小学数学常见几何模型典型例题和解题思路
小学奥数必学几何五大模型及例题解析

小学奥数必学几何五大模型及例题解析一、等积变换模型一一很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图S i : = a :b⑶夹在一组平行线之间的等积变形,如下图S^ ACD = S^ BCD 反之,如果S A ACD =S A BCD,则可知直线AB平行于CD⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:(第四届”迎春杯欄试题)如图‘三角形A眈的面积为1 ,其中AE = 3AB ,,三角形册肉的面积是多少?解析:连接CE,如图。
AE=3AB,所以S A AEC =3S △ABC=3所以S A BCE =2又因为:BD=2BC,所以S A BDE=2S A BCE=4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在△ ABC中,D,E分别是AB,AC上的点(如图1)或D在BA的延长线上,E 在AC 上( 女口图2) ,则S A ABC:ADE二(AB AC): (AD AE)此模型的结论可以用将来初中学到的正弦定理进行证明!因为S^ABC=AB >ACsinA,S^ADE=AD >AEsinA所以:S A ABC: S A ADE= (AB/CsSA): (AD >AEsinA) = (AB 0C):(AD >AE)经典例题:已知MEF的面积为7平方厘米,BE = CE、AD = 2BD*CF=3AF,求心眈的面积・三、蝴蝶定理模型任意四边形中的比例关系(蝴蝶定理”:① S i: S 2 = S 4 : S3 或者S S^ = S2 S 4②AO:OC 二 $ S 2 : S 4 S 3蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径•通过构造模型,一方面可以使不规则四边形的面积关系 与四边形内的三角形相联系;另一方面,也可以得到与面积对应 的对角线的比例关系。
小学小学数学几何五大模型使用方法(含考试典型例题)

小学小学数学几何五大模型使用方法(含考试典型例题)展开全文•在学习小学数学的时候,几何模型算是比较新颖的一个模块,学生们熟练掌握五大面积模型,并掌握五大面积模型的各种变形,今天康康老师就为大家推荐一篇小学数学几何五大模型的内容,第二页还有例题分享,大家可以参考一下。
知识点拨一、等积模型①等底等高的两个三角形面积相等;②两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比;如下图:③夹在一组平行线之间的等积变形,如右图;反之,如果,则可知直线AB平行于CD.④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形);⑤三角形面积等于与它等底等高的平行四边形面积的一半;⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.二、鸟头定理两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形.共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.如图在中,D、E分别是AB、AC上的点如图⑴(或D在BA 的延长线上,E在AC上),则三、蝴蝶定理任意四边形中的比例关系(“蝴蝶定理”):①或者②蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径.通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系.梯形中比例关系(“梯形蝴蝶定理”):四、相似模型(一)金字塔模型 (二) 沙漏模型所谓的相似三角形,就是形状相同,大小不同的三角形(只要其形状不改变,不论大小怎样改变它们都相似),与相似三角形相关的常用的性质及定理如下:⑴相似三角形的一切对应线段的长度成比例,并且这个比例等于它们的相似比;⑵相似三角形的面积比等于它们相似比的平方;⑶连接三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线长等于它所对应的底边长的一半.相似三角形模型,给我们提供了三角形之间的边与面积关系相互转化的工具.在小学小学数学里,出现最多的情况是因为两条平行线而出现的相似三角形.五、燕尾定理在三角形ABC中,AD,BE,CF相交于同一点O,那么.上述定理给出了一个新的转化面积比与线段比的手段,因为和的形状很象燕子的尾巴,所以这个定理被称为燕尾定理.该定理在许多几何题目中都有着广泛的运用,它的特殊性在于,它可以存在于任何一个三角形之中,为三角形中的三角形面积对应底边之间提供互相联系的途径.。
小学奥数必学几何五大模型及例题解析

小学奥数必学几何五大模型及例题解析一、等积变换模型——很重要,小学常考⑴等底等高的两个三角形面积相等;⑵两个三角形高相等,面积比等于它们的底之比;两个三角形底相等,面积比等于它们的高之比。
如下图右图12::S S a b =⑶夹在一组平行线之间的等积变形,如下图ACDBCD S S =△△;反之,如果ACDBCD S S =△△,则可知直线AB 平行于CD 。
⑷正方形的面积等于对角线长度平方的一半;⑸三角形面积等于与它等底等高的平行四边形面积的一半;经典例题:1S 2S 解析:连接CE ,如图。
AE=3AB,所以S △AEC =3S △ABC=3 所以 S △BCE =2又因为:BD=2BC,所以S △BDE =2 S △BCE =4点评:此题就是三角形等积变换模型的直接应用二、鸟头定理(共角定理)模型两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形。
共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比。
如图,在ABC △中,,D E 分别是,AB AC 上的点(如图1)或D 在BA 的延长线上,E 在AC 上(如图2),则:():()ABC ADE S S AB AC AD AE =⨯⨯△△图1 图2此模型的结论可以用将来初中学到的正弦定理进行证明!因为S △ABC =AB ×ACsinA ,S △ADE =AD ×AEsinA所以:S △ABC :S △ADE= (AB ×ACsinA ):(AD ×AEsinA )=(AB ×AC ):(AD ×AE )经典例题:S △ADF :S △ABC=(AD ×AF ):(AB ×AC )=(2BD ×AF ):(3BD ×4AF )=1:6 S △BDE :S △ABC=(BD ×BE ):(AB ×BC )=(BD ×BE ):(3BD ×2BE )=1:6 S △CEF :S △ABC=(CE ×CF ):(CB ×CA )=(CE ×3AF ):(2CE ×4AF )=3:8 1-1/6-1/6-3/8=7/24 S △ABC =7÷7/24=24(平方厘米).点评:本题直接用到鸟头模型,先分别求出三个角上的三个三角形占S △ABC 的比例,再求出S △DEF 占S △ABC 的比例,就能直接求出S △ABC 的面积。
小学数学常见几何模型典型例题 DOCX 文档

AB CDOEGAHFECBI DGADFCBCD FE ABD CFBCEF S 1S 2S 3S 41、ABCG 是边长为12厘米的正方形,右上角是一个边长为6厘米的正方形FGDE ,则阴影部分的面积是_______cm 2。
2.在长方形ABCD 中,BE=5cm ,EC=4m ,CF=4cm ,FD=1cm 。
则△AEF 的面积是____.3.如图所示的长方形中,E 、F 分别是AD 和DC 的中点,如果已知AB=10厘米,BC=6厘米,则阴影部分面积__________平方厘米.4、正方形ABCD 边长是6厘米,△AFD (甲)是正方形的一部分,△CEF (乙)的面积比△AFD (甲)大6平方厘米。
求CE 的长。
5、把长为15厘米,宽为12厘米的长方形,分割成4个三角形,其面积分别为S 1、S 2、S 3、S 4,且S 1=S 2=S 3+S 4。
求S 4。
6、长方形ABCD 内的阴影部分面积之和为70cm 2,AB=8CM ,AD=15CM 。
求四边形EFGO 的面积。
ADBCABCFEABCDGH FEACB DEABDCPQ MN1、如图,AD=DB ,AE=EF=FC 。
已知阴影部分面积为5平方厘米,求△ABC 的面积?2、△ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE的3倍,EF 的长是BF 的3倍,求△AEF 的面积?3、在四边形ABCD 中,ED :EF :FC=3:2:1,BG :GH :AH=3:2:1,已知四边形ABCD 的面积等于4cm ,求四边形EHGF 的面积?4、在△ABC 中,已知△ADE 、△DCE、△BCD 的面积分别是89,28,26,求△DBE 的面积?5、四边形ABCD 的面积是1,M 、N 是对角线AC 的三等分点,P 、Q 是对角线BD 的三等分点,求阴影部分的面积?DCCAB DCE FABD CMNEF小学数学常见几何模型典型例题及解题思路1、在梯形ABCD 中,AB 与CD 平行,E 、F 分别是AD 和BC 的中点。
小学数学几何五大模型教师版

几何五大模型一、五大模型简介(1)等积变换模型1、等底等高的两个三角形面积相等;2、两个三角形高相等,面积之比等于底之比,如图①所示,S1:S2=a:b;3、两个三角形底相等,面积在之比等于高之比,如图②所示,S1:S2=a:b;4、在一组平行线之间的等积变形,如图③所示,S△ACD=S△BCD;反之,如果S△ACD=S△BCD,则可知直线AB平行于CD。
例、如图,三角形ABC的面积是24,D、E、F分别是BC、AC、AD的中点,求三角形DEF的面积。
(2)鸟头(共角)定理模型1、两个三角形中有一个角相等或互补,这两个三角形叫共角三角形;2、共角三角形的面积之比等于对应角(相等角或互补角)两夹边的乘积之比。
如图下图三角形ABC中,D、E分别是AB、AC上或AB、AC延长线上的点则有:S△ABC:S△ADE=(AB×AC):(AD×AE)我们现在以互补为例来简单证明一下共角定理!如图连接BE,根据等积变化模型知,S△ADE:S△ABE=AD:AB、S△ABE:S△CBE=AE:CE,所以S△ABE:S△ABC=S△ABE:(S△ABE+S△CBE)=AE:AC,因此S△ADE:S△ABC=(S△ADE:S△ABE)×(S△ABE:S△ABC)=(AD:AB)×(AE:AC)。
例、如图在ΔABC中,D在BA的延长线上,E在AC上,且AB:AD=5:2,AE:EC=3:2,△ADE的面积为12平方厘米,求ΔABC的面积。
(3)蝴蝶模型1、梯形中比例关系(“梯形蝴蝶定理”)例、如图,梯形ABCD,AB与CD平行,对角线AC、BD交于点O,已知△AOB、△BOC 的面积分别为25平方厘米、35平方厘米,求梯形ABCD的面积。
2、任意四边形中的比例关系(“蝴蝶定理”):例、如图,四边形ABCD的对角线AC、BD交于点O,如果三角形ABD的面积等于三角形BCD面积的1/3,且AO=2、DO=3,求CO的长度是DO长度的几倍。
八大类几何模型+60种解题技巧

一、常见的八大类几何模型在解决几何题目时,我们经常会遇到一些常见的几何模型。
这些模型包括但不限于:直角三角形、等腰三角形、等边三角形、直接相似三角形、等腰梯形、菱形、正方形和矩形。
1. 直角三角形直角三角形是一个内角为90度的三角形。
在求解直角三角形题目时,可以运用勾股定理、正弦定理、余弦定理等方法。
2. 等腰三角形等腰三角形是指两边相等的三角形。
在解决等腰三角形问题时,可以利用等角定理、等边角定理等。
3. 等边三角形等边三角形是指三边相等的三角形。
解决等边三角形问题时,可以利用等边三角形的性质,如高、中线等。
4. 直接相似三角形直接相似三角形是指对应角相等的两个三角形。
在对直接相似三角形进行解题时,可以利用相似三角形的性质,如边比例定理等。
5. 等腰梯形等腰梯形是指有两对对边相等的梯形。
解决等腰梯形问题时,可以运用梯形的性质以及各边的关系。
6. 菱形菱形是指四条边都相等的四边形。
在解决菱形问题时,可以利用菱形的性质,如对角线垂直平分、对角相等等。
7. 正方形正方形是指四条边相等且四个角均为直角的四边形。
解决正方形问题时,可以利用正方形的性质,如对角线相等、对角线垂直等。
8. 矩形矩形是指四边均为直角的四边形。
在解决矩形问题时,可以利用矩形的性质,如对角线相等、邻边互相垂直等。
二、60种解题技巧在解决几何题目时,我们还可以运用一些解题技巧来更快更准确地得出答案。
下面列举了60种解题技巧,以供参考。
1. 勾股定理2. 余弦定理3. 正弦定理4. 度角关系5. 弧度制下的两点间弧长相关关系6. 三角恒等变形7. 各角平分线8. 高度定理9. 中线定理10. 角平分线定理11. 等角定理12. 外角定理13. 内角定理14. 中位线定理15. 等腰三角形的性质16. 等边三角形的性质17. 相似三角形的三边对应比例关系18. 相似三角形的高度关系19. 相似三角形的边对应比例关系20. 相似三角形的面积关系21. 三角形高到底关系22. 三角形高乘底除以2的面积公式23. 三角形内切圆24. 三角形外接圆25. 正方形的性质26. 矩形的对角线关系27. 矩形的邻边互相垂直关系28. 长方形的面积公式29. 长方形的周长公式30. 菱形的性质31. 菱形对角线垂直平分32. 平行四边形的性质33. 平行四边形的对角线相等关系34. 平行四边形的对角互补35. 梯形的中位线关系36. 梯形的对角线垂直关系37. 梯形的高关系38. 圆的性质39. 圆周角的关系40. 圆心角的关系41. 切线关系42. 切线长定理43. 余弦定理的推广44. 余角关系45. 同位角关系46. 交叉线定理47. 锐角三角函数的关系48. 平行线夹角关系49. 余切函数的关系50. 同义形的面积公式51. 直角三角形斜边上的高52. 各角平分线角度关系53. 三角形中位线长度关系54. 三角形中位线平行长的关系55. 等角三角形三角函数的关系56. 三角形半周长乘外切圆内切圆面积关系57. 圆相关不等式58. 反证法59. 斜率性质60. 坐标系下平移关系解决几何问题时,首先要熟练掌握常见的八大类几何模型,然后灵活运用各种解题技巧,以便更加高效地解决问题。
多边形的面积几何模型篇四种基本几何模型-2024-2025学年五年级数学上册典型例题(教师版)苏教版

篇首寄语我们每位老师都希望把最好的教学资料留给学生使用,所以在平时教学时,能够快速找到高质量、高效率、高标准的资料显得十分重要。
编者以前常常游走于各大学习网站寻找自己所需的资料,可却总在花费大量时间与精力后才能找到自己心仪的那份,这样费时费力不讨好,实在有些苦恼。
正因如此,每次在寻找资料时,编者就会想,如果是自己来创作一份资料那又该如何呢?那么这份资料应该首先满足自身教学需要,并达到我的高标准要求,然后才能为他人提供参考。
于是,本着这样的想法,在结合自身教学需求和学生实际情况后,最终酝酿出了一个既适宜课堂教学,又适应课后作业,还适合阶段复习的大综合系列。
《2024-2025学年五年级数学上册典型例题系列》,它基于教材知识和常年真题进行总结与编辑,该系列主要分为典型例题篇、专项练习篇、单元复习篇、思维素养篇、分层试卷篇等五个部分。
1.典型例题篇,按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
2.专项练习篇,从高频考题和期末真题中选取专项练习,其优点在于选题经典,题型多样,题量适中。
3.单元复习篇,汇集系列精华,高效助力单元复习,其优点在于综合全面,精练高效,实用性强。
4.思维素养篇,新的学年,新的篇章,从课本到奥数,从方法到思维,从基础技能到核心素养,其优点在于由浅入深,思维核心,方法易懂。
5.分层试卷篇,根据试题难度和水平,主要分为A卷·基础巩固卷、B卷·素养提高卷、C卷·思维拓展卷,其优点在于考点广泛,分层明显,适应性广。
时光荏苒,转眼之间,《典型例题系列》已经历三个学年三个版本,在过去,它扬长补短,去粗取精,日臻完善;在未来,它承前启后,不断发展,未有竟时。
黄金无足色,白璧有微瑕,如果您在使用资料的过程中有任何宝贵意见,请留言于我,欢迎您的使用,感谢您的支持!101数学创作社2024年9月16日2024-2025学年五年级数学上册典型例题系列第二单元多边形的面积·几何模型篇·四种基本几何模型【四大考点】【第一篇】专题解读篇专题名称第二单元多边形的面积·几何模型篇·四种基本几何模型专题内容本专题以四种常见的基本几何模型为主,其中包括①格点模型(格点多边形);②平移模型;③凸字模型;④凹字模型。
多边形的面积几何模型篇风筝模型和蝴蝶模型-2024-2025学年五年级数学上册典型例题系列(教师版)

篇首寄语我们每位老师都希望把最好的教学资料留给学生使用,所以在平时教学时,能够快速找到高质量、高效率、高标准的资料显得十分重要。
编者以前常常游走于各大学习网站寻找自己所需的资料,可却总在花费大量时间与精力后才能找到自己心仪的那份,这样费时费力不讨好,实在有些苦恼。
正因如此,每次在寻找资料时,编者就会想,如果是自己来创作一份资料那又该如何呢?那么这份资料应该首先满足自身教学需要,并达到我的高标准要求,然后才能为他人提供参考。
于是,本着这样的想法,在结合自身教学需求和学生实际情况后,最终酝酿出了一个既适宜课堂教学,又适应课后作业,还适合阶段复习的大综合系列。
《2024-2025学年五年级数学上册典型例题系列》,它基于教材知识和常年真题进行总结与编辑,该系列主要分为典型例题篇、专项练习篇、单元复习篇、思维素养篇、分层试卷篇等五个部分。
1.典型例题篇,按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。
2.专项练习篇,从高频考题和期末真题中选取专项练习,其优点在于选题经典,题型多样,题量适中。
3.单元复习篇,汇集系列精华,高效助力单元复习,其优点在于综合全面,精练高效,实用性强。
4.思维素养篇,新的学年,新的篇章,从课本到奥数,从方法到思维,从基础技能到核心素养,其优点在于由浅入深,思维核心,方法易懂。
5.分层试卷篇,根据试题难度和水平,主要分为A卷·基础巩固卷、B卷·素养提高卷、C卷·思维拓展卷,其优点在于考点广泛,分层明显,适应性广。
时光荏苒,转眼之间,《典型例题系列》已经历三个学年三个版本,在过去,它扬长补短,去粗取精,日臻完善;在未来,它承前启后,不断发展,未有竟时。
黄金无足色,白璧有微瑕,如果您在使用资料的过程中有任何宝贵意见,请留言于我,欢迎您的使用,感谢您的支持!101数学创作社2024年9月16日2024-2025学年五年级数学上册典型例题系列第二单元多边形的面积·几何模型篇·风筝模型和蝴蝶模型【五大考点】【第一篇】专题解读篇专题名称第二单元多边形的面积·几何模型篇·风筝模型和蝴蝶模型专题内容本专题以风筝模型和蝴蝶模型为主,其中包括五种常见问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学常见几何模型典型例题及解题思路(1)巧求面积常用方法:直接求;整体减空白;不规则转规则(平移、旋转等);模型(鸟头、蝴蝶、漏斗等模型);差不变1、ABCG 是边长为12厘米的正方形,右上角是一个边长为6厘米的正方形FGDE ,求阴影部分的面积。
答案:72AHFECB I DG思路:1)直接求,但是阴影部分的三角形和四边形面积都无法直接求;2)整体减空白。
关键在于如何找到整体,发现梯形BCEF 可求,且空白分别两个矩形面积的一半。
2、在长方形ABCD 中,BE=5,EC=4,CF=4,FD=1。
△AEF 的面积是多少?答案:20ADB FCE思路:1)直接求,无法直接求;2)由于知道了各个边的数据,因此空白部分的面积都可求3、如图所示的长方形中,E 、F 分别是AD 和DC 的中点。
(1)如果已知AB=10厘米,BC=6厘米,那么阴影部分面积是多少平方厘米?答案:22.5(2)如果已知长方形ABCD 的面积是64平方厘米,那么阴影部分的面积是多少平方厘米?答案:24B CD FE思路(1)直接求,无法直接求;2)已经知道了各个边的数据,因此可以求出空白的位置;3)也可以利用鸟头模型4、正方形ABCD 边长是6厘米,△AFD (甲)是正方形的一部分,△CEF (乙)的面积比△AFD (甲)大6平方厘米。
请问CE 的长是多少厘米。
答案:8ABD CF思路:差不变5、把长为15厘米,宽为12厘米的长方形,分割成4个三角形,其面积分别为S 1、S 2、S 3、S 4,且S 1=S 2=S 3+S 4。
求S 4。
答案:10DCEF S 1S 2S 3S 4思路:求S4需要知道FC 和EC 的长度;FC 不能直接求,但是DF 可求,DF 可以由三分之一矩形面积S1÷AD ×2得到,同理EC 也求。
最后一句三角形面积公式得到结果。
6、长方形ABCD 内的阴影部分面积之和为70,AB=8,AD=15。
求四边形EFGO 的面积。
答案10。
ABCDFOEG思路:看到长方形和平行四边形,只要有对角线,就知道里面四个三角形面积相等。
然后依据常规思路可以得到答案。
思路2:从整体看,四边形EFGO 的面积=△AFC 的面积+△BFD 的面积-空白部分的面积。
而△ACF 的面积+△BFD 的面积=长方形面积的一半,即60。
空白部分的面积等于长方形面积减去阴影部分的面积,即120-70=50 。
所以四边形的面积EFGO 的面积为60-50=10。
比例模型1、如图,AD=DB ,AE=EF=FC 。
已知阴影部分面积为5平方厘米,△ABC 的面积是多少平方厘米?答案30平方厘米。
ADBC思路:由阴影面积求整个三角形的面积,因此需要构造已知三角的面积和其它三角形的面积比例关系,而题目中已经给了边的比,因此依据等高模型或者鸟头模型即可得到答案。
2、△ABC 的面积是180平方厘米,D 是BC 的中点,AD 的长是AE的3倍,EF 的长是BF 的3倍,那么△AEF 的面积是多少平方厘米?答案22.5平方厘米ABCDFE思路:仅仅告诉三角形面积和边的关系,需要依据比例关系进行构造各个三角形之间的关系,从而得出答案 3、在四边形ABCD 中,E ,F 为AB 的三等分点,G ,H 为CD 的三等分点。
四边形EFHG 的面积占总面积的几分之几?答案是1/3ABCDEFG HABCDEFG H思路:仅仅告诉边的关系,求四边形之间的关系,需要首先考虑如何分解为三角形,然后再依次求解。
4、在四边形ABCD 中,ED :EF :FC=3:2:1,BG :GH :AH=3:2:1,已知四边形ABCD 的面积等于4,则四边形EHGF 的面积是多少?答案4/3ABCDGH FEABCDGH FE5、 在△ABC 中,已知△ADE 、△DCE、△BCD 的面积分别是89,28,26,那么三角形DBE 的面积是多少?答案178/9ACB DE思路:需要记住反向分解三角形,从而求面积。
6、在角MON 的两边上分别有A 、C 、E 及B 、D 六个点,并且△OAB 、△ABC、△BCD、△CDE、△DEF的面积都等于1,则△DCF的面积等于多少?答案3/47、四边形ABCD的面积是1,M、N是对角线AC的三等分点,P、Q是对角线BD的三等分点,求阴影部分的面积?答案1/9A BDCPQM N一半模型比例模型---共高模型一半模型蝴蝶模型(漏斗,金字塔)鸟头模型燕尾模型风筝模型切记梯形的一半模型(沿着中线变化)切记任意四边形的一半模型1、在梯形ABCD 中,AB 与CD 平行,点E 、F 分别是AD 和BC 的中点。
△AMB 的面积是3平方厘米,△DNC 的面积是7平方厘米。
1)△AMB 和△DNC 的面积和等于四边形EMFN 的面积; 2)阴影部分的面积是多少平方厘米。
DC思路:一种应用重叠=未覆盖思路:将各个三角形标记,应用两个一半模型=整体梯形 2、任意四边形ABCD ,E 、F 、G 、H 分别为各边的中点。
证明四边形EFGH 的面积为四边形ABCD 面积的一半。
A BDCEGFHA BDCA BDCEGFHEGFH3、四边形ABCD 中,E 、F 、G 、H 分别是各边的中点。
求阴影部分与四边形PQRS 的面积比。
答案相等C思路:依次应用一半模型和重叠等于未覆盖。
证明需要分别连接BD 和AC 。
4、已知M 、N 分别为梯形两腰的中点,E 、F 为M 、N 上任意两点。
已知梯形ABCD 的面积是30平方厘米,求阴影部分的面积。
答案:15ABD CMNEF5、已知梯形ABCD 的面积是160,点E 为AB 的中点,DF :FC=3:5。
阴影部分的面积为多少。
答案:30A B CE F鸟头模型1、 已知△ABC 面积为1,延长AB 至D ,使BD=AB ;延长BC 至E ,使CE=2BC ,延长CA 至F ,使AF=3AC 。
求△DEF 的面积。
答案:18FEDA BC思路:依次使用鸟头模型,别忘了最终还需要加上△ABC 的面积。
2、 在平行四边形ABCD 中,BE=AB ,CF=2CB ,GD=3DC ,HA=4AD ,平行四边形的面积是2,四边形EFGH 的面积是多少?答案:36AB CDGHEF3、 四边形EFGH 的面积是66平方米,EA=AB ,CB=BF ,DC=CG ,HD=DA ,求四边形ABCD 的面积?答案:13.2AB C DGHEF4、 将四边形ABCD 的四条边AB 、CB 、CD 、AD 分别延伸两倍至点E 、F 、G 、H ,若四边形ABCD 的面积为5,则四边形EFGH 的面积是多少?答案:60GHEFB ACD思路:依次使用两类不同鸟头模型,别忘了最终还需要减去一个四边形ABCD 的面积。
5、 在三角形ABC 中,延长AB 至D ,使BD=AB ,延长BC 至E ,使CE=1/2BC ,F 是AC 的中点,若三角形ABC 的面积是2,则三角形DEF 的面积是多少?答案:3.5AB FC ED A B F C ED思路:分割所求三角形,分别应用比例模型和鸟头模型。
6、 △ABC 中,延长BA 到D ,使DA=AB ,延长CA 到E ,使EA=2AC ,延长CB 到F ,使FB=3BC ,如果△ABC 的面积是1,那么△DEF 的面积是多少?答案:7AB C DF E思路:△ABC 和△EFC 是鸟头模型,从而求出四边形ABEF 的面积,△ABC 和△AED 是鸟头模型,从而求出△AED 面积,从而解题小技巧:1,答案为5AB DC O 104?22、总面积为52,其中两个分别为6,7,另外两个分别是多少?答案18,21AB DC O X6Y 73、在△ABC 中,已知M ,N 分别在AC 、BC 上,BM 与AN 相交于点O 。
若△AOM ,△ABO 和△BON 的面积分别是3,2,1,则△MNC 的面积是多少?答案22.5。
AB CN MO风筝模型求出△MON=1.5;△ANM :△MNC=△ABM :△BMC(3+1.5):x=(3+2):(1+1.5+x )8、这个世界并不是掌握在那些嘲笑者的手中,而恰恰掌握在能够经受得住嘲笑与批忍不断往前走的人手中。
9、障碍与失败,是通往成功最稳靠的踏脚石,肯研究、利用它们,便能从失败中培养出成功。
10、在真实的生命里,每桩伟业都由信心开始,并由信心跨出第一步。