2020年九年级数学上册 24.2.3 圆和圆的位置关系教案 新人教版.doc

合集下载

部编版人教初中数学九年级上册《24.2.3 圆和圆的位置关系 教学设计》最新精品优秀教案

部编版人教初中数学九年级上册《24.2.3 圆和圆的位置关系 教学设计》最新精品优秀教案
例题的安排是为了利用已讨论出来的两圆的位置关系与圆心距和半径之间的数量关系的结论来解决问题,使学生学会发现问题,分析问题并解决问题.
培养学生正确应用所学知识的应用能力,巩固所学的两圆位置关系的性质和判定.
活动5
小结
这节课我们主要研究了圆和圆的位置关系,你有哪些收获?
布置作业
教科书习题14.3第1、4、6题.
(5) 在图中有两圆的多种位置关系,请你找出还没有的位置关系是.
师生共同完成例题的求解.
对于问题(1),教师应重点关注学生能否利用两圆外切或内切时,圆心距与两圆的半径和与差的关系来解题.
对于问题(2)、(3)、(4)、(5),教师应当重点关注学生能否会利用两圆的圆心距与两圆的半径的关系,判断两圆的位置关系.
让学生观察、发现,并动手摆出两圆的不同位置关系图形.
请一名学生展示他发现的两圆ቤተ መጻሕፍቲ ባይዱ同位置关系的图形.
对于问题(1),教师应重点关注:
(1) 学生能否根据操作,观察两圆的位置关系,摆出相应的图形来;
(2) 学生能否全部发现两圆的几种位置关系.
师生共同讨论出两圆的几种位置关系定义.
对于问题(2),教师应重点关注学生能否用规范清晰的数学语言说出两圆的位置关系.
学生自己总结,教师应重点关注:
(1)学生对圆和圆的位置关系的性质和判定总结是否全面;
(2) 是否有学生能从这节课的学习中,体会到分类讨论和数形结合的数学思想在研究问题中的重要性.
学生通过作业,回顾、梳理知识,反思提高.
总结回顾学习内容,帮助学生学会归纳,反思.
通过课后学生独立思考,自我评价,使学习效果达到最佳.
教师总结活动3讨论出的结论,说明此结论既可作为两圆位置关系的判定又可作为两圆位置关系的性质.

人教版九年级上册《24.2圆和圆的位置关系》教案及反思

人教版九年级上册《24.2圆和圆的位置关系》教案及反思

圆与圆的位置关系【教学目标:】1、 知道圆与圆之间的五种位置关系.2、 经历探索两圆的位置关系与两圆半径、圆心距的数量关系间的内在联系的过程,并能运用相关结论解决有关问题.3、 在动手实践的过程中体会分类的思想,增强探究的意识和能力. 【教学重点、难点:】知道圆与圆之间的五种位置关系及两圆半径、圆心距的数量关系间的内在联系 【教学过程:】一、创设情境 导入新课1、导入:我们已研究过点与圆、直线与圆的位置关系。

直线与圆的有几种位置关系?有几种判定方法?(板书:公共点个数、d 与r 的数量关系)过渡:那么圆与圆又有怎样的位置关系呢?(板书课题)2、操作与思考:(1)画⊙O 1(2)拿出透明纸上的⊙O 2,放在同一平面内,让 ⊙O 2 从⊙O 1的外部逐渐向⊙O 1移动.(3)在移动过程中,⊙O 1与⊙O 2的位置关系发生了怎样的变化?你能描述这种变化吗?3、多媒体展示5种位置关系的图片【设计意图:通过情境,唤醒旧知,为用类比迁移的办法研究圆与圆的位置关系作铺垫】 二、探索新知:1、问题:你能把上述位置归类吗?你为什么这样归类?2、归纳:1)两圆位置关系的五种情况归纳为三类: 相离 、 相切 、 相交 . (1)两圆相离包括外离和内含 (2)两圆相切包括外切和内切; 2)给出五种情况具体的描述性定义(1)外离: (2)外切: (3)相交: (4)内切:(5)内含: (同心圆是特例) 【设计意图:通过公共点的个数说明两圆的位置关系,形象直观】3、介绍连心线(过两圆圆心的直线).问:上述图形有何特征?(轴对称图形)4、观察并思考:两圆的切点与连心线有什么关系?(如果两圆相切,那么切点一定在连心线上)【反证法】假设切点不在连心线上,根据对称性,有一个点与切点对称,那么两圆有两个交点,则两圆相交,与已知相切矛盾,假设不成立.【设计意图:介绍切点一定在连心线上,为下面研究用数量关系描述位置关系作铺垫】 5、 介绍圆心距(两圆心之间的距离)d.通过观察可以发现,圆心距的变化决定着圆与圆的位置关系.类比直线与圆的位置关系,我们研究d 与R 、r 之间的数量关系描述两圆的位置关系.(设⊙O 1、⊙O 2的半径为R 、r ,圆心O 1 、O 2之间的距离O 1O 2为d ) 过渡:你认为哪几种比较好描述?【设计意图:找到用数量关系区分五种位置关系的关键点:R+r ,R-r 】 6、 多媒体演示后归纳:【设计意图:本环节启发学生运用数形结合、类比的思想来思考问题,解决问题.并且利用数轴表示法来帮助学生记忆 R 、r 、d 这三者之间的关系,从而突破本节课的难点,使学生充分理解位置关系与数量关系的相互转化】7、试一试:(1)已知两圆的半径分别为3cm 和2cm ,圆心距为5cm ,则两圆的位置关系是( )(a)两圆外切:d=R+r ;(b)两圆内切:d=R-r(R>r);两圆内含: d<R-r(R>r)(a)(b)(c)O 1 O 2 R r d A • •O 1 O 2 R r d ••A .外离B .相交C .外切D .内切(2)如图,国际奥委会会旗上的图案是由五个圆环组成,在这个图案中反映出的两圆位置关系有( )A.内切、相交B.外离、相交C.外切、外离D.外离、内切 【设计意图:通过简单的试一试,会用公共点的个数或数量关系判别圆与圆的位置关系】三、例题精讲:例1 已知⊙O 1、⊙O 2的半径为r 1、r 2,圆心距d=5,r 1=2. (1) 若⊙O 1与⊙O 2外切,求r 2(2) 若r 2=7,⊙O 1与⊙O 2有怎样的位置关系? (3) 若r 2=4,⊙O 1与⊙O 2有怎样的位置关系?变式:若⊙O 1与⊙O 2相切,求r 2【设计意图:本环节教师通过引导学生感受圆与圆的位置关系与数量关系的相互转化,体验转化的思想】【练一练:】如图,⊙O 的半径为5cm ,点P 是⊙O 外一点, OP=8cm.以P 为圆心作⊙P 与⊙O 相切,则⊙P 的半径是 cm.例2 已知定圆O 的半径为2cm ,动圆P 的半径为1cm..若⊙P 与⊙O 相外切,那么点P 与点O 之间的距离是多少?点P 应在怎样的图形上运动?变式:若⊙P 与⊙O 相切,情况怎样?【设计意图:通过变式训练,进一步体会相切分两种情况,继续渗透分类讨论的思想】四、课堂小结:1、本节课你学到的知识是:2、本节课你用到的数学思想、方法是: 【设计意图:利用图表的形式,形象的展示本节课的知识脉络,在学生脑海里形成知识体系,并且体会数学数形结合、分类讨论、转化等思想方法】五、拓展延伸:如图,王大伯家房屋后有一块长12m,宽8m 的矩形空地,他在以长边BC为直径的半圆内种菜.他家养的一只羊平时拴在A处的一棵树上,拴羊的绳长为3m.问羊是否能吃到菜?为什么?【设计意图:备用.数学来源于生活,又服务于生活】【设计说明:这节课的内容与“直线和圆的位置关系”有密切的联系,但这节课的两圆位置关系远比直线与圆的位置关系复杂.因此,准备通过复习引入和让学生动手操作,猜测两圆可能存在的位置关系,然后经过讨论,归纳确定两圆位置关系的各种情况.在与两圆位置关系相应的数量关系的研究中,鉴于学生已有直线与圆的位置关系中两量(半径、圆心到直线的距离)的数量关系的认知基础,就只运用了类比迁移的方法.这些方法的运用,都是为了充分发挥学生在探求新知过程中的主体作用.其次,在五种位置关系相应的数量关系的研究中,我采用“先易后难,突破关键”的教学策略.先让学生解决易于解决的“外切”、“内切”、“外离”时的三量的数量关系,再解决“内含”时的三量的数量关系,最后突破相交时三量的数量关系:R -r<d< R+r.因此到这时,学生从两圆圆心距d的连续变化中,感悟出非负实数d的连续性.此外,我用数轴表示法来帮助学生记忆R、r、d这三者之间的关系,突破难点.最后,通过例题和变式训练加以巩固,总结本节内容,形成知识脉络,从始至终渗透数学的分类讨论、数形结合、转化等思想方法,提高学生的思维能力.】【教学反思】本课时教学内容主要探究圆与圆的位置关系和判别方法,学生通过类比、分类、数形结合,体会从不同的角度考虑事物的特点。

九年级数学上册《24.2.3 圆和圆的位置关系》教学设计 新人教版

九年级数学上册《24.2.3 圆和圆的位置关系》教学设计 新人教版
例题,教材第100页例3
课堂练习,教材第101页练习
作业
学生画图实验,观察分析,总结概括圆与圆有五种位置关系
学生思考归纳出圆与圆位置关系的另一种分法
学生小组合作,分析,总结,交流探索圆与圆的五种位置关系的数量关系
学生先自主,在合作,完成求解过程
学生独立完成
让学生亲自动手,进行实验,探究得出结论
通过不同方法加深对圆与圆有五种位置关系的认识
⑤内含:两个圆没有公共点,⊙o2上的点都在⊙o1上的内部,同心圆是内含的特殊情况;
(2)外离和内含都没有公共点;外切和内切都是一个公共点;相交两个公共点。因此只从公共点的个数来考虑,可分为相离、相切、相交三种。
三,解疑归类
设两圆的半径分别为和R和r。
(1)当两圆外切时,两圆圆心之间的距离(简称圆心距)d和R和r具有怎样的关系?反之当d和R和人满足这一关系时,这两个圆一定外切吗?
丰富对现实空间及图形的认识,发展形象思维
巩固圆与圆的位置关系,培养学生的应用意识与能力
《24.2.3 圆和圆的位置关系》教学设计
讲课教师:
学科:数学
总课时数:19
教பைடு நூலகம்



知识与技能
1.了解圆与圆之间的几种位置关系
2,能够利用圆与圆之间的位置关系和数量关系解题
过程与方法
经历观察‘抽象类比’交流‘想象’应用等过程,学会提炼圆与圆之间的位置关系,培养学生分类的数学是想。
情感态度与价值观
经理探究图形的位置关系,丰富对现实空间及图形的认识,发展形象思维
(2)当两圆内切时(R﹥r),圆心距d与R和r具有怎样的关系?反之,当d与R和r满足这一关系时,这两个圆一定内切吗?
通过上面问题我们就得到下面的结论:

九年级数学上册 24.2.3 圆和圆的位置关系教案 新人教版

九年级数学上册 24.2.3 圆和圆的位置关系教案 新人教版
(1)学生能否准确描述点和圆、直线和圆的位置关系;
(2)学生能否用点和圆心的距离与半径的数量关系判别点和圆的位置关系,能否用圆心到直线的距离与半径的数量关系判别直线和圆的位置关系.
活动2
观察两个半径不同的⊙O1、⊙O2,固定其中一个而移动另一个的过程中,会出现的几种不同位置关系.
(1) 根据观察,请你摆出⊙O1和⊙O2的几种不同的位置关系;
教师提出问题,让学生根据自己所画出的两圆的位置关系图形进一步观察、思考、猜想、测量,发表见解.
(2) 圆是轴对称图形,两个圆是否也组成轴对称图形呢?如果能组成轴对图形,那么对称轴是什么?
教师利用课件演示两圆位置关系的变化情况,观察随着两圆位置关系的变化,两圆圆心距与两圆半径之和或之差之间的数量关系.
2.学生经历探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系的过程,培养学生运用数学语言表述问题的能力.
情感态度
价值观
学生经过操作、实验、发现、确认等数学活动,从探索两圆位置关系的过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感.
教学重点
探索并了解圆和圆的位置关系.
教学难点
活动4
问题1
(1)教科书24.2-
(2) 在图中有两圆的多种位置关系,请你找出还没有的位置关系是
师生共同完成例题的求解.
对于问题(1),教师应重点关注学生能否利用两圆外切或内切时,圆心距与两圆的半径和与差的关系来解题.
活动5
小结
这节课我们主要研究了圆和圆的位置关系4、6题.
24.2.3圆和圆的位置关系
教学时间
课题
课型
新授




知识和
能力

(新)人教版九年级数学上册《圆与圆的位置关系》教学详案设计附板书设计

(新)人教版九年级数学上册《圆与圆的位置关系》教学详案设计附板书设计

(新)人教版九年级数学上册课题:圆与圆的位置关系教材:人教版上册24.2.3教学目标:1、经历探索两个圆位置关系的过程。

2、了解圆和圆之间的几种位置关系。

3、了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系。

重难点:1、重点:识别圆和圆的位置关系及判定。

2、难点:两圆的内切与外切的判定方法,它是两圆各种位置关系的分界线,如何把观察到的现象变成数学的表达式是关键,也是今后应用的核心。

同时会利用圆和圆的位置关系的知识解决一些实际问题。

教学方法与手段:1、教学方法:分层递进、问题式、启发式相结合2、教学手段:借助多媒体和实物演示,提供直观形象的过程。

教学用具:教学一体机、两个圆形硬纸板,圆规、直尺教学过程:一、复习回顾复习直线L和圆的三种位置关系,并说出三种位置关系的交点情况、圆心到直线L 的距离与半径R的关系.二、创设情景欣赏天文奇观——日食,以及五环旗图案、十字路口的红绿灯、自行车等。

三、探索新知探究一:探索圆与圆的位置关系1、(学生活动)在纸上画一个半径为5cm的圆,再将圆的纸板向已画的圆移动,①观察两圆公共点(交点)的个数的变化情况。

②想一想两圆的位置关系图一共有几种呢?(尝试画出其位置关系图)(学生通过独立操作、思考得出两圆的交点的个数变化情况;再分组讨论、尝试画出其位置关系图)2、(教师活动)演示两圆的运动时位置变化的过程3、最后归纳出两圆的五种位置关系图(a)(b)(d)(d)4、引导学生小结:5、教师点拨:右图是内含的一种特例,因为两圆圆心相同,我们把它称为叫同心圆。

6、(同桌讨论)当两圆的半径相同,则两圆又该有几种位置关系呢?结论:外离、外切、相交、重合7、牛刀小试(练习)(1)、2008(2)探究二:探究两圆的对称性(以外切为例)1、从圆的轴对称性出发,让学生通过观察、推断外切两圆的对称性。

2、分析外切的两圆的连心线与切点的关系,相切时的连心线必经过切点”的性质。

(牛刀小试1)外离内切相交外切内含两个公共点一个公共点没有公共点相离圆与圆的位置关系(f)o o2T3、掌握圆心距的定义圆心距:两圆心之间的距离(即连结两圆心的线段的长度)探究三:圆心距与两圆半径之间的关系1、设两圆半径分别为R和r,圆心距为d,则d和R、 r之间有何数量关系?(组织学生探索两圆的五种位置关系)两圆外离 d>R+r;两圆外切 d=R+r;两圆相交 R-r<d<R+r.两圆内切 d=R-r (R>r);两圆内含0≤ d<R-r(R>r);教师点拨:①、两圆相交时,结合三角形三边关系:两边之和大于第三边,两边之差小于第三边。

圆和圆的位置关系 教案

圆和圆的位置关系 教案

24.2.3圆和圆的位置关系
(第一课时)
一、教学目标 1.知识目标
(1) 探索并了解圆和圆的位置关系
(2) 掌握圆和圆的位置关系并能用圆和圆的位置关系解题
2.能力目标
(1) 学生经历操作、探究、归纳、总结圆和圆的位置关系的过程,培养学生观察,比较,
概括的逻辑思维能力
(2) 初步构建空间想象能力 3.情感目标
学生经过操作,实验,发现,确认等教学活动,从探索两圆位置关系的过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感 二、教学重难点
1. 教学重点:探索并了解圆和圆的位置关系
2. 教学难点:构建圆和圆的位置关系的概念 三、采用的教学辅助设备
教学圆规,多媒体,教具(纸制的2个小圆,1个大圆) 四、教学过程
1. 引入;复习之前学的点和圆的位置关系与直线和圆的位置关系
接下来,投影仪展示五张生活中有关圆与圆的图片
1.填空
(1)两圆有两个公共点,两圆的位置关系为
______
(2)两圆没有公共点,两圆的位置关系为___________
(3)两圆有一个公共点,两圆的位置关系为
___________
相交相离或内含外切或内切
3.动脑筋
两个半径相等的圆有那
几种位置关系?
外离
外切相交重合
2.小结
这堂课我们学习了有关圆与圆的位置关系,有外离,外切,相交,内切,内含五种。

3.布置作业
预习圆与圆的位置关系中半径和圆心距的关系。

人教版数学九年级上册24.2.3《圆和圆的位置关系》教学设计

人教版数学九年级上册24.2.3《圆和圆的位置关系》教学设计

人教版数学九年级上册24.2.3《圆和圆的位置关系》教学设计一. 教材分析《圆和圆的位置关系》是人教版数学九年级上册第24章第二节的一部分,主要内容是探讨两个圆之间的位置关系,包括内含、内切、外切、相离、相交五种情况。

本节内容是在学生已经掌握了圆的基本概念、圆的周长和面积等知识的基础上进行学习的,为后续学习圆的方程和应用打下基础。

二. 学情分析九年级的学生已经具备了一定的几何图形认知能力,能够理解和运用一些基本的几何概念。

但是,对于圆和圆之间的位置关系的理解和运用还需要进一步的引导和培养。

此外,学生的空间想象能力和逻辑思维能力还有待提高,需要通过具体的实例和操作来加深理解。

三. 教学目标1.知识与技能:使学生掌握圆和圆的位置关系,能够识别和判断两种圆的位置关系。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。

四. 教学重难点1.重点:圆和圆的位置关系的判断。

2.难点:对圆和圆位置关系的理解和运用。

五. 教学方法采用问题驱动法、合作学习法和操作实践法进行教学。

通过提出问题,引导学生思考和探索;通过合作学习,培养学生团队合作意识和交流能力;通过操作实践,加深学生对知识的理解和运用。

六. 教学准备1.准备一些圆的模型和图示,用于展示和操作。

2.准备一些实例和练习题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考:“我们在日常生活中见到的圆有很多,那么这些圆之间有没有什么特殊的关系呢?”让学生认识到圆和圆之间可能存在某种关系,激发学生的学习兴趣。

2.呈现(10分钟)用PPT或黑板展示几种不同的圆和圆的位置关系,包括内含、内切、外切、相离、相交。

引导学生观察和描述这些位置关系,让学生对这些关系有一个直观的认识。

3.操练(10分钟)让学生分组,每组选取几个圆,通过实际操作,判断这些圆的位置关系。

九年级数学上册 24.2.3 圆和圆的位置关系教案 新人教版-新人教版初中九年级上册数学教案

九年级数学上册 24.2.3 圆和圆的位置关系教案 新人教版-新人教版初中九年级上册数学教案

圆和圆的位置关系一、创设情境、导入新课直线和圆的位置关系是怎样的?从交点来看直线与圆有三种位置关系,那么平面内两个圆,它们作相对运动,将会产生什么样的位置关系呢?这就是我们这节课要学习的内容. (圆和圆的位置关系)二.新课探究同学们把课前准备好的两个圆形纸板拿出来,让一个圆固定,另一个圆慢慢移动,观察交点个数,能得出几种位置关系。

图形名称定义交点名称交点个数外离两个圆没有公共点,并且每个圆上的点都在另一个圆的外部0个外切两个圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部唯一公共点叫切点1个图形名称相离相切相交判定d>r d=r d<r交点个数无1个2个学生动手操作,观察,总结圆与圆的位置关系。

复习直线和圆的位置关系,以此来引入新课圆和圆的位置关系。

通过学生动手操作,从感性到理性认识圆与圆的五种位置关系,并给出相应的定义。

教学过程设计教学内容及教师活动学生活动设计意图相交两个圆有两个公共点公共点叫交点2个内切两个圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部唯一公共点叫切点1个内含两个圆没有公共点,并且一个圆上的点都在另一个圆的内部0个探究相切两圆的性质.这两个图形沿着通过两圆圆心的直线折叠的过程,让学生观察连心线与切点的关系怎样?通过观察,我们发现,相切两圆也组成轴对称图形,通过两圆圆心的直线叫连心线是它们的对称轴,由此,我们得到相切两圆的连心线的性质:如果两个圆相切,那么切点一定在连心线上.三、探索两圆位置关系的数量特征.图形名称性质和判定外离⇔d>R+r外切⇔d=R+r(R>r)相交⇔R-r<d<R+r内切⇔d=R-r(R>r) 学生观察,总结归纳。

课堂练习由学生小组合作完成。

通过观察、测量来总结出两圆位置关系中圆心距与两个半径之间的关系。

.T. T。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师提出问题,让学生根据自己所画出的两圆的位置关系图形进一步观察、思考、猜想、测量,发表见解.
(2)圆是轴对称图形,两个圆是否也组成轴对称图形呢?如 果能组成轴对图形,那么对称轴是什么?
教师利用课件演示 两圆位置关系的变化情况,观察随着两圆位置关系的变化,两圆圆心距与两圆半径之和或之差之 间的数量关系.
学 生通过作业,回顾、梳理知识,反思提高.
作业
设计
必做
教科书P102:6、7
选做
教科书P103:15-17




(1)学生能否准确描述点和圆、直线和圆的位置关系;
(2)学生能否用点和圆心的距离与半径的数量关系判别点和圆的位置关系,能否用圆心到直线的距离与半径的数量关系判别直线和圆的位置关系.
活动2
观察两个半径不同的⊙O1、⊙O2,固定其中一个而移动另一个的过程中,会出现的几种不同位置关系.
(1)根据观察,请你摆出⊙O1和⊙O2的几种不同的位置关系;
教学难点
探索圆和圆的位置关系中两圆圆心距与两圆半径的数量关系.
课堂教学程序设计
二次备课
问题与情境
师生行为
设计意图
活动1
问题
(1)点和圆有几种位置关系?如何识别?
(2)直线和圆有几种位置关系?如何识别?
(3)两 个 圆的位置关系又如何呢?
教师演示课件,提出问题.
学生观察、思考、回答问题 .
在本次活动中,教师应重点关注:
2020年九年级数学上册24.2.3圆和圆的位置关系教案新人教版
教学时间
课题
课型
新授




知识和
能力
1.探索并了解圆和圆的位置关系.
2.探索圆和圆的 位置关系中两圆圆心距与两圆半径间的数量关系.
3.能够利用圆和圆的位置关系和数量关系解题.
过程和
方法
1.学生经历操作、探究、归纳、总结圆和圆的位置关系的过程,培养学生观察、比较、概括的逻辑思维能力.
2.学生经历探索圆和圆的位置关系中两圆圆心距与两圆半径间的数量关系的过程,培养学生运用数学语言表 述问题的能力.
情感态度
价值观
学生经过操作、实验、发现、确认等数学活动,从探索两圆位置关系的过程中,体会运动变化的观点,量变到质变的辩证唯物主义观点,感受数学中的美感.
教学重点
探索并了解圆和圆的位置关系.
活动4
问题1
(1)教科书24.2-
(2)在图中有两圆的多种位置关系,请你找出还没有的位置关系是
师生共同完成例题的求解.
对于问题(1),教师应重点关注学生能否利用两圆外切或内切时,圆心距与两圆的半径和与差的关系来解题.
活动5
小结
这节课我们主要研究了圆和圆的位 源自关系,你有哪些收获?布置作业
教科书习题14.3第1、4、6题.
(2)你能否根据两圆公共点的个数类比直线和圆的位置关系定义,给出两圆位置关系的定义?
利用几何画板画出两个半径不同的圆,固定其中一个而移动另一个.
让学生观察、发现,并动手摆出 两圆的 不同位置关系图形.
请一名学生展示他发现的两圆不同位置关系的图形.
活动3
探究
(1)请你根据圆和圆的位置关系,猜测出两圆的圆心距与两圆半径之间的数量关系,利用刻度尺进行测量,验证你的猜想.
相关文档
最新文档