否成正比例·根据“长方形的面积=长×宽”得到“”.因为长方形 的面积和长是相关联的量.宽一定.也就是它们的比值一定.所以“宽一定.长方形的面积和长是 成正比例”· ②圆锥的体积一定.底面积和高是否成反比例·根据“底面积×高×=圆锥的体积”得到“底面积×高 =圆锥的体积×3”.因为底面积和高是相关联的量.圆锥的体积一定.“圆锥的体积×3"的结果也一 定.就是底面积和高的积一定(底面积×高=圆锥的体积×3(一定)).所以圆锥的体积一定.底 面积和高是成反比例· 2.注意:写出的数量关系式.其中的一边(左边)只能有这两个相关联的量.不能有多余的量和 数字· 如.“(长+宽)×2=长方形的周长”的左边就多了×2.应变为“(长+宽)=”
新人教版六年级数学下册比和比例知识点
意义
各部分 名称
基本 性质

两个数相除,又叫做两个数的比.
如.90÷60=90:60(90 比 60)
90 : 60
= 1.5
比例
表示两个比相等的式子叫做比例。
如.90 : 60
=3 :2
90 : 60
=3 :2
内项
前项 比号 后项
比值
(共有 2 个项) 比的前项和后项都乘上或除以相同 的数(0 除外).比值不变。 如 .90:60= ( 90 × 5 ) : ( 60 × 5 ) =1.5 90:60=(90÷15):(60÷15)=1.5
整数比 小数比
化简比的方 法 比的前项和后项同时除以它们最大公因数(也可以一步一步的除) 如.18:6=(18÷6):(6÷6)=3:1 或 18:6=(18÷2):(6÷2)=9:3=(9÷3):(3÷ 3)=3:1 先把比的前项和后项同时乘以 10、100…….变成整数比;再把整数比化成最简比
如. 0.25:1.5=(0.25×100):(1.5×100)=25:150=1:6
相关文档
最新文档