列方程解决应用题——差倍问题

合集下载

初一数学上册:一元一次方程解决应用题【差倍分问题】

初一数学上册:一元一次方程解决应用题【差倍分问题】

初一数学上册:一元一次方程解决应用题【差倍分问题】当女儿是9岁时,14-9=5,正是5年前,所以5年前,父亲年龄是女儿年龄的5倍。

【例四】甲筐有梨400个,乙筐有梨240个,现在从两筐取出数目相等的梨,剩下梨的个数,甲筐恰好是乙筐的5倍,甲筐所剩的梨是多少个,乙筐所剩下的梨是多少个?解:乙筐剩下的个数=(400-240)÷(5-1)=40(个)甲筐剩下的个数=40×5=200(个)【例五】小勇和小英各有钱若干元,若小勇给小英24元,二人钱数相等。

如果小英给小勇27元,则小勇的钱数就是小英钱数的2倍。

问小勇原有多少元,小英原有多少元?解:小英的钱数:(24×2+27×2)÷(2-1)+27=129(元)小勇的钱数:129+24×2=177(元)答:小勇有钱177元,小英有钱129元。

【例六】有一对父子,他们年龄相差20岁零六个月。

父亲的岁数又是儿子岁数的3倍。

请问:再过多少年,父亲的岁数是儿子的2倍?解:儿子的年龄:20岁零六个月÷(3-1)=10岁零3个月,后来儿子的年龄:20岁零六个月÷(2-1)=20岁零六个月,20岁零六个月-10岁零3个月=10年零3个月,答:再过10年零3个月,父亲的岁数是儿子的2倍。

【例七】今年父亲的年龄是儿子的5倍,15年后,父亲的年龄是儿子年龄的2倍,问:现在父子的年龄各是多少岁?解:今年父子的年龄差是儿子的5-1=4倍,15年后父子的年龄差是儿子的2-1=1倍,这说明在过了15年后,儿子的年龄是现在的四倍,根据差倍问题的公式可以计算出儿子今年的年龄是15÷(4-1)=5岁,父亲今年是5×5=25岁。

小学应用题—和差、差倍、和倍问题

小学应用题—和差、差倍、和倍问题

列一元一次方程解决简单应用题【和差问题】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

例3 有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。

例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?【和倍问题】已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?【差倍问题】已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。

求杏树、桃树各多少棵?例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?【习题训练一】差倍问题练习一:1、小明到市场去买水果,他买的苹果个数是梨的3倍,苹果比梨多18个。

小明买了苹果和梨各多少个?2、学校合唱组的女同学人数是男同学的4倍,女同学人数比男同学多42人。

(完整word版)一元一次方程——和差倍分问题

(完整word版)一元一次方程——和差倍分问题

一元一次方程应用题-—和、差、倍、分问题一、学习重点:这类问题主要应搞清各量之间的关系,注意关键词语.仔细读题,找出表示和、差、倍、分关系的关键字,例如:“大,小,多,少,增加,减少……”,并据题意设出未知数,利用这些关键字表示出含有未知数的量,最后利用题目中的量与量之间的关系列出方程。

1、倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几……”来体现。

2、多少关系:通过关键词语“多、少、和、差……”来体现。

增长量=原有量×增长率现在量=原有量+增长量一般设未知数要找跟所有关系联系最紧密的那个量。

二、基础练习题:1、a比b多5,则a=______;a比b少3,则a=______;a是b的2倍,则a=____;a增加3倍,则a=_____;a增加到3倍,则a=_____;将a增加b,则a=_____;将a增加到b,则a=_____。

2、已知甲数比乙数小12,甲乙两数的和为50,甲数为_____;乙数为_____.3、已知甲数比乙数的3倍多12,甲乙两数的和是60,甲数为_____;乙数为_____。

4、已知甲数是10,增加40%后甲数为______;在此基础上减少50%后甲数为_______.5、已知甲数的3倍是乙数与—2的和的2倍,甲数与乙数的差为5,甲数为_____;乙数为_____。

6、三个连续偶数的和是360,中间的偶数为_____。

7、三个连续奇数的和为361,中间的奇数为_____。

8、甲班有a人,乙班的人数是甲班人数的2倍少b人,则乙班的人数为_________.9、某校共有学生1049人,女生占男生的40%,则男生的人数为__________。

例题1:禽养场养鸡和鸭共4600只,养的鸡比鸭的4倍还多100只,禽养场的鸡鸭各多少只?练习:足球的表面是由一些呈多边形的黑白皮块缝合而成的,共计有32块,已知黑色皮块数比白色皮块数的一半多2,问两种皮块各有多少?做题:10、11例题2:一根电线长240米,把它截成三段,使第一段比第二段长20米,第三段长是第一段的2倍。

列一元一次方程解应用题(三)和差倍分问题讲义知识点经典例题练习

列一元一次方程解应用题(三)和差倍分问题讲义知识点经典例题练习

列方程解应用题(三)【知识要点梳理】和差倍分问题:【典型例题探究】例1.(2008海南中考)根据北京奥运票务网站公布的女子双人3米跳板跳水决赛的门票价格(如表1),小明预定了B等级、C等级门票共7张,他发现这7张门票的费用恰好可以预订3张A等级门票.问小明预定了B等级、C等级门票各多少张?表1:例2.有一只船,载重800吨,容积是795m3,现在装运铁和棉花两种物质,铁每吨体积是0.3m3,棉花每吨体积4m3,钢铁和棉花各装多少吨才能充分利用船舱的载重量和容积?例3.一个三角形三条边长的比是2:4:5,最长的一条边比最短的一条边长6厘米,求这个三角形的周长.例4.(2010北京)2009年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?例5. 某校组织初一师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求参加春游的人数.(2)已知租用45座的客车日租金为每辆车250元,60座的客车日租金为每辆300元,问租用哪种客车更合算?例6. 某地抗洪救灾中,在甲处有146名战士,在乙处有78名战士,现从别处调来160名战士支援救灾,要使甲处的人数是乙处人数的3倍,则应调往甲、乙两处各多少名战士?例7. 为鼓励节约用水,某地按以下规定收取每月水费,如果每月每户用水不超过20吨,那么每吨水费按1.2元收费,如果每月每户用水超过20吨,那么超过部分按每吨2元收费,若某用户五月份的水费平均每吨1.5元,问该用户应交水费多少元?【基础达标演练】1.(2007绵阳中考)学校文艺部组织部分文艺积极分子看演出,共购得8张甲票,4张乙票,共计用了112元,已知每张甲票比每张乙票贵2元,则甲乙票的票价分别是多少?2.(2009湖北恩施)手牵着手,心连着心.2008年5月12日发生在四川汶川的特大地震灾害,牵动着全中国人民的心.某校团支部发出为灾区捐款的倡议后,全校师生奉献爱心,踊跃捐款,已知全校师生共捐款 4万5千元,其中学生捐款数比老师捐款数的2倍少9千元,该校老师和学生各捐款多少元?3.(2009北京)北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,2008年10月11日至2009年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1 696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?4. 某套书分上、中、下三册,印上册用了全部印刷时间的40%,印中册用了全部印刷时间的36%,印下册用了24天.印完全套书共用了多少天?5. 甲、乙、丙、丁四位同学共集邮370枚.如果给甲补充10枚,给乙减少20枚,给丙的张数扩大到原来的2倍,给丁的张数缩小到原来的21,四个人的邮票数正好相等,那么甲原来有多少枚?6.初一年级甲、乙两个班共有100人,其中参加数学活动小组的有42人,已知甲班学生有31参加数学活动小组,乙班学生有21参加数学活动小组,求各班学生的人数.7. 牧羊人赶着一群羊寻找一个草长得茂盛的地方,一个过路人牵着一只肥羊从后面跟了上来,他对牧羊人说:“你赶的这群羊大概有100只吧!”牧羊人答道:“如果这群羊增加一倍,再加上原来这群的一半,又加上原来这群羊一半的一半,连你这只羊也算进去,才刚好凑满100只.”问牧羊人的这群羊共有多少只?8. 用库存化肥给麦田追肥,如果每亩施肥6千克,库存缺少200千克,如果每亩施肥5千克,库存还剩下300千克,问:有多少亩麦田?库存化肥有多少千克?9. 针对居民用水浪费现象,某市制定居民用水标准规定三口之家楼房,每月标准用水量,超标部分加价收费,假设不超标部分每立方米水费1.3元,超标部分每立方米水费2.9元,某住楼房的三口之家某月用水12立方米,交水费22元,请你通过列方程求出该市三口之家楼房的标准用水量为多少立方米?10.2009年4月深圳出租车(红的一类车)白天的收费标准调整为为:起步价12.5元(即行驶距离不超过3千米都需付12.5元),行驶超过3千米以后,每增加1千米加收2.4元(不足1千米时按1千米计算).张明和王晨乘坐这种出租车去博物馆参观,下车时他们交付了24.5元车费,那么他们搭乘出租车最多走了多少千米(不计等候时间)?【能力提升训练】1.光明中学初中一年级一、二、三班,向希望学校共捐书385本,一班与二班捐书的本数之比为4:3,一班与三班捐书的本数之比为6:7,那么二班捐书多少本?2. 将一批梧桐树苗栽在马路的两旁,若每隔3米栽一棵,则剩下6棵树苗;若每隔2.5米栽一棵,则还缺154棵树苗.求这条马路的长及这批树苗的棵数.3. 黄帝故里的门票价格规定如下表:都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少元钱?(2)两班各有多少名学生?4.(2009湖南省株洲市)初中毕业了,孔明同学准备利用暑假卖报纸赚取140~200元钱,买一份礼物送给父母.已知:在暑假期间,如果卖出的报纸不超过1000份,则每卖出一份报纸可得0.1元;如果卖出的报纸超过1000份,则超过部分....每份可得0.2元.(1)请说明:孔明同学要达到目的,卖出报纸的份数必须超过1000份.(2)孔明同学要通过卖报纸赚取140~200元,请计算他卖出报纸的份数在哪个范围内.* 5.(甘肃中考)某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总票数的32,若提前购票,则给予不同程度的优惠.在五月份内,团体票每张12元,共售出团体票数的53;零售票每张16元,共售出零售票数一半,如果在六月份内,团体票每张16元出售,共计划在六月份内售出全部剩余票,那么零售票应按每张多少元定价才能使这两个月的票款收入持平?。

列方程解应用题——和倍问题、差倍问题

列方程解应用题——和倍问题、差倍问题

1、李爷爷家养羊284只,其中大羊的只 数是小羊只数的3倍。大羊和小羊各有多 少只? 2、果园里种着苹果树和核桃树共126棵, 苹果树的棵数是核桃树的8倍。苹果树和 核桃树各有多少棵? 3、果园里的苹果树比梨树多140棵,苹 果树的棵数是梨树的8倍。苹果树和梨树 各有多少棵?
1、图书室文艺书比科技书多180本,文 艺书的本数是科技书的3倍。文艺书和科 技书各有多少本? 2、甲、乙两数相差15,甲数是乙数的4 倍,两数各是多少? 3、少年宫合唱队和舞蹈队共有124人, 合唱队的人数是舞蹈队的3倍。合唱队和 舞蹈队分别有多少人? 4、饲养场养的白兔比黑兔多249只,白 兔是黑兔的4倍,问:饲养场养了白兔、 黑兔各是多少只?
列方程解应用题——
和倍问题 差倍问题
填空
1、舞蹈组有男生x人,女生人数是男 生的2倍,女生有( 2x )人,男女生 共有( 3x )人。
2、城郊中学图书馆有科技书m本,故 事书的本数是科技书的1.8倍,那么, m+1.8m表示(故事书和科技书一共的本数 ), 1.8m—m表示(故事书比科技书多的本数 )。
ห้องสมุดไป่ตู้
5、粮店运来大米和面粉480包,大米的 包数是面粉的3倍,运来大米和面粉各多 少包? 6、甲乙两人年龄的和为29岁,已知甲比 乙小3岁,甲、乙两人各多少岁?
7、一个长方形的周长是240米,长是宽 的1.4倍,长方形的长和宽各是多少? 8、一千克糖的价钱是一千克盐的6倍。 一千克糖比一千克盐贵5元。糖和盐每千 克各是多少钱?

列方程组解应用题的常见题型

列方程组解应用题的常见题型

、列方程组解应用题的常见题型.(1)和差倍分问题:解这类问题的基本等量关系式是:较大量=较小量+多余量,总量=倍数×1倍量.例;第一个容器有49L水,第二个容器有56L水,如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水是这个容器容量的二分之一;如果将第一个容器的水倒满第二个容器,那么第一个容器剩下的水是这个容器容量的三分之一,求这两个容器的容量.(2)产品配套问题:解这类问题的基本等量关系式是:加工总量成比例.例:某车间有28名工人参加生产某种特制的螺丝和螺母,已知平均每人每天只能生产螺丝12个或螺母18个,一个螺丝装配两个螺母,问应怎样安排生产螺丝和螺母的工人,才能使每天的产品正好配套?(3)速度问题:解这类问题的基本关系式是:路程=速度×时间.路程差=速度差×时间。

路程和=速度和一般又分为相遇问题、追及问题及环形道路问题例:某人从甲地骑车出发,先以12km/h的速度下山坡,后以9km/h的速度过公路到达乙地,共用55min;返回时,按原路先以8km /h的速度过公路,后以4km/h的速度上山坡回到甲地,共用1h30min,问甲地到乙地共多少千米?例:一列快车长70m,一列慢车长80m,若两车同向而行,快车从追上慢车开始到离开慢车,需要1min;若两车相向而行,快车从与慢车相遇到离开慢车,只需要12s,问快车和慢车的速度各是多少?例:甲、乙两人在200m的环形跑道上练习竞走,乙的速度比甲快,当他们都从某地同时背向行走时,每隔30s种相遇一次;同向行走时,每隔4分钟相遇一次,求甲、乙两人的竞走速度.(4)航速问题:此类问题分水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速例:甲轮从A码头顺流而下,乙轮从B码头逆流而上,两轮同时相向而行,相遇于中点,而乙轮顺流航行的速度是甲轮逆水航行的速度的2倍,已知水流速度是4km/h,求两轮在静水中的速度.(5)工程问题:解这类问题的基本关系式是:工作量=工作效率×工作时间.一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.例:一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?例:.一项工程,甲队单独做要12天完成,乙队单独做要15天完成,丙队单独做要20天完成.按原定计划,这项工程要求在7天内完成,现在甲、乙两队先合做若干天,以后为加快速度,丙队也同时加入这项工作,这样比原定时间提前一天完成任务.问甲、乙两队合做了多少天?丙队加入后又做了多少天?(6)增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量.例:某中学校办工厂今年总收入比总支出多30000元,计划明年总收入比总支出多69600元,已知计划明年总收入比今年增加20%,总支出比今年减少8%,求今年的总收入和总支出.(7)盈亏问题:解这类问题关键是从盈(过剩)、亏(不足)两个角度来把握事物的总量.例:为了迎接新学期开学,某服装厂赶制一批校服,要求必须在规定时间内完成,在生产过程中,如果每天生产50套,这将还差100套不能如期完成任务;如果每天生产56套,就可以超额完成80套,问原计划生产校服的套数及原计划规定多少天完成?(8)数字问题:解这类问题,首先要正确掌握自然数、奇数、偶数等有关数的概念、特征及其表示.如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等.有关两位数的基本等量关系式为:两位数=十位数字×10+个位数字.例:一个两位数的个位数字比十位数字大5,如果把个位数字与十位数字对换,所得的新两位数与原两位数相加的和为143,求这个两位数.(9)几何问题:解这类问题的基本关系是有关几何图形的性质、周长、面积等计算公式.例:有两个长方形,第一个长方形的长与宽之比为5∶4,第二个长方形的长与宽之比为3∶2,第一个长方形的周长比第二个长方形的周长大112cm,第一个长方形的宽比第二个长方形的长的2倍还大6cm,求这两个长方形的面积.(10)年龄问题:解这类问题的关键是抓住两人年龄的增长数相等,两人的年龄差是永远不会变的.例:师傅对徒弟说:“我像你这样大时,你才4岁,将来当你像我这样大时,我已经是52岁的老人了”.问这位师傅与徒弟现在的年龄各是多少岁?1一次篮、排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮、排球各有多少队参赛?2 有甲乙两种债券年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?3.种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角。

沪教版五年级下册《列方程解应用题------和倍、差倍问题(第二课时)》数学教案

沪教版五年级下册《列方程解应用题------和倍、差倍问题(第二课时)》数学教案

沪教版五年级下册《列方程解应用题——和倍、差倍问题(第二课时)》数学教案教学目标1.了解和倍、差倍问题的概念和应用场景;2.掌握列方程解和倍、差倍问题的方法;3.进一步培养学生数学思维和解决问题的能力;4.提高课堂互动和合作能力。

教学重点1.理解和应用和倍、差倍问题的解题方法;2.掌握列方程解和倍、差倍问题的方法。

教学难点1.解决和倍、差倍问题时,需要通过列方程求解;2.解决问题时需要综合运用所学知识。

教学过程导入(5分钟)1.引导学生思考日常生活中的和倍、差倍问题;2.提问不同的应用场景,如购物、建筑等。

演示(10分钟)1.讲解和倍、差倍问题的概念,如:若甲数是乙数的倍数,则称甲数是乙数的倍数;2.配合具体例子模拟解题过程;3.强调需要列方程解题,以图表形式表示问题。

合作探究(25分钟)1.按照题目进行分组,每组学生分配同一道题目;2.鼓励学生利用所学知识,进行合作,思考问题;3.强调讨论的重要性,鼓励学生互相交流,探究解题思路;4.适时地进行小组展示,分享解题思路和答案。

拓展应用(15分钟)1.指导学生自主查找和倍、差倍问题的应用场景,并进行演示;2.鼓励学生拓展思路,尝试应用所学知识解决新问题;3.强调文化的多样性,引导学生了解和倍、差倍问题在不同国家和地区的应用。

总结(5分钟)1.总结和倍、差倍问题的基本概念和解题方法;2.强调重要性,提醒学生在学习过程中要多加注意。

作业1.让学生回家复习已学内容,并做完题目;2.试用所学知识,解决实际生活中的问题,并写成学习日记或小报告。

教学评估1.课堂互动和合作能力是否得到提高?2.分享展示的内容是否具有一定的启发性?3.学生的秒表成绩是否有所提高?4.学生的作业完成情况和答案正确率。

六年级数学上册《列方程解和倍差倍百分数应用题》

六年级数学上册《列方程解和倍差倍百分数应用题》

六年级数学上册《列方程解和倍差倍百分数应用题》例1、(列方程解答和倍问题)一根绳子长48米,截成甲、乙两段,其中乙绳长度是甲绳的60%。

甲、乙两绳各长多少米?分析与解:乙绳长度是甲绳的60%,把甲绳长度看作单位“1”等量关系式:甲绳长度+乙绳长度=总长度解答:设甲绳长x米,则乙绳长60%x米。

x+60%x=481.6x=48x=3060%x=30X60%=18答:甲绳长30米,则乙绳长18米。

检验:30+18=48(米),符合甲、乙两绳共长48米。

18÷30=60%,符合乙绳长度是甲绳的60%。

例2、(列方程解答差倍问题)体育馆内排球的个数是篮球的75%,篮球比排球多6个。

篮球和排球各有多少个?分析与解:排球的个数是篮球的75%,是把篮球个数看作单位“1”。

等量关系式:篮球-排球=6个解答:设篮球有x个,则排球有75%x个。

x-75%x=60.25x=6x=2475%x=24X0.75=18答:篮球有24个,排球有18个。

你会自己检验吗?检验:24-18=6(个),符合篮球比排球多6个。

18÷24=75%,符合排球的个数是篮球的75%。

例3、六年级男生比女生少40人,六年级女生人数相当于男生人数的140%,六年级男生有多少人?错误解法:设:女生有x人,男生就有140%x人。

140%x-x=400.4x=40x=100140%x=100X1.4=140分析与解:根据“六年级女生人数相当于男生人数的140%”,可以把男生人数看作单位“1”的量,设男生人数为x人,女姓人数就是140%x人,再根据“六年级男生比女生少40人”,可以得出数量关系式:“女生人数-男生人数=40”,根据此数量关系式列出方程。

正确解答:设男生有x人,女生就有140%x人。

140%x-X=400.4x=40x=100答:男生有100人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九讲列方程解决应用题——差倍问题
年级()姓名()差倍问题的应用题,一般都在条件中告诉我们:两个量的差与这两个量的倍数关系,要我们求这两个量分别是几。

可以先根据倍数关系设未知数,然后根据相差关系建立方程,抑或反之。

例题精讲:
例1:甲、乙两所学校,甲校学生比乙校学生多210人,甲校学生人数是乙校的3倍,问甲、乙两校各有多少人?
例2:甲桶中的油是乙桶的4倍,从甲桶中取15千克油到乙桶,两桶油的重量相等,问原来两桶油各是多少千克?
例3:甲、乙两根绳子,甲绳子长63米,乙绳子长29米,两根绳子剪去同样的长度,剩下的甲绳长是乙绳的3倍,问剪去的绳子长多少米?
小试牛刀
1、爸爸和小宇钓鱼,爸爸比小宇多钓16条,爸爸钓的是小宇的3倍,问爸爸和小宇各钓几条?
2、有两桶油,大桶有120kg,小桶有90kg,两桶卖出同样多后,大桶剩的刚好是小桶剩下油的4倍,两桶各剩多少千克?各卖出多少千克油?
3、去敬老院送桔子,每次从篮子里面取出2个桔子和3个梨送给一们老人,最后剩下12个梨,桔子正好分完,这时他们才想起原来梨是桔子的2倍,敬老院有几们老人?
4、有两块同样长的布,第一块卖出26米,第二块卖出8米,剩下的布,第二块是第一块的3倍,这两块布原来各有多少米?
5、老师第一天散步300米,跑步2100米,共用9分,第二天散步450米,跑步4200米,共用17分,问老师散步速度和跑步速度各是多少米?
6、甲堆比乙堆多60吨煤,如果从乙堆运出30吨给甲堆,那么甲堆是乙堆的2倍,两堆原来各有多少吨煤?
7、兄弟两个买东西,哥哥的钱是弟弟的3倍,哥哥花了200元,弟弟花了40元,这时两人剩下的钱数相等,问哥哥和弟弟两个各带几元?
8、叔叔比孙科大21岁,正好孙半的3倍多3岁是叔叔的年龄,叔叔和孙科各多少岁?
拓展思考
1、仓库存高粱和玉米,已知存放的高粱比玉米多4500kg,存放的高粱比玉米的3倍少300kg,问仓库里高粱和玉米各多少千克?
2、两个钱数同样多,甲给乙50元,则乙的钱是甲的6倍,甲乙原来各多少元?
3、比跳绳,如果小涛再跳40下他跳的数就与小娟跳的一样多,如果小娟再跳60下同,那她跳的就是小涛的3倍,两人各自跳了多少下?。

相关文档
最新文档