列管式换热器设计(水蒸气加热水)
列管式换热器的设计与计算

列管式换热器的设计与计算设计步骤如下:第一步:确定换热器的需求首先需要明确换热器的设计参数,包括流体的性质、流量、进出口温度、压力等。
这些参数将在后续的计算中使用。
第二步:选择合适的换热器型号根据设计参数和换热需求,选择合适的列管式换热器型号。
常见的型号包括固定管板式、弹性管板式、钢套铜管式等。
第三步:计算表面积根据流体的热传导计算表面积。
换热器的表面积是根据热传导定律计算得到的,公式为:Q=U×A×ΔT,其中Q为换热量,U为传热系数,A为表面积,ΔT为温差。
根据这个公式,可以计算出所需的表面积。
第四步:确定管子数量和尺寸根据所需的表面积和型号,确定换热器中管子的数量和尺寸。
根据流体的流速和换热需求,计算出每根管子的长度和直径。
第五步:确定管板和管夹的尺寸根据管子的尺寸,确定管板和管夹的尺寸。
管板和管夹是固定管子的重要部分,负责把管子固定在换热器中,保证流体的正常流动。
第六步:确定换热器的材质和厚度根据流体的性质和工作条件,确定换热器的材质和厚度。
常见的材质有不锈钢、碳钢、铜等。
通过计算流体的温度、压力和腐蚀性等参数,选择合适的材质和厚度。
第七步:校核换热器的强度对换热器的强度进行校核。
根据国家相关标准和规范,对换热器的强度进行计算和验证,确保其能够承受工作条件下的压力和温度。
第八步:制定施工方案和图纸根据设计结果,制定换热器的施工方案和详细图纸。
包括换热器的总体布置,管子的连接方式,焊接和安装步骤等。
上述是列管式换热器的设计步骤,下面将介绍列管式换热器的计算方法。
首先,需要计算流体的传热系数。
传热系数的计算包括对流传热系数和管内传热系数两部分。
对于对流传热系数,可以使用已有的经验公式或经验图表进行估算。
对于管内传热系数,可以使用流体的性质和流速等参数进行计算。
其次,根据传热系数和管子的尺寸,计算管子的传热面积。
管子的传热面积可以根据管子的长度和直径进行计算。
然后,根据热传导定律,计算换热器的传热量。
化工原理课程设计 列管式换热器

化工原理课程设计列管式换热器设计要求:设计一个列管式换热器,实现两种不同温度的流体之间的热量传递。
设计要求如下:1. 列管式换热器采用直管式结构,热传导介质为水和油;2. 设计流量分别为水流量 Q1 = 500 L/h,油流量 Q2 = 300 L/h;3. 设计温度分别为水的进口温度 T1i = 80℃,油的进口温度T2i = 120℃;4. 确定水的出口温度 T1o 和油的出口温度 T2o;5. 选择合适的换热器材料,确保换热效果良好;6. 根据设计参数计算所需的换热面积 A 和换热效率η。
设计方案:1. 确定管径和管长:首先根据水和油的流量和温度差,计算所需的换热面积。
然后确定换热器的尺寸,其中包括管径和管长。
2. 选择换热器材料:根据换热介质的性质和工作条件,选择合适的换热器材料,例如不锈钢。
3. 计算出口温度:根据热平衡原理,计算水和油的出口温度。
假设换热器满足热平衡条件,即水的热量损失等于油的热量增加。
4. 计算换热面积:根据换热器的尺寸和热传导方程,计算所需的换热面积。
5. 计算换热效率:根据热平衡原理和换热器的热传导性能,计算换热效率。
实施步骤:1. 根据设计流量和温度差,计算所需的换热面积。
假设水和油的传热系数均为常数,可以使用换热传导方程进行计算。
2. 根据所需的换热面积和理论计算值,选择合适的换热器尺寸。
3. 根据所选换热器材料,计算换热器的尺寸和管径。
假设管壁温度近似等于流体温度。
4. 根据热平衡原理,计算出口温度。
假设热平衡条件满足,即水的热量损失等于油的热量增加。
5. 根据所选材料和尺寸,计算换热效率。
假设换热器的热传导系数为常数,使用换热效率计算公式进行计算。
总结:本课程设计主要针对列管式换热器的设计,通过选择合适的换热器材料和计算换热器的尺寸,实现了水和油之间的热量传递。
根据设计要求,通过计算出口温度和换热效率,验证了设计方案的合理性。
设计过程需要考虑多方面的因素,如流体性质、流量和温度差等。
列管式换热器设计

列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。
本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。
一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。
它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。
二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。
2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。
3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。
4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。
5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。
6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。
7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。
8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。
三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。
2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。
3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。
4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。
5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。
综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。
设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。
同时,还需要计算换热器的传热系数、压降和热力学参数等。
化工课程设计 水蒸气加热苯列管式换热器的设计.docx

学号0120920390131课程设计题目水蒸气加热苯列管式换热器的设计学院化学工程学院专业班级化工0901班姓名指导老师2010年9月课程设计任务书学生姓名:赵蓉专业班级:化工0901班指导教师:张光旭工作单位:化学工程学院题目: 水蒸气加热苯列管式换热器的设计一、工艺条件用150 KPa的饱和水蒸气将20 ℃的苯加热到75 ℃,苯的质量流量为45t/h,试设计一列管式换热器,要求其管程压降小于70 kPa。
要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、合理的参数选择和结构设计;2、工艺计算,包括传热计算和压降计算等;3、主要设备工艺尺寸设计。
时间安排:设计内容所用时间1、根据换热任务和有关要求确定设计方案;1天2、初步确定换热器的结构和尺寸; 1天3、核算换热器的传热面积和流体阻力;1天4、确定换热器的工艺结构;1天5、写出设计说明书。
1天指导教师签名:年月日系主任(或责任教师)签名:年月日前言在工业生产中,为了实现物料之间热量传递过程中的一种设备,统称为换热器,它是化工炼油,动力,原子能和其它许多工业部门广泛应用的一种通用工艺设备,对于迅速发展的化工,炼油等工业生产来说,换热器尤为重要,换热器随着使用目的的不同可以把它分为:热交换器,加热器,冷却器,冷凝器,蒸发器和再沸器等。
本设计的主要任务是完成满足某一生产要求的管壳式换热器,它是属于列管式换热器的一种,是利用间壁使高温流体和低温流体进行对流传热从而实现物料间的热量传递。
换热器的工艺设计计算有两种类型,即设计计算和校核计算,包括计算换热面积和造型两方面。
设计计算的目的是根据给定的工作条件及热负荷,选择一种适当的换热器类型,确定所需的换热面积,进而确定换热器的具体尺寸。
校核计算的目的则是对已有的换热器校核它是否满足预定要求,这是属于换热器性能计算问题。
无论是设计计算还是校核计算,所需的数据包括结构数据、工艺数据和物性数据三大类。
列管式换热器的设计

物性数据ρ2=879 kg/m3
CP2=1.813 kJ/kg·K
μ2=4.4×10-4N·S/m2
λ2= =1.384×10-4kW/m·K
2、水蒸汽(下标1表示)的物性数据
定性温度 蒸汽压力200Kpa下的沸点为Ts=119.6℃
物性数据ρ1=1.1273 kg/m3
γ1=2206.4 kJ/kg
蒸汽体积流量V=Gν=0.564×0.903=0.510 m3/s
取蒸汽流速u’=20 m/s
=0.180m=180mm
选用无缝热轧钢管(YB231-64)Φ194×6mm,长200mm。
3、冷凝水排出口
选用水煤气管 即Φ42.25×3.25mm,长100mm。
(七)、校核流体压力降
1、管程总压力降
1、列管式换热器是目前化工生产中应用最广泛的一种换热器,它的结构简单、坚固、容易制造、材料范围广泛,处理能力可以很大,适应性强。但在传热效率、设备紧凑性、单位传热面积的金属消耗量等方面还稍次于其他板式换热器。此次设计所采用的固定管板式换热器是其中最简单的一种。
2、由于水蒸汽的对流传热系数比苯侧的对流传热系数大得多,根据壁温总是趋近于对流传热系数较大的一侧流体的温度实际情况,壁温与流体温度相差无几,因此本次设计不采用热补偿装置。
实际管数n=NT-NTb-n3=169-23=146根,每程73根排列管
实际流速
m/s
与初假设苯的流速u’2=0.55m/s相近,可行。
3、换热器长径比
符合要求( )
(五)、校核计算
1、校核总传热系数K值
(1)管内对流传热系数α2
W/m2·℃
(2)管外对流传热系数α1
式中:n为水平管束垂直列上的管数,n=7;
化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。
该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。
根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。
其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。
浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。
浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。
这种结构适用于温差较大或壳程压力较高的情况。
但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。
U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。
壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。
这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。
多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。
这种结构可以提高传热效率,但也会增加流体阻力。
因此,需要根据具体情况来选择多管程的数量。
总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。
不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。
在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。
换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。
浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。
但其缺点是结构复杂,造价高。
填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。
但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。
列管式换热器设计(水蒸气加热水)
食品工程原理课程设计设计书设计题目:列管式换热器的设计:学院班级:食品学院食科142班学号::设计时间:2016.05.30~06.04目录一、换热器设计任务书 ............................................ 错误!未定义书签。
二、摘要 .................................................................... 错误!未定义书签。
三、初步选定换热器 ................................................ 错误!未定义书签。
四、设计计算 ............................................................ 错误!未定义书签。
五、收获 .................................................................... 错误!未定义书签。
六、参考文献 ............................................................ 错误!未定义书签。
附件一换热器主要结构尺寸和计算结果........ 错误!未定义书签。
附件二主要符号说明 ............................................................... - 15 -一、换热器设计任务书1、设计题目设计一台用饱和水蒸气加热水的列管式固定管板换热器2.设计任务及操作条件(1)处理能力130 t/h(2)设备型式列管式固定管板换热器(3)操作条件①水蒸气:入口温度147.7℃,出口温度147.7℃②冷却介质:自来水,入口温度10℃,出口温度80℃③允许压强降:管程10^4-10^5,壳程10^3-10^4(4)设计项目①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。
列管式换热器的设计
列管式换热器的设计列管式换热器的应用已有很悠久的历史。
现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。
同时板式换热器也已成为高效、紧凑的换热设备,大量地应用于工业中。
为此本章对这两类换热器的工艺设计进行介绍。
列管式换热器的设计资料较完善,已有系列化标准。
目前我国列管式换热器的设计、制造、检验、验收按“钢制管壳式(即列管式)换热器”(GB151)标准执行。
列管式换热器的设计和分析包括热力设计、流动设计、结构设计以及强度设计。
其中以热力设计最为重要。
不仅在设计一台新的换热器时需要进行热力设计,而且对于已生产出来的,甚至已投人使用的换热器在检验它是否满足使用要求对,均需进行这方面的工作。
热力设计指的是根据使用单位提出的基本要求,合理地选择运行参数,并根据传热学的知识进行传热计算。
流动设计主要是计算压降,其目的就是为换热器的辅助设备——例如泵的选择做准备。
当然,热力设计和流动设计两者是密切关联的,特别是进行热力计算时常需从流动设计中获取某些参数。
结构设计指的是根据传热面积的大小计算其主要零部件的尺寸,例如管子的直径、长度、根数、壳体的直径、折流板的长度和数目、隔板的数目及布置以及连接管的尺寸,等等。
在某些情况下还需对换热器的主要零部件——特别是受压部件做应力计算,并校核其强度。
对于在高温高压下工作的换热器,更不能忽视这方面的工作。
这是保证安全生产的前提。
在做强度计算时,应尽量采用国产的标准材料和部件,根据我国压力容器安全技术规定进行计算或校核(该部分内容属设备计算,此处从略)。
列管式换热器的工艺设计主要包括以下内容:①根据换热任务和有关要求确定设计方案;②初步确定换热器的结构和尺寸;③核算换热器的传热面积和流体阻力;④确定换热器的工艺结构。
1.1设计方案的确定1.1.1换热器类型的选择(1)固定管板式换热器这类换热器如图2-1(a)所示。
列管式换热器设计方案和选用
列管式换热器设计方案和选用设计方案和选用列管式换热器导论:设计方案:1.确定换热器的工作条件:在进行列管式换热器的设计时,首先需要确定换热器的工作条件,包括工作介质的流量、温度、压力等参数。
这些参数将对换热器的尺寸和换热效率等性能产生影响。
2.选择合适的管束类型:列管式换热器一般由多个管子组成的管束和螺纹固定在两个壳体上的结构组成,因此需要选择合适的管束类型。
常用的管束类型有单管、单排管束、多排管束、隔室管束等。
选择合适的管束类型可以提高换热效率,并满足不同的换热要求。
3.确定换热面积和管束长度:换热器的性能主要取决于换热面积和管束长度。
根据工作条件和换热要求,确定合适的换热面积和管束长度。
一般来说,换热面积越大,换热效果越好,但是也会增加成本和体积。
4.确定流体流动方式和传热方式:列管式换热器的流体流动方式包括顺流、逆流和交叉流等,传热方式包括对流传热和辐射传热等。
根据换热要求和经济性,选择合适的流动方式和传热方式。
5.确定壳程流动分配方式:壳程流动分配方式包括平行流动和逆流动等。
在设计中,需要根据换热要求和经济性选择合适的流动分配方式。
选用:1.根据工艺要求选择合适的材料:列管式换热器的材料对于其耐用性和可靠性有着重要影响。
根据介质的性质和工艺要求,选择合适的材料,如不锈钢、碳钢、铜等。
2.确定换热器的维护和清洗方式:列管式换热器由于结构复杂,清洗和维护较为困难。
因此,在选用时需要考虑清洗和维护的方便性,选择易于清洗和维护的设计。
3.考虑能量利用率和经济性:在选用列管式换热器时,还需要考虑能量利用率和经济性。
换热器的能量利用率越高,所需热交换面积就越小,经济性就越好。
因此,选择高效能量利用的换热器是非常重要的。
4.参考其他用户的反馈和评价:在选用列管式换热器时,可以参考其他用户对于不同品牌和型号的反馈和评价。
这些反馈和评价可以提供有关换热器性能和可靠性的宝贵信息。
总结:列管式换热器的设计方案和选用需要考虑多个因素,包括工作条件、管束类型、换热面积、管束长度、流体流动方式、传热方式、壳程流动分配方式、材料选择、维护和清洗方式以及能量利用率和经济性等。
化工原理课程设计列管式换热器
化工原理课程设计列管式换热器化工原理课程设计是化学工程学科的重要环节,其设计的目的是让学生在理论基础知识的基础上,能够熟练掌握工业化学反应装置和过程的设计方法,并能灵活运用各种装置和工艺条件来实现设备的最优化。
其中列管式换热器是常用于化工生产过程中的一种重要装置,本文将对其进行详细介绍。
一、列管式换热器的结构与原理列管式换热器是通过管壳型构造,由许多纵向的管子构成,管子两侧通过流体工质进行换热。
其主要结构包括壳体、管板、管束、进出口法兰等部分。
换热原理是将热量从高温的流体传给低温的流体,实现两种流体之间的热量交换。
二、列管式换热器的特点和应用列管式换热器具有结构简单、换热效率高、应用范围广、容易清洗维修等特点。
其在化工生产中广泛应用于热回收、冷却、加热等方面,如在石油、化工、冶金、食品、制药、造纸等行业的反应过程中都有重要的应用。
三、列管式换热器的设计方法在设计列管式换热器时,主要需考虑的参数有流体介质、流量、温度、压力等等,其中最核心的是确定热量传递系数与压降。
常用的设计方法有总热传系数法、等效径法、NTU法等。
其中总热传系数法是最常用的方法,其计算的公式为:1/U = 1/hi + Δx/k + Δy/ho其中U为总热传系数,hi、ho分别为热传分界面内的内、外热传系数,k为扩散系数(介质传热系数),Δx、Δy为介质的平均厚度与壁层厚度。
在设计时应根据具体情况选用合适的计算方法。
四、列管式换热器的操作和维护在使用列管式换热器时,应注意清洗维护工作。
由于该装置的结构特殊,应定期进行化学清洗,以避免沉积物和腐蚀物堵塞换热器内壁。
同时还应注意防止介质的过于浓缩,以免产生结晶、沉积、腐蚀等情况。
综上所述,列管式换热器是化工生产中不可缺少的一种装置,其结构特殊、应用范围广泛、换热效率高,并且容易维护操作,是值得研究和推广的一种装置。
在化工原理的课程设计中,学生能够通过对列管式换热器的深入理解和设计方案的完善,培养出创新思维和实际操作能力,为将来化工行业的发展奠定坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
食品工程原理课程设计设计书设计题目:列管式换热器的设计**:**学院班级:食品学院食科142班学号:*************:**设计时间:2016.05.30~06.04目录一、换热器设计任务书 ............................................ 错误!未定义书签。
二、摘要 .................................................................... 错误!未定义书签。
三、初步选定换热器 ................................................ 错误!未定义书签。
四、设计计算 ............................................................ 错误!未定义书签。
五、收获 .................................................................... 错误!未定义书签。
六、参考文献 ............................................................ 错误!未定义书签。
附件一换热器主要结构尺寸和计算结果........ 错误!未定义书签。
附件二主要符号说明 ............................................................... - 15 -一、换热器设计任务书1、设计题目设计一台用饱和水蒸气加热水的列管式固定管板换热器2.设计任务及操作条件(1)处理能力130 t/h(2)设备型式列管式固定管板换热器(3)操作条件①水蒸气:入口温度147.7℃,出口温度147.7℃②冷却介质:自来水,入口温度10℃,出口温度80℃③允许压强降:管程10^4-10^5,壳程10^3-10^4(4)设计项目①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。
②换热器的工艺计算:确定换热器的传热面积。
③换热器的主要结构尺寸设计。
④主要辅助设备选型。
⑤绘制换热器总装配图。
二、摘要在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。
随着换热器在工业生产中的地位和作用不同,换热器的类型也多种多样,不同类型的换热器各有优缺点,性能各异。
列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。
一种流体在内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。
管束的壁面即为传热面。
其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。
为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。
折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。
在换热器设计中,首先应根据工艺要求选择适用的类型,然后计算换热所需传热面积,并确定换热器的结构尺寸。
三、初步选定换热器1、选择换热器的类型两流体温的变化情况:热流体进口温度147.7℃出口温度147.7℃;冷流体进口温度10℃,出口温度为80℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用固定管板式列管式换热器。
2、管程安排从两物流的操作压力看,应使水蒸气走管程,循环冷却水走壳程。
但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,水蒸气走壳程。
3.冷热流体流向安排:逆流4.管径和管内流速选用Φ25×2.5mm较高级冷拔传热管(碳钢),参见资料取管内流速u1=1.5m/s。
设计参数四、设计计算与说明 (一)计算总传热系数 1、热流量T mC p ∆=1Q =130/3600×1000×4.174×(80-10)=10550 kJ/s水蒸气流速21.510004.2125100010550=⨯⨯==λQm i (kg/s)Vs=m/ρ=2.16m^3/s2、平均传热温差㏑(137.7/67.7)式中:7.137107.1471=-=∆t ℃ ,7.67807.1472=-=∆t ℃求得△t m,1=98.59℃ 3、计算传热面积A求传热面积A 需要先知道传热系数K 值,而K 值又与给热系数、污垢热阻等有关。
在换热器的直径、流速等参数未定时,给热系数也无法计算,所以只能先进行试算。
根据资料查得和水之间的传热系数在 1300W/(㎡·℃)左右,先取K 值为1100W/(㎡·℃)计算,则传热面积为: 由 t KA =Q m △得:m t K Q A ∆=103.97110059.98100010550=⨯⨯= (㎡)考虑安全系数5%-15%,取10%,则A=97.3×(100+10)%≈107(㎡)(二)工艺结构尺寸 1、管程数和传热管数设所需单程管数为n ,从管内流量体积可依据传热管内径和流速确定单程传热管数3.1310.9901000130=⨯==ρsm V (m 3·h -1) n=775.1025.0785.03600/3.1314221=⨯⨯=u d Vi π按单程管计算,所需的单程传热管长度为 :L=m n d A o 7.1777025.014.3107π0≈⨯⨯= 按单程管设计,传热管过长,宜采用多管程结构。
根据本设计实际情况,采用标准设计,现取传热管长l=4.5m ,则该换热器的管程数为:N p =49.35.47.17≈==lL 传热管总根数: N t =77×4=308(根) 2、传热管排列和分程方法(1)采用组合排列法,即每程内均按正三角形排列,隔板两侧采用正方形排列。
(2)取管心距t=1.25d0,则 t=1.25×25=31.25≈32㎜ 隔板中心到离其最近一排管中心距离计算:S=t/2+6=32/2+6=22㎜(3)各程相邻管的管心距为44㎜。
3、壳体内径采用多管程结构,取管板利用率η=0.7 ,则壳体内径为:D=1.05t mm N t 6817.0/3083205.1/=⨯=η可取D=700mm 。
4、折流挡板(1)采用弓形折流板,去弓形之流板圆缺高度为壳体内径的25%,则切去的圆缺高度为:H=0.25D=0.25×700=175m故可取H=200mm 。
(2)折流板间不小于0.2D,不大于D,取折流板间距h=350mm 。
(3)折流板用拉杆和定距管固定 5、接管直径(1)壳程流体进出口接管:取接管内蒸汽流速为 u =40m/s ,则接管内径为m 262.04014.325.21/2.4154u4d 1=⨯⨯=⋅=πVmm圆整到标准尺寸为Φ273×8mm 。
(2)管程流体进出口接管:取接管内水流速 u =2.5m/s ,则接管内径为3.3615.214.30.9903600/1300004d 2=⨯⨯⨯=)( mm圆整到标准尺寸为Φ165×4.5mm 。
(3)冷凝口出口管径:取管内流速u =2.0m/sm 058.00.214.35.21/990.04d 3=⨯⨯=圆整到标准尺寸为Φ60×3.5mm 。
(4)不凝性气体出口管径 自取76×3mm 6、管板及外壳壁厚度(1)管板厚度 mm d 75.18025.043430=⨯= (2)外壳壁厚度 自取mm 14=δ 7、外壳直径及长度 (1)外壳直径 D=700mm(2)外壳长度 δ2+++=h R l L =4500+700+350+2×14=5578mm 8、容器法兰 查阅相关资料,可得法兰外径:975mm 法兰厚度:44mm 螺栓孔直径:30mm 螺栓孔数:24mm 9、封头设计封头选取:蝶形封头 厚度:14mm查资料得相近固定管板式换热器的主要参数,如下图:对照上表可做以下核算:①每程的管数n 1=总管数n/管程数N p =322/4=80.5,管程流动面积S i =(π/4)(0.02)2×80.5=0.0253m 2,与查得的0.0253m 2很好符合;②传热面积A=πd 0ln=3.14×0.025×4.5×80.5=113.8 m 2,比查得的111.2 m 2稍大,这是由于管长的一部分需用于在管板上固定管子。
应以查得的A=111.2m 2为准;③中心排管数n c ,查得的n c =21正合适。
(三)换热器核算 1、热流量核算 1)管程给热系属o α4950010600.00.9905.102.0Re 3≈⨯⨯⨯==-iii i i u d μρ普朗特数 91.3Pr ==iipi c λμ4.08.04.08.091.349500020.06400.0023.0Pr Re 023.0⨯⨯⨯==iii d λα =7234.9k m W •2/2)壳程给热系数 经计算o α=7951.4k m W •2/ 3)传热系数)b1(1w d d d d d d R R K o i i o i o i o o e λαα⨯++++=)0225.07.54025.00025.025.19.7234125.1000400.0000052.04.79511(1⨯⨯+⨯+⨯++==1109.5 w/m2·k4)所需传热面积 215.9659.985.110910550000m t K Q A m e c =⨯=∆= 面积裕度为 %2.155.965.962.111=-=-=ccp A A A H传热面积裕度在10%-25%间合适,该换热器能够完成生产任务。
五、收获经过一个星期的计算和设计,我成功地设计出了一个列管换热器,这让我收获颇多。
(1)首先我了解到了设计仪器的一般步骤,让我对于换热器有了更加深层次的了解.(2)其次,我了解到了把书本上的简单符号转换到实际设计中有多么困难,有太多的问题需要去考虑,这些不是单纯的计算能够解决问题的,需要查阅大量的资料才能解决。
(3)最后,我对于实际工具的设计有了系统的认识,这对于我在以后实际工作有很大的帮助。
六、参考文献主要参考文献[1]罗舜青,刘成梅.食品工程原理【M】.北京:化学工业出版社,2010.[2]姚玉英.化工原理【M】.天津:大学出版社,1999.[3]谭天思. 化工原理【M】.北京:化学工业出版社,2006.[4]刘雪暖.化工原理课程设计【M】.山东:石油大学出版社,2001.[5]李云飞.食品工程原理概念与习疑解答【M】.北京:中国农业大学,2004.[6]唐克中.画法几何与工程制图【M】.北京:高等教育出版社,2002.附件一换热器主要结构尺寸和计算结果。