1.微波毫米波及光波理论、2.微波毫米波技术及应用、3.光
微波毫米波集成天线技术

效 的将其 用于热点区域的带宽保障并不 断的解 决 盲 点 区域 的 覆 盖 问 题 ,这 样 就 能 有 效 的将 流 量 进 行 分 担 。 此 外 , 无 线 回传 方 式 具 有 简 单 、 快速部署 的特 点。因此 ,运用平衡式馈 电高增 益 缝 隙天 线 阵 就 能 有 效 的 解 决 点 对 点 大容 量 网 络 回传 问题 , 从 而 就 能 不 断 的 提 高 运 行效 益 。 其 中 ,为 了有 效 的 提 高 缝 隙 天 线 的增 益 ,我 们 就应将缝 隙天 线进行串馈激励 。平衡式馈 电缝 隙 天 线 的 设计 原 理 主 要 为 : 为 了有 效 的使 基 片 集 成 波 导 与缝 隙 之 间 能 够 达 到 良好 的 匹配 ,我 们 就 应 不 断 的促 进缝 隙 单 元 中 的 电导 能够 满 足
性,而且还具备方 向图稳定 以及后瓣辐射 小等 特 点 。 因 此 , 其 也 受 到 了较 为 广 泛 的应 用 。 而 本 文 所 提 出 的 主 要 是 一 种 采 用 SICL激 励 的 电 磁 偶 极 子 背 腔 贴 片 天 线 , 该 天 线 的 阻抗 带 宽 较 宽 , 且 能 够 有 效 的 覆 盖 住 整 个 工 作 频 段 , 这 样 不 仅 能 够 增 加 方 向 图的 稳 定 性 ,而 且 还 能 有 效 的 提 高 整 个 天 线 的 增 益 ,从 而 不 断 的促 进 整 个 通 信 技 术 的 稳 定 发 展 。此 外 ,该 天 线 主 要 采 用 标准 的多层 板 PCB工 艺进行 加工 ,这样就 仃 利于生产和 电路集成 ,从而不断 的提高电线的 增 益 。 其 中 , 电磁 偶 极 子背 腔 贴 片 天 线 的 主 要
相 应 的条 件 ,这 样 就 能 有 效 的 降低 天 线 的驻 波 。 运 行 原 理 为 : 在 电偶 极 予和 磁 偶 极 子 的 共 同 辐
微波毫米波技术基本知识

微波毫米波技术基本知识目录一、内容概要 (2)1. 微波毫米波技术的定义 (2)2. 微波毫米波技术的历史与发展 (3)二、微波毫米波的基本特性 (4)1. 微波毫米波的频率范围 (5)2. 微波毫米波的传播特性 (6)3. 微波毫米波的波形与调制方式 (7)三、微波毫米波的传输与辐射 (8)1. 微波毫米波的传输介质 (10)2. 微波毫米波的辐射方式 (10)3. 微波毫米波的天线与馈电系统 (11)四、微波毫米波的探测与测量 (12)1. 微波毫米波的探测原理 (13)2. 微波毫米波的测量方法 (14)3. 微波毫米波的检测器件 (15)五、微波毫米波的应用 (16)1. 通信领域 (18)2. 雷达与导航 (19)3. 医疗与生物技术 (20)4. 材料科学 (21)六、微波毫米波系统的设计 (22)1. 系统架构与设计原则 (24)2. 混频器与中继器 (25)3. 功率放大器与低噪声放大器 (26)4. 检测与控制电路 (27)七、微波毫米波技术的未来发展趋势 (29)1. 新材料与新结构的研究 (30)2. 高速与高集成度的发展 (31)3. 智能化与自动化的应用 (32)八、结论 (34)1. 微波毫米波技术的贡献与影响 (35)2. 对未来发展的展望 (36)一、内容概要本文档旨在介绍微波毫米波技术的基本知识,包括其定义、原理、应用领域以及发展趋势等方面。
微波毫米波技术是一种利用微波和毫米波进行通信、雷达、导航等系统的关键技术。
通过对这一技术的深入了解,可以帮助读者更好地掌握微波毫米波技术的相关知识,为在相关领域的研究和应用提供参考。
我们将对微波毫米波技术的概念、特点和发展历程进行简要介绍。
我们将详细阐述微波毫米波技术的工作原理,包括传输方式、调制解调技术等方面。
我们还将介绍微波毫米波技术在通信、雷达、导航等领域的应用,以及这些领域中的主要技术和设备。
在介绍完微波毫米波技术的基本概念和应用后,我们将对其发展趋势进行分析,包括技术创新、市场前景等方面。
微波和毫米波技术基本知识

频率=光速/波长
光速=30万公里/秒 波数=2π/λ
麦克斯韦方程(微分形式)
法拉第电磁感应定律 安培全电流定律
磁通连续性 高斯定律 电荷守恒定律 三个组成关系:
麦克斯韦方程(积分形式)
法拉第电磁感应定律
安培全电流定律 磁通连续性 高斯定律 电荷守恒定律
电磁场量和电路量
由积分形式可看出场量与电路量之间的关系 :
麦克斯韦预言的基本要点概括如下: (1)变化的磁场能够在周围空间产生电场, 变化的电场能够在周围产生磁场; (2)均匀变化的磁场,产生稳定的电场,均 匀变化的电场,产生稳定的磁场;这里的“ 均匀变化”指在相等时间内磁感应强度(或 电场强度)的变化量相等,或者说磁感应强 度(或电场强度)对时间变化率一定.
麦克斯韦预言
(3)不均匀变化的磁场产生变化的电场, 不均匀变化的电场产生变化的磁场;
(4)周期性变化(振荡)的磁场产生同频 率的振荡电场,周期性变化(振荡)的电场 产生同频率的振荡磁场;
(5)变化的电场和变化的磁场总是相互联 系着,形成一个不可分离的统一体,这就是 电磁场,它们向周围空间传播就是电磁波。
大气透明窗口:35GHz,95GHz,220GHz,140GHz,225GHz 大气吸收频段:60GHz,120GHz, 185GHz
二、无线电波传播特性
长波在地面与电离层下边界之间形成的“球 形波导”内以空间波形式传播; 中波在白天以表面波形式传播,而夜间既有 表面波也有空间波形式传播; 短波的远距离传播则依靠电离层反射的空间 波;白天与夜晚电离层高度和密度差别大。 无线电波正是依赖电离层的反射才有可能实 现远距离传播。
225- 0.39390 1.55 MHz MHz
微波技术基础课程学习知识要点

微波技术基础课程学习知识要点《微波技术基础》课程学习知识要点第一章学习知识要点1.微波的定义― 把波长从1米到0.1毫米范围内的电磁波称为微波。
微波波段对应的频率范围为: 3×108Hz~3×1012Hz。
在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽*****倍。
一般情况下,微波又可划分为分米波、厘米波、毫米波和亚毫米波四个波段。
2.微波具有如下四个主要特点:1) 似光性、2) 频率高、3) 能穿透电离层、4) 量子特性。
3.微波技术的主要应用:1) 在雷达上的应用、2) 在通讯方面的应用、3) 在科学研究方面的应用、4) 在生物医学方面的应用、5) 微波能的应用。
4.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。
第二章学习知识要点1. 传输线可用来传输电磁信号能量和构成各种微波元器件。
微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。
传输线方程是传输线理论中的基本方程。
2. 均匀无耗传输线方程为d2U z2dzd2I z 2U z 0dz其解为2 2I z 0U z A1e j z A2ej z1I z A1e j z A2ej zZ0对于均匀无耗传输线,已知终端电压U2和电流I2,则:U z U2cos z jI2Z0sin z I z I2cos z jU2sin z 0对于均匀无耗传输线,已知始端电压U1和电流I1,则:Z0 U z U1cos z jI1Z0sin z I z I1cos z jU1sin z 0 pr其参量为,,,3. 终端接的不同性质的负载,均匀无耗传输线有三种工作状态:(1) 当ZL Z0时,传输线工作于行波状态。
微波技术的基本原理

微波技术的基本原理以及在环境中的应用杨燕娜福州大学环境与资源学院一、微波的基本知识微波是一种电磁波,波长范围没有明确的界限,一般是指分米波、厘米波和毫米波三个波段,也就是波长从1mm到1m左右,频率范围从300 MHz到300 GHz,由于微波的频率很高,所以亦称为超高频电磁波。
微波与工业用电和无线电中波广播的频率与波长范围比较如表1所示。
表1 各系统所用频率与波长范围项目频率波长/m工业用电无线电中波广播微波50Hz或60Hz300~3000kHz300~300000MHz60000000或500000001000~1001~0.001因为微波的应用极为广泛,为了避免相互间的干扰,供工业、科学及医学使用的微波频段(如表2所示)是不同的。
目前只有915MHz和2450MHz被广泛使用,在较高的两个频率段还没有合适的大功率工业设备。
表2 常用微波频率范围频率范围/MHz 波段/m 中心波长/m 常用主频率/MHz 波长/m890~940 2400~2500 5725~5875 22000~22250 LSCK0.3300.1220.0520.01491524505800221250.3280.1220.0520.014微波是电磁波,它是具有电磁波的诸如反射、投射、干涉、衍射、偏振以及伴随着电磁波进行能量传输等波动特性,这就决定了微波的产生、传输、放大、辐射等问题都不同于普通的无线电、交流电。
在微波系统中没有导线式电路,交、直流电的传输特性参数以及电容和电感等概念亦失去了其确切的意义。
在微波领域中,通常应用所谓“场”的概念来分析系统内电磁波的结构,并采用功率、频率、阻抗、驻波等作为微波测量的基本量。
具体说来有以下几点。
(1)在研究微波问题时,应使用电磁场的概念,许多高频交变电磁场的效益不能忽略。
例如微波的波长和电路的直径尺寸已是同一数量级,位相滞后现象已十分明显,这一点必须加以考虑。
(2)微波传播时是直线传播,遇到金属表面将发生反射,其反射方向符合光的反射规律。
微波毫米波技术的研究进展与应用

微波毫米波技术的研究进展与应用随着科技不断突飞猛进,微波毫米波技术作为无线通信领域的重要研究方向,正逐渐得到人们的重视和关注。
本文将从微波毫米波技术的定义、研究进展和应用领域三个方面,全面介绍微波毫米波技术的相关知识。
一、微波毫米波技术的定义微波指的是频率30MHz至300GHz之间的电磁波,而毫米波则是指频率30GHz至300GHz之间的电磁波。
相比于传统的无线通信技术,微波毫米波技术有更高的频率和更短的波长,因此可以承载更大容量的数据传输和更快速的通信速度。
此外,微波毫米波技术具有直达能力强、抗干扰性能好等优点,因此在5G通信、无人驾驶、智能家居等领域具有广泛的应用前景。
二、微波毫米波技术的研究进展随着5G时代的到来,微波毫米波技术的研究也进入了一个新的阶段。
在微波毫米波技术的研究中,信号处理技术、调制解调技术和射频技术等方面得到了广泛的应用。
(一)信号处理技术信号处理技术是微波毫米波技术研究的重要领域。
近年来,跨层优化技术得到了广泛的应用,可以实现系统的资源分配和优化。
此外,正交频分复用技术,基于多输入多输出(MIMO)技术的空时编码技术,以及细胞间协作通信技术等,也成为了当前微波毫米波技术热门研究方向。
(二)调制解调技术调制解调技术已成为了微波毫米波通信系统的重要组成部分。
在微波毫米波领域内,传统的调制方式已经不能满足现有需求。
因此,正交振幅调制(QAM)、相位、序列调制(PSK)等高效的调制方式得到了广泛的应用。
(三)射频技术射频技术是微波毫米波技术中不可缺少的一部分,它关键性地影响了通信系统的性能。
目前,微波毫米波技术的研究重点主要在提高射频器件对高频段的覆盖范围和性能的同时实现低功耗,提高设备稳定性以及降低成本等多方面。
三、微波毫米波技术的应用领域(一) 5G通信微波毫米波技术是5G通信系采用的一种关键技术,它通过移动端和大型信号基础设施之间的短距离连接,实现快速的数据传输。
在支持大规模物联网和短程无线连接的方面,微波毫米波技术从本质上扩展了5G的应用范围。
【专业介绍】电磁场与微波技术专业介绍

【专业介绍】电磁场与微波技术专业介绍电磁场与微波技术专业介绍一、专业概述电子和信息领域内所有重大技术进展几乎都离不开电磁场与微波技术的突破。
在通信、雷达、激光和光纤、遥感、卫星、微电子、高能技术、生物和医疗等高新技术领域中,电磁场与微波技术都起着关键的作用,它的应用领域蕴含在国民经济、国防建设和人民生活的各个方面。
同时,电磁场和微波技术也随着当代物理、数学、技术学科的不断进步而得到日新月异的发展。
电磁场与微波技术专业了解二、培养目标电磁场与微波技术专业培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图像、语音、数据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人才。
电磁场与微波技术专业了解三、专业特色电磁场与微波技术专业主要从事微波在介质中的传输,电磁场目标识别、成像,微波波谱理论与技术研究和微波、光纤传感器,微波波谱仪、微波吸收材料的开发研制,微波、微波波谱、微波声及微波光等技术在军事、通讯、医学生物工程及石油探测等领域的应用研究,微波化学反应动力学过程、机理、化学反应器的研究,微波信号的传输、交换的理论与技术及其在通讯遥感领域的应用。
电磁场与微波技术专业了解四、自学方向多年来在多种军事和国民经济应用的推动下,本学科在天线理论与技术、电磁散射与逆散射、电磁隐身技术、微波毫米波理论与技术、光电子技术、电磁兼容、计算电磁学与电磁仿真技术、微波毫米波系统工程与集成应用等方面的研究形成了鲜明的特色,取得了显著成果。
其主要研究方向有:1.排序电磁学及其应用领域:设计、研究、研发高精度、高效率电磁排序算法;研究高效率准确电磁排序算法在目标特性、微波光学及遥感技术、电磁环境预测、天线分析和设计等方面的应用领域。
2.微波/毫米波电路设计理论与技术:研究有源元器件与电路模型、与微电子、微机械工艺相关的材料器件等模型的建立及参数提取;研究低相噪频率源技术,微波/毫米波单片集成电路设计,基于微机械(mems)的微波/毫米波开关、移相器和滤波器设计。
微波毫米波芯片

微波毫米波芯片
微波毫米波芯片是一种专门用于高频通信和雷达系统中的集成电路芯片。
它能够实现高速、高精度的信号处理和传输,广泛应用于5G通信、汽车雷达、无人机导航等领域。
微波毫米波芯片的工作频率通常在1GHz至100GHz之间,比传统的
射频芯片更高。
它采用了半导体材料如GaAs和InP等,具有较高的
截止频率和噪声系数,能够实现更快速、更精确的信号处理。
与传统射频芯片相比,微波毫米波芯片具有以下优点:
1. 高速:微波毫米波芯片能够实现更快速的信号处理和传输,适合于
高速数据传输应用。
2. 高精度:由于工作频率较高,微波毫米波芯片能够实现更精确的信
号处理和控制。
3. 小型化:微波毫米波芯片采用了集成电路技术,可以将多个功能模
块集成到一个小型化的芯片上,从而节省空间和成本。
4. 低功耗:由于采用半导体材料,微波毫米波芯片具有较低的功耗和
热损耗,能够实现更高效的能源利用。
目前,微波毫米波芯片已经广泛应用于5G通信、汽车雷达、无人机导航等领域。
随着技术的不断进步,微波毫米波芯片将会越来越小型化、高速化和智能化,为人们的生活带来更多便利和创新。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培养方案——电磁场与微波技术(学科代码:080904)
一、培养目标
本学科培养德、智、体全面发展,在电磁信号(高频、微波、光波等)的产生、交换、发射、传输、传播、散射及接收等有关的理论与技术和信息(图象、语音、数 据等)的获取、处理及传输的理论与技术两大方面具有坚实的理论基础和实验技能,了解本学科发展前沿和动态,具有独立开展本学科科学研究工作能力的高层次人 才。
学位获得者应能承担高等院校、科研院所及高科技企业的教学、科研及开发管理等工作。
二、研究方向
1.微波毫米波及光波理论、2.微波毫米波技术及应用、3.光纤光电子技术及应用、4.微波、光通信与雷达信号处理技术、5.计算电磁学及应用、6.微波电路与系统、7.雷达技术与雷达信息处理
三、学制及学分
1. 对于按硕—博一体化课程体系培养的研究生,获得硕士学位一般需要3年。
研究生在申请硕士学位前,必须取得总学分不低于35分(含开题报告2学分)。
获得博 士学位一般需要5年,最长学习年限不超过7年。
研究生在申请博士学位前,必须取得总学分不低于45分(含开题报告2学分、专业综合知识答辩2学分;博士层 次课程不低于8学分)。
2. 对于通过我校博士生入学考试的普通博士生,获得博士学位一般需要3年,最长学习年限不超过6年。
研究生在申请博士学位前,
必须取得总学分不低于10分(含开题报告2学 分;博士层次课程不低于8学分)。
四、课程设置
英语、政治等公共必修课和必修环节按研究生院统一要求。
学科基础课和专业课如下所列。
基础课:
ES45201 高等电磁场理论(3) ES45202 介质导波结构及应用(3.5)
ES45203 电磁场数值解法(3.5) ES45204 微波系统与工程(3)
专业课:
ES44201 微波电路原理与设计(3) ES44202 天线技术基础(3)
ES44203 光电子学(2) ES45211 固态电子学基础(3)
ES45213 光波导技术(2) ES45215 毫米波通信技术(2)
ES45221 现代微波测量(2) ES45222 耦合模理论(2)
ES45223 现代天线设计(2) ES45224 电波接收技术(3)
ES14202 快电子学(3) IN05102 数字信号处理(II)(3)
IN05121 移动通信工程(3) CN05112 实变与泛函▲(4)
ES46201 电磁场与微波技术专题(2)
备注:
1. 带▲号课程为博士层次必修课,硕士层次选修课。
对于硕博连读生,该课程只能按博士层次必修课记录学分;
2. 博士研究生或硕博连读研究生除必修编号为CN05112的课程外,还必须至少选修编号为ES46201的课程或一门经学科点认可的其它博士层次课程。
电磁 场与微波技术专题可以由导师指定某专题的参考书(资料),由研究生作读书报告,并提交书面报告。
五、科研能力要求
按照研究生院有关规定。
六、学位论文要求
按照研究生院有关规定。