基于运放的AD输入信号调理电路设计说明书

合集下载

调理电路与信号处理电路

调理电路与信号处理电路

集成运放的基本应用
反相放大器
RF R1
闭环增益:A VF=- 输入电阻:R i=R 1 输出电阻:R O ≈ 0
平衡电阻:R P=R 1 // RF
集成运放的基本应用
同相放大器
RF 闭环增益:A VF=1+ R1 输入电阻:R i=ric
VO Vi RP
RF R1
输出电阻:R O ≈ 0 平衡电阻:R P=R 1 // RF
• 当4个桥臂的电阻值变化同号时,即
R1+∆R1、 R2+∆R2、 R3+∆R3、 R4+∆R4 且R1=R2=R3=R4>> ∆R
1 ∆R1 ∆R 2 ∆R 3 ∆R 4 eo = ( − + − )ex 4 R R R R
桥臂阻值变化对输出电压的影响规律
相邻两桥臂电阻变化引起的输出电压为两桥臂各阻 值变化引起的电压之差; 相对两桥臂电阻变化引起的输出电压为两桥臂各阻 值变化引起的电压之和; 和差特性的应用:连接导线的自动补偿。
集成运放的基本应用
弱信号检测放大器
R 1= R 2, R 3= R 4, R 5= R 6, R 7= R F A V D= VO R +R4 RF = 1+ 3 =4641 V 2- V1 R R5
集成运放的基本应用
窗比较器
OP07管脚图
试验箱管脚定义
+5V -12V +12V +5V -12V +12V
集成运放的基本应用
差动放大器
RF R3 RF VO = − V1 + 1 + V2 R1 R1 R2 + R3 当R1=R 2,RF=R3时为差动放大器, 差模电压增益:A VD= VO R R = F= 3 V2-V1 R1 R 2

信号AD变换实验指导书

信号AD变换实验指导书

《数字信号处理基础》实验指导书——信号的A/D变换一.实验目的1.熟悉在CCS集成开发环境中构建、调试一个工程的方法2.理解采样定理,掌握A/D转换的基本过程3.掌握VC5509A 片内AD 的控制方法二.实验设备1. PC兼容机一台,操作系统为WindowsXP2.ICETEK-VC5509-A 实验箱一台3.连接电缆一套4.示波器等仪器设备三.实验原理(1)TMS320VC5509A 模数转换模块特性:●带内置采样和保持的10 位模数转换模块ADC,最小转换时间为500ns,最大采样率为21.5kHz。

● 2 个模拟输入通道(AIN0—AIN1)。

●采样和保持获取时间窗口有单独的预定标控制。

(2)模数转换工作过程:●模数转换模块接到启动转换信号后,开始转换第一个通道的数据。

●经过一个采样时间的延迟后,将采样结果放入转换结果寄存器保存。

●转换结束,设置标志。

●等待下一个启动信号。

(3)模数转换的程序控制:模数转换相对于计算机来说是一个较为缓慢的过程。

一般采用中断方式启动转换或保存结果,这样在CPU 忙于其他工作时可以少占用处理时间。

设计转换程序应首先考虑处理过程如何与模数转换的时间相匹配,根据实际需要选择适当的触发转换的手段,也要能及时地保存结果。

由于TMS320VC5509A DSP 芯片内的A/D 转换精度是10 位的,转换结果的低10 位为所需数值,所以在保留时应注意将结果的高6 位去除,取出低10 位有效数字。

关于TMS320VC5509A DSP 芯片内的A/D 转换器的详细结构和控制方法,请参见文档spru568.pdf。

(4)实验程序流程图:四.实验步骤(1)连接设备:a)连接电源:打开实验箱,取出三相电源连接线,将电源线的一端插入实验箱外部左侧箱壁上的电源插孔中。

确认实验箱面板上电源总开关(位于实验箱底板左上角)处于“关”的位置(圆圈的一端按下为“关”的状态),连接电源线的另一端至 220V交流供电插座上,保证稳固连接。

信号调理电路

信号调理电路
4000 3000 2000
F1 F0 F2
F N
振弦式传感器的特性曲线
24
线性化
4、有源线性化电路 无源线性化的缺点是降低了灵敏度。 有源线性化:运用运放、场效应管或晶体管 等有源器件实现线性化。 因运放有很高的增益、极高的输入阻抗、灵 活多变的接法,可获得各种各样函数变换。 原则上,任何敏感器件的变换特性都可以校 正为足够好的直线特性。电路复杂、调整不 便、成本较高。

I RP c
Rf
+

+ R2 uO
39
U o IRf
信号变换
注意: 电流传感器输出的电流一般较小,特别是微 弱信号的检测,必须分析运放失调电流和失 调电压所带来的误差放大器。 通常选用失调电流小、失调电压小、噪声低 的运放。
40
信号变换
电流经过长距离导线传输的电流电压转换:
1K 输入
0~10mA
42
信号变换
纳安小电流电流-电压转换电路:
10K
Ii
+

+
+ -

+
uO 99K
1K
如输入电流:10nA,第一级输出10mV,第二级增益为 100,输出为1V,避免了采用大电阻。
43
信号变换
3、电压-频率转换
电压-频率转换:模拟输入电压转换成与之 成正比振荡频率。
特点:具有良好的精确度、线性、积分输入 等,电路简单、外围元件性能要求不高、环 境适应能力强、转换速度不低于一般的双积 分型AD器件,抗干扰,节省系统接口资源, 可长距离传输,成本低,可逆。 常用器件:TC9401,AD650
注意: 两个电阻的稳定性直接影响电平调整效果 作为传感器电路的负载希望电阻大些,作 为后续电路的输入希望电阻小些,折中考 虑 大阻值(如MΩ)的电阻精度与噪声均较差 常用于精度要求较低的场合,否则用有源 调整电路

信号调理电路设计方案详解

信号调理电路设计方案详解

宽带放大器的设计方案本设计由直流稳压电源、前置放大电路单元、增益控制部分、功率放大部分、单片机自动增益控制部分几个模块构成。

输入部分采用高速电压反馈型运放OPA642作跟随器提高输入阻抗,并且在不影响性能的条件下给输入部分加了保护电路。

使用了多种抗干扰措施以减少噪声并抑制高频自激。

同时利用可变增益宽带放大器AD603来提高增益和扩大AGC控制范围,通过软件补偿减小增益调节的步进间隔和提高准确度。

功率输出部分采用分立元件制作,提高了负载阻值以及输出有效值。

控制部分由51系列单片机、A/D、D/A和基准源组成。

整个系统通频带为1kHz~20MHz,最小增益0dB,最大增益80dB。

增益步进1dB,60dB以下预置增益与实际增益误差小于0.2dB。

不失真输出电压有效值达9.5V,输出4.5~5.5V时AGC控制范围为66dB,应用单片机和数字信号处理技术对增益进行预置和控制,AGC稳定性好,可控范围大,完成了设计的所有基本要求并做适当的发挥,使设计更完善。

1总体方案方案一:简单的放大电路可以由三极管搭接的放大电路实现,图3.1为分立元件放大器电路图。

为了满足增益60dB的要求,可以采用多级放大电路实现。

对电路输出用二极管检波产生反馈电压调节前级电路实现自动增益的调节。

本方案由于大量采用分立元件,如三极管等,电路比较复杂,工作点难于调整,尤其增益的定量调节非常困难。

此外,由于采用多级放大,电路稳定性差,容易产生自激现象。

方案二:为了易于实现最大60dB增益的调节,可以采用D/A芯片AD7520的电阻权网络改变反馈电压进而控制电路增益。

又考虑到AD7520是一种廉价型的10位D /A转换芯片,其输出Vout=Dn×Vref/1024,其中Dn为10位数字量输入的二进制值,可满足1024挡增益调节,满足题目的精度要求。

它由CMOS电流开关和梯形电阻网络构成,具有结构简单、精确度高、体积小、控制方便、外围布线简化等特点,故可以采用AD7520来实现信号的程控衰减。

AD与DA转换电路设计

AD与DA转换电路设计

中北大学课程设计说明书学生姓名:学号:10学院: 电子与计算机科学技术学院专业: 微电子科学与工程题目: A/D与D/A转换电路设计指导教师:谭秋林职称: 副教授2014 年 6 月 27 日目录1.课程设计目的 (2)2.课程设计内容和要求 (2)2.1设计内容 (2)2.2设计内容 (2)3.设计工作任务及工作量的要求 (2)4.总体设计方案 (2)4.1 AD/DA转换电路设计方案 (2)4.2 总体设计框图 (2)4.3 工作原理及硬件框图 (7)4.4 硬件电路原理图及仿真 (9)4.5 PCB版图设计 (12)5.课程设计总结 (12)6.参考文献 (12)1.课程设计目的(1)掌握电子电路的一般设计方法和设计流程; (2)学习使用PROTEL 软件绘制电路原理图及印刷板图;(3)掌握应用proteus 对所设计的电路进行仿真,通过仿真结果验证设计的正确性。

2.设计内容和要求(1)查阅熟悉相关芯片资料;(2)输入正弦波通过A/D 转换,把产生的数字信号通过LED 数码管显示; (3)使该数字信号再通过D/A 转换;(4)通过仿真比较输入的正弦波和输出的模拟信号;(5)利用PROTEL 绘制电路原理图和印刷板图,并利用proteus 软件仿真。

3.设计工作任务及工作量的要求(1)课程设计说明书; (2)电路原理图和印刷板图; (3)仿真图形和仿真结果。

4.总体设计方案4.1总体设计框图图1总体设计方框图4.2 AD/DA 转换电路设计方案利用单片机80C51做主控制器,采集正弦波,通过ADC0809转换器进行模数主控 制 器LED 显示单片机复位时钟振荡 数字信号转换 模拟信号转换示波器显示转换,利用单片机进行数据处理,然后将数字信号输出再通过LED数码管显示出来,再将转换的数字信号通过DAC0832转换器进行数模转换,然后将输出的模拟信号与输入的正弦波进行比较,从而完成AD/DA转换电路的设计。

信号调理电路

信号调理电路

信号调理电路信号调理电路就是信号处理电路,把模拟信号变换为用于数据采集、控制过程、执行计算显示读出或其他目的的数字信号。

是指利用内部的电路,如滤波器、转换器、放大器等来改变输入的讯号类型并输出。

在实际应用中工业信号有些是高压,过流,浪涌等,不能被系统正确识别,必须调整理清。

信号调理电路原理信号调理电路往往是把来自传感器的模拟信号变换为用于数据采集、控制过程、执行计算显示读出和其他目的的数字信号。

模拟传感器可测量很多物理量,如温度、压力、力、流量、运动、位置、PH、光强等。

但是传感器信号不能直接转换为数字数据,因为传感器输出是相当小的电压、电流或变化,因此,在变换为数字数据之前必须进行调理。

调理就是放大,缓冲或定标模拟信号,使其适合于模/数转换器(ADC)的输入。

然后,ADC对模拟信号进行数字化,并把数字信号送到微控制器或其他数字器件,以便用于系统的数据处理。

信号调理电路技术1.放大放大器提高输入信号电平以更好地匹配模拟-数字转换器(ADC)的范围,从而提高测量精度和灵敏度。

此外,使用放置在更接近信号源或转换器的外部信号调理装置,可以通过在信号被环境噪声影响之前提高信号电平来提高测量的信号-噪声比。

2.衰减衰减,即与放大相反的过程,在电压(即将被数字化的)超过数字化仪输入范围时是十分必要的。

这种形式的信号调理降低了输入信号的幅度,从而经调理的信号处于ADC范围之内。

衰减对于测量高电压是十分必要的。

3.隔离隔离的信号调理设备通过使用变压器、光或电容性的耦合技术,无需物理连接即可将信号从它的源传输至测量设备。

除了切断接地回路之外,隔离也阻隔了高电压浪涌以及较高的共模电压,从而既保护了操作人员也保护了昂贵的测量设备。

4.多路复用通过多路复用技术,一个测量系统可以不间断地将多路信号传输至一个单一的数字化仪,从而提供了一种节省成本的方式来极大地扩大系统通道数量。

多路复用对于任何高通道数的应用是十分必要的。

5.过滤滤波器在一定的频率范围内去处不希望的噪声。

基于运放的AD输入信号调理电路设计

基于运放的AD输入信号调理电路设计

2. 恒压补偿原理变送器电路 ⑴ 电路原理图
+12 +12 +12 104 104 D2 1N4148 R5 1K D3 1N4148 +5
AD592+ AD592R2 10K
V0
104 -12 VR1 5K R1 3K
104
R4 -12 39K
VR2 5K
100u
D1 3.3V
-12
R3 10K 104
二.放大与平移电路设计
1.运算放大器电流 电压转换电路的平移方案 运算放大器电流→电压转换电路的平移方案 运算放大器电流 ⑴ AD592的恒流补偿电路 的恒流补偿电路 +V i(uA)
273uA 恒流源 AD592
i2 i i1
-V
373 273
200 100
0
T(℃) ℃ i2 = 273uA i2 = 273uA
VR2
R
is i i1 i100
R
-V
V0 (V)
i2
5
V0
0
T(℃) ℃ 100
T = 100℃,i2= i100 - is=100uA,多种原因导致 V0≠5V ℃ , 解决方法:调整 上的压降, 解决方法:调整VR2,改变 i2 在VR2上的压降,使 , 上的压降 V0= 5V ---调“满度” 调 满度”
三.设计注意事项
1. 滑动变阻器的使用 电路中电阻的阻值需要调整的可以使用滑动变 阻器。使用中滑动变阻器应串接电阻,使滑动变阻 阻器。使用中滑动变阻器应串接电阻, 器单位旋转角度的阻值变化尽量小, 器单位旋转角度的阻值变化尽量小,以保证调整更 精确,并减小各种因素对阻值稳定的影响。 精确,并减小各种因素对阻值稳定的影响。 2. 稳压二极管的使用 为了获得稳定的电压, 为了获得稳定的电压,可以利用稳压二级管的 反向击穿特性设计稳压电路。 反向击穿特性设计稳压电路。使用中应注意稳压二 极管只有通过一定的电流的情况下, 极管只有通过一定的电流的情况下,才能获得稳定 的电压,应正确计算限流电阻的阻值。 的电压,应正确计算限流电阻的阻值。

信号调理电路说明

信号调理电路说明

信号调理电路说明信号特征:肌电信号的特征为频率低,能量主要的集中频段为3~60HZ;幅度小,为uF级信号;人体阻抗环境下会不断变化,最高可达2MΩ,所以要求一级放大的输入阻抗非常高;在提取过程中伴有非常大的从人体引入的50HZ工频干扰,而且刚好在我们所需要分析的信号的频段内,这就对了我们的前级采集电路提出了很高的要求。

芯片选型:仪表放大器由于其内部精密匹配的电阻可以提供非常高的共模抑制比,且输入阻抗大,满足我们的要求,我们采用了TI公司的INA128及AD公司的AD8221两种芯片具体实现。

由于系统为锂电池供电,所以要求芯片必须有轨到轨输入输出,为精密运算放大器,具有低噪声和低失调电压,且最好可以满足低电压供电,我们验证后采用了TI公司的LMP7704四通道运放以满足我们系统要求。

1、一级差模放大及共模抑制由于需要非常高的共模抑制以降低50HZ工频共模信号的干扰,且需要将双端输入转为单端输出,由于仪表放大器可以很好的满足上述两个要求,我们一级放大器拟采用仪表放大。

我们实际实验了两种方案,一种是TI公司的INA128,一种是AD公司的AD8221,验证后发现,AD8221在使用的过程中稳定性更高,效果更显著,所以我们采用AD8221仪表放大作为我们的一级放大电路,如图1.3.1所示。

图1.3.12、二级仪表放大由于一级放大之后低频噪声仍十分明显,我们的二级放大依旧采用仪表放大。

我们需要的信号为交流信号,在两级之间需要隔直电路,实际验证之后发现隔直电路之后INA128的效果较AD8221效果更好,所以采用INA128作为我们的二级放大,如图1.3.2所示。

图1.3.23、直流偏置调节电路由于采集到的信号为交流信号,经放大、滤波、降噪后直接输入到AD采集,但AD不能采集负电压信号,所以我们需要给信号提供合适的直流偏置以满足AD的要求。

由于AD采集的电压范围为0~3.3V,所以我们提供的直流偏置大概为1.6V左右,通过加法器实现,如图1.3.3所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ΔVi = 0.1V Vo= -ΔVi×Rf/R1= -5V Rf/R1= 50
T = 0℃ Vi=0.273V Vo= -13.65V T = 100℃ Vi=0.373V Vo= -18.65V
⑵ 运算放大器平移电路方案
R2 Vs
Rf
Vi
R1 is V2 i1 i2
i V1
V0 (V)
0.1 0.273 0.373
1 00 u
D1 3 .3 V
+12 1 04 R2 1 0K
1 04 R5 4 7K
VR2 1 0K
+12 1 04
AD592+
R1 1 0K
AD592-
-1 2
1 04
R6
4 7K
-1 2
1 04 -1 2
+5
D2 1 N41 4 8 R7 1K
D3 1 N41 4 8
V0
⑵ 电路参数计算
稳压电路 — 为恒流补偿电路提供稳定的电压 稳压二极管 D1 工作电流取 3mA
R4 取 47K,VR2 取 10K
2. 恒压补偿原理变送器电路 ⑴ 电路原理图
+12
AD592+
+12 1 04
+12 1 04
AD592-
R2
1 0K
1 04
1 04
1 00 u
-1 2 VR1 5K
R1 3K
D1
-1 2
3 .3 V
R4 3 9K
-1 2
VR2 5K
R3 1 0K
1 04
+5
---调“满度”
⑶ 恒压补偿变送器电路标定方法
+12
AD592+
AD592-
R2 1 0K
+12 1 04
1 04
+12 1 04
1 04
+5
D2 1 N41 4 8
R5 1K
D3 1 N41 4 8
V0
1 00 u
-1 2 VR1 5K
R1 3K
D1
-1 2
3 .3 V
R4 3 9K
-1 2
VR2 5K
R2 取 10K,VR1 取 5K
增益控制电路 — 控制输出满度电压为 5V
满度输入电压为 100A12.1K 1.21V
电阻 R4 VR2 5V 1.21V 4.13K
R4 取 39K,VR2 取 5K
3.反相加法平移原理变送器电路 ⑴ 电路原理图
+12
R3 3K
VR1
5K
R4 1 0K
电阻 R5 VR2 (5V 1V)10K 50K
R5 取 47K,VR2 取 10K
三.设计注意事项
1. 滑动变阻器的使用 电路中电阻的阻值需要调整的可以使用滑动变
阻器。使用中滑动变阻器应串接电阻,使滑动变阻 器单位旋转角度的阻值变化尽量小,以保证调整更 精确,并减小各种因素对阻值稳定的影响。
R1 取 1K
恒压补偿电路 — 提供 273uA 恒定补偿电流
限流电阻 R2 VR1 9.1V 273A 33.3K
R2 取 30K,VR1 取 5K 增益控制电路 — 控制输出满度电压为 5V
满度输入电流为 373A - 273A 100A
电阻 R4 VR2 5V 100 A 50K
V0
AD592-
-1 2
-1 2
-1 2
设置T = 0℃,调整VR1阻值,改变通过VR1电流,使V0=0V 设置T = 100℃,调整VR2阻值,改变放大器增益,使V0=5V
V0 - 5V
Vi(V)
R
- 13.65V
i1=0 i2= i + is - i1= i + is i2= Vi/R1+ Vs/R2 若 R1=R2 i2= (Vi+ Vs)/R1
- 18.65V
Vo= -Rf×i2 = -(Vi+Vs)×Rf/R1 = -(Vi+Vs) ×50
Vs = -Vi0= -0.273V
T = 0℃ Vi=0.273V Vo= -0×50=0V
T = 100℃ Vi=0.373V Vo= -0.1×50= -5V
七.信号调理电路设计
1. 恒流补偿原理变送器电路
⑴ 电路原理图
+12
R1 1K
1 04
1 00 u
D1 9 .1 V
VR1 5K
R2 3 0K
AD592+
R3 4 7K
AD592-
限流电阻 R3 (12V 3.3V) 3mA 2.9K
R3 取 3K
平移电路 — 抵消 0℃ 取样电压
电阻 R4 VR1 3.3V (2.73V/10K) 12.1K
R4 取 10K,VR1 取 5K
增益控制电路 — 控制输出满度电压为 5V
满度输入电压为 2.73V 3.73V 1.00V
T(℃)
100
5V/100 ℃ = 0.05V/℃
3. 电流→电压转换电路方案
⑴ 电阻取样电路
VCC
Vi(V)
0.373 i
0.273
0.200
+
vi
0.100
- R=1K
0
T = 0℃ i = 273uA T = 100℃ i = 373uA
T(℃)
100
Vi=0.273V Vi=0.373V
⑵ 运算放大器电流→电压转换电路
V0 (V)
5
V0
0
T(℃)
100
T = 0℃, is – i1≠0 或其他原因,导致 V0≠0
解决方法:调整VR1,改变 is ,使V0= 0 --- 调“零”
⑵ 加法平移变送器电路调“满度”原

Es R4
VR2
V0 (V)
5
R1
R2
V0
i100
R3
0
V-
T(℃)
100
T = 100℃,多种原因导致 V0≠5V 解决方法:调整VR2,改变 放大器增益,使 V0= 5V
解得:Rf /R1=49
3.反相加法电路实现的平移方案
⑴ 运算放大器实现的反相放大电路
Rf
Vi R1 V2 i1 i2 i V1
R
V0 (V)
0.273 0.373 Vi(V)
V0
- 13.65V
- 18.65V
i1=0 i2=i - i1= i V1=V2=0 i=Vi/R1
i0=0 Vo= -Rf×i = -Vi×Rf/R1
2. 稳压二极管的使用 为了获得稳定的电压,可以利用稳压二级管的
反向击穿特性设计稳压电路。使用中应注意稳压二 极管只有通过一定的电流的情况下,才能获得稳定 的电压,应正确计算限流电阻的阻值。
3. 电路干扰的抑制 可以在直流放大电路的负反馈电阻上并接电容
来降低交流增益抑制噪声。但是电容不宜太大,否 则会延长放大器对于被测信号的响应时间。
i1 = 273uA(0℃) i1 = 373uA (100℃)
Vo=0V Vo=5V
2.电阻取样电路的平移方案
⑴ 电阻取样恒压补偿电路
VCC
Vi(V)
0.373 i
vi 0.273
+
0.200
vR R=1K
-
0.100
vs
0
Vs= -0.273V T = 0℃ T = 100℃
VR = 0.273V VR = 0.373V
4. 模拟/数字电源的区分使用 模拟电路与数字电路的电源尽量分开,否则会
产生不良耦合,干扰模拟测量电路的正常工作。
5. 限幅电路设计注意 限幅电路由限幅二极管和限流电阻组成,用于
保护后级电路。限流电阻不可以没有,也不可以太 大,否则会造成信号衰减,影响测量精度。
四.标定原理与标定方法
1.通过标定解决的问题
T(℃)
100
T = 0℃,Vi≠0 或其他原因,导致 V0≠0 解决方法:调整VR1,改变 i0 在VR1上的压降 ,使Vi
发生变化,并且使V0= 0 --- 调“零”
⑵ 恒压补偿变送器电路调“满度”原
理 +V
V0 (V)
5
i100
Vi
V0
R4
VR2
Es
R3
0
T(℃)
100
T = 100℃,多种原因导致 V0≠5V 解决方法:调整VR2,改变 放大器增益,使 V0= 5V来自T(℃)100
Vi=VR+VS=0V Vi=VR+VS=0.1V
⑵ 用同相比例放大电路实现设计要求
VCC
AD592
1K vi
V0 (V)
v1
5
V0
0.273V V1= Vi ,
R1
Rf
0
Vo= V1(1 + Rf /R1)
0.1 Vi(V)
T = 0℃, V1= 0V, Vo= V1×(1 + Rf /R1)=0V T = 100℃, V1= 0.1V, Vo= 0.1×(1 + Rf /R1)=5V
T = 100℃ i0 = 373uA Vo=18.65V
二.放大与平移电路设计
1.运算放大器电流→电压转换电路的平移方案
⑴ AD592的恒流补偿电路
+V
i(uA)
273uA 恒流源
AD592
i2 373
i 273
200
i1 100
-V
T = 0℃ T = 100℃
相关文档
最新文档