运算放大器设计

合集下载

运算放大器的可用输出摆幅范围计算及跨阻放大器的设计

运算放大器的可用输出摆幅范围计算及跨阻放大器的设计

运算放大器的可用输出摆幅范围计算及跨阻放大器的设计全文共四篇示例,供读者参考第一篇示例:运算放大器是一种常见的电子元件,用于放大电压信号。

它具有高输入阻抗、低输出阻抗、无论输入信号大小如何都保持固定的放大倍数等特点,因此被广泛应用在各种电路中。

在设计电路时,我们经常需要计算运算放大器的可用输出摆幅范围,以确保信号能够正常放大并输出。

本文将介绍如何计算运算放大器的可用输出摆幅范围,并结合跨阻放大器的设计原理,为读者详细解析如何设计一个跨阻放大器。

让我们来了解一下运算放大器的可用输出摆幅范围的计算方法。

在实际电路中,运算放大器有一个工作范围,超出这个范围就会导致输出失真或截断。

可用输出摆幅范围指的是在输入信号范围内,输出能够正常工作的幅度范围。

一般来说,运算放大器的输出摆幅范围取决于供电电压和输入信号的幅度。

在理想情况下,运算放大器的输出范围可以达到供电电压的极限值。

如果供电电压为+10V和-10V,那么理想情况下运算放大器的输出范围为+10V到-10V。

但是在实际应用中,由于运算放大器内部的饱和效应、风险电平等因素的影响,实际的输出摆幅通常小于供电电压的极限值。

我们需要通过计算来确定具体的可用输出摆幅范围。

一般来说,可以通过运算放大器的数据手册来查找具体的参数,比如输入失真电压、输出摆幅等。

根据这些参数,可以利用以下公式来计算运算放大器的可用输出摆幅范围:可用输出摆幅范围= Vcc - VsatVcc为正供电电压,Vsat为输出饱和电压。

通常情况下,Vsat的值在数据手册中可以查到,一般为几毫伏。

还需要考虑输出负载的影响。

输出负载的存在会导致输出电压下降,从而影响运算放大器的可用输出摆幅范围。

在实际设计中,还需要考虑输出负载的大小,以确保输出电压不会受到明显的影响。

接下来我们将结合跨阻放大器的设计原理,来详细介绍如何设计一个跨阻放大器。

跨阻放大器是一种常见的放大电路,通过改变输入电阻的方式来实现放大功能。

案例2-OTA运算放大器的设计

案例2-OTA运算放大器的设计

案例2-OTA运算放⼤器的设计简单运算放⼤器的设计1.运算放⼤器的电路设计图1所⽰是⼀个电容性负载的两级CMOS基本差分运算放⼤器。

其中P1为运算放⼤器的电流偏置电路,为了减⼩电源电压波动的影响,改偏置电路采⽤了在改进型威尔逊电流镜电路中⼜增加了⼀个电阻R1的结构;P2为运算放⼤器的第⼀级放⼤器;P3为运算放⼤器的第⼆级放⼤器。

为使运算放⼤器的⼯作稳定,在第⼀级放⼤器和第⼆级放⼤器之间采⽤补偿⽹络来消除第⼆个极点对低频放⼤倍数、单位增益带宽和相位裕度的影响。

在运算放⼤器的电路结构图中,M1、M2、M3、M4、M5构成PMOS对管作为差分输⼊对,NMOS电流镜作为输⼊对管负载,PMOS管M5作为尾电流源的标准基本差分运算放⼤器;M6、M7构成以PMOS管作为负载的NMOS共源放⼤器;M14(⼯作在线性区)和电容Cc 构成运算放⼤器的第⼀级和第⼆级放⼤器之间的补偿⽹络;M9~M13以及R1组成运算放⼤器的偏置电路。

运算放⼤器的设计指标如表1.其设计流程是:⾸先根据技术指标,⼿⼯估算电路中各晶体管的宽长⽐;然后在对其进⾏仿真;通过反复的仿真和修改各个晶体管的参数,进⾏电路参数的优化,最终达到设计要求的性能指标。

图1两级CMOS 基本差分运算放⼤器2. 运算放⼤器的⼿⼯计算从该运放设计所采⽤的⼯艺模型mm0355v .l 中查得以下⼯艺参数: Kn=179.8µA/V 2 Vthn=0.55V Kp=-63.8µA/V 2 |Vthp|=0.73V1)通过压摆率SR 求M5的漏极电流若⽶勒补偿电容Cc=2pF ,因为SR=I D5/Cc 。

要求SR>10V/µS ,假设SR=100V/µS,ID5为M5的漏极电流,则:ID5=SR×Cc=100 V/µS×2E -12=200µA 。

由于流过M5的电流为200µA ,则流过M1、M2、M3和M4的电流为200µA/2=100µA 。

集成电路运算放大器设计教案

集成电路运算放大器设计教案

集成电路运算放大器设计教案是电子工程师必须学习的一个重要课程。

运算放大器是一种非常重要的电子器件,广泛应用于各种电子设备、电路的设计和制作过程中。

因此,精心编写一份课程教案,对于学生全面掌握运算放大器的基本原理及应用至关重要。

本文将对集成电路运算放大器设计教案做一个详细地介绍。

一、教案基本内容1.引言本部分主要介绍运算放大器概念的由来、应用和发展历程,并对运算放大器的类型、性质和分类做一个简要的阐述和分析。

2.理论基础本部分主要介绍运算放大器的基本原理,包括运算放大器的电路模型、基本特性和输入输出电压范围等内容。

对于运算放大器的电压跟随、虚地、共模抑制、负载容忍和不稳定因素等方面做一个详尽的讲解。

3.电路设计本部分主要介绍运算放大器电路设计的基本流程和要点,包括运算放大器的放大性能和电源电压的选择、运算放大器的电源反向保护和工作温度的适应等内容。

同时,对于运算放大器的带宽、相位裕度、相位噪声和带内电平等方面做一个详细的讲解。

4.应用实践本部分主要介绍运算放大器的典型应用实践及设计思路,包括基于运算放大器的高精度电压源的设计、自适应PLL的设计、数字判断电路的设计、开环电路的设计以及运算放大器的开环和闭环应用等方面。

5.教学方法本部分主要介绍教学方法的选择和应用方法的讲解,包括教学中制作运算放大器电路实验板、动态演示和运算放大器应用设计仿真等教学方法。

6.教学评估本部分主要介绍教学评估的方案与方法,包括教案制定后对教学效果的评估、学生实验报告和成绩单的评估等内容。

二、教案的设计思路集成电路运算放大器设计教案的设计思路应该是根据教学大纲的要求,并结合实际情况编写设计思路。

具体的设计思路如下所述:1.明确教学目标首先需要明确教学目标,根据教学大纲的要求,制定出相应的教学计划。

明确教学目标后,可以根据学生的实际情况制定出相应的教学方法和策略。

2.制定教学计划根据教学目标制定教学计划。

教学计划应该包括教师的教学内容、教学方法及课堂活动。

集成运算放大器课程设计

集成运算放大器课程设计

集成运算放大器课程设计一、课程目标知识目标:1. 让学生掌握集成运算放大器的组成、工作原理和主要性能指标。

2. 使学生了解集成运算放大器在实际电路中的应用,如放大器、滤波器、比较器等。

3. 引导学生理解集成运算放大器的线性区和非线性区,并掌握相应的分析方法。

技能目标:1. 培养学生能够正确使用集成运算放大器进行电路设计的能力。

2. 提高学生分析、解决实际电路问题的能力,能运用集成运算放大器优化电路性能。

3. 培养学生运用所学知识,动手搭建和调试集成运算放大器相关电路。

情感态度价值观目标:1. 激发学生对电子技术的兴趣,培养其创新意识和实践能力。

2. 培养学生具备团队协作精神,能够在小组合作中发挥个人优势,共同完成任务。

3. 引导学生认识集成运算放大器在科技发展中的重要作用,提高其社会责任感和使命感。

课程性质:本课程为电子技术基础课程,以理论教学和实践操作相结合的方式,使学生掌握集成运算放大器的相关知识。

学生特点:学生已具备一定的电子技术基础知识,具有较强的求知欲和动手能力。

教学要求:结合学生特点,注重理论与实践相结合,强调实际操作,提高学生的实践能力和创新能力。

通过课程学习,使学生能够将所学知识应用于实际电路设计和分析中。

二、教学内容本课程教学内容主要包括以下几部分:1. 集成运算放大器基础知识:- 集成运算放大器的组成、符号及主要参数- 集成运算放大器的工作原理- 集成运算放大器的线性区和非线性区分析2. 集成运算放大器在实际电路中的应用:- 放大器电路的设计与分析- 滤波器电路的设计与分析- 比较器电路的设计与分析3. 集成运算放大器的性能优化:- 负反馈对集成运算放大器性能的影响- 电压偏置电路的设计- 电路的稳定性分析4. 实践操作:- 搭建和调试基本放大器电路- 搭建和调试滤波器电路- 搭建和调试比较器电路教学内容依据教材相关章节进行组织,具体安排如下:1. 集成运算放大器基础知识(第1章)2. 集成运算放大器在实际电路中的应用(第2-4章)3. 集成运算放大器的性能优化(第5章)4. 实践操作(第6章)在教学过程中,注意引导学生掌握基本概念、分析方法,并结合实践操作,提高学生的实际应用能力。

电路中的运算放大器设计与运算放大器技术

电路中的运算放大器设计与运算放大器技术

电路中的运算放大器设计与运算放大器技术电路中的运算放大器是一种应用广泛的电子设备,能够将输入信号放大并输出。

运算放大器的设计和技术在现代电子领域中起到了至关重要的作用。

在本文中,我们将探讨电路中的运算放大器设计及其技术细节。

首先,让我们来了解一下运算放大器的基本原理。

运算放大器是一种差模放大器,具有高增益、高输入阻抗和低输出阻抗的特点。

它由多个晶体管和电阻器组成,能够将微弱的输入信号放大到较高的幅度。

运算放大器通常有一个非反相输入端和一个反相输入端,以及一个输出端。

在运算放大器的设计中,有几个关键的技术要点需要考虑。

首先是电源电压的选取。

电源电压的选择需要根据具体的应用场景和性能要求来确定。

较高的电源电压能够提供更高的增益,但也会增加功耗和散热的困难。

因此,在设计过程中需要综合考虑功耗、散热和性能之间的平衡。

其次,输入和输出电阻的匹配也是一个重要的设计考虑因素。

输入电阻越大,可以在电路中引入更小的干扰,从而提高信号的纯净度。

而输出电阻越小,可以更好地驱动后级负载,减小信号失真。

因此,设计中需要采用合适的电阻器来实现输入和输出电阻的匹配。

还有一个重要的设计技术是运算放大器的频率响应。

在实际应用中,运算放大器需要能够处理不同频率范围内的信号。

频率响应的设计包括选择合适的电容和电感来滤除高频和低频的干扰。

同时,设备还需要具备高增益的特性,以保证信号放大的一致性。

另外,运算放大器的负反馈技术也是电路设计中的重要一环。

通过负反馈技术,可以有效地控制放大器的增益和输出功率,提高电路的稳定性,并且减少非线性失真。

负反馈技术的运用需要合理选择反馈电阻和电容,以及设计合适的反馈网络。

除了以上几个关键技术点,电路中的运算放大器设计还需要考虑功耗、温度特性、尺寸和成本等方面的因素。

功耗的控制可以通过合理布局和选取低功耗元件来实现。

温度特性的设计需要选择合适的元件以保证仪器在不同温度下的可靠性。

对于尺寸和成本的考虑,需要根据实际需求选择合适的封装和材料。

运算放大器的设计与仿真

运算放大器的设计与仿真

运算放大器的设计与仿真设计要求:1.增益稳定性:运算放大器的增益应该能够在所需的频率范围内保持稳定。

2.输入阻抗:运算放大器应具备较高的输入阻抗,以减少对输入信号的干扰。

3.输出阻抗:运算放大器应具备较低的输出阻抗,以减小对外界负载的影响。

4.带宽:运算放大器应具备较宽的带宽,以满足对高频信号的放大需求。

5.稳定性:运算放大器应具备较高的稳定性,以避免产生自激振荡或输入偏移。

电路结构:差分输入级:差分输入级是运算放大器的核心部分,用于接受差分输入信号。

它由两个差分对组成,每个差分对由两个晶体管连接而成。

差分输入级的输入阻抗较高,能够减小对输入信号的干扰,提高共模抑制比。

共模放大级:共模放大级用于放大输入信号的共模部分。

它由一对电流镜电路和一个差分放大电路组成。

共模放大级的放大倍数影响运算放大器的共模抑制比和输入选择性。

输出级:输出级用于提供对外的放大信号。

它由输入级的晶体管、电源和输出级负载组成。

输出级应具备较低的输出阻抗,以便与外界负载匹配。

参数选择:参数选择是运算放大器设计的重要环节。

下面是几个常见参数的选择方法:增益:增益可以根据具体应用需求来设定。

一般来说,增益越高,对输入信号的放大效果越好,但也容易引入噪声和干扰。

带宽:带宽取决于应用的特定频率范围。

选择较高的带宽可以满足对高频信号的放大需求,但也可能引入频率抖动和畸变。

输入阻抗:输入阻抗应根据信号源的特性来选择。

如果信号源的输出阻抗较高,则需要选择较低的输入阻抗以保证信号传输。

输出阻抗:输出阻抗应根据负载的特性来选择。

如果负载的输入阻抗较高,则需要选择较低的输出阻抗以提供足够的电流输出。

稳定性:稳定性可以通过选择合适的电容和电阻来提高。

一般来说,通过增加补偿电容和添加反馈电阻可以提高运算放大器的稳定性。

仿真:对于运算放大器的设计,可以使用电子设计自动化软件进行仿真验证。

主要包括以下步骤:1.输入基本电路参数,如晶体管的参数、电源电压等。

全差分运算放大器设计

全差分运算放大器设计

全差分运算放大器设计岳生生(200403020126)一、设计指标以上华0.6um CMOS 工艺设计一个全差分运算放大器,设计指标如下:✧直流增益:>80dB✧单位增益带宽:>50MHz✧负载电容:=5pF✧相位裕量:>60度✧增益裕量:>12dB✧差分压摆率:>200V/us✧共模电压:2.5V (VDD=5V)✧差分输入摆幅:>±4V二、运放结构选择运算放大器的结构重要有三种:(a )简单两级运放,two-stage 。

如图2所示;(b )折叠共源共栅,folded-cascode 。

如图3所示;(c )共源共栅,telescopic 。

如图1的前级所示。

本次设计的运算放大器的设计指标要求差分输出幅度为±4V ,即输出端的所有NMOS 管的,DSAT NV之和小于0.5V ,输出端的所有PMOS管的,DSAT PV之和也必须小于0.5V 。

对于单级的折叠共源共栅和直接共源共栅两种结构,都比较难达到该要求,因此我们采用两级运算放大器结构。

另外,简单的两级运放的直流增益比较小,因此我们采用共源共栅的输入级结构。

考虑到折叠共源共栅输入级结构的功耗比较大,故我们选择直接共源共栅的输入级,最后选择如图1所示的运放结构。

两级运算放大器设计必须保证运放的稳定性,我们用Miller 补偿或Cascode 补偿技术来进行零极点补偿。

三、性能指标分析1、 差分直流增益 (Adm>80db)该运算放大器存在两级:(1)、Cascode 级增大直流增益(M1-M8);(2)、共源放大器(M9-M12) 第一级增益1351113571135135753()m m m o o o o o m m m m o o o o m m g g gg gg G A R r rr r g g r r r r=-=-=-+第二级增益92291129911()m o o o m m o o gg G AR r rgg=-=-=-+整个运算放大器的增益:4135912135753911(80)10m m m m overallo o o o m m o o dB g g g gAA A g g g gr r r r ==≥++2、 差分压摆率 (>200V/us )转换速率(slew rate )是大信号输入时,电流输出的最大驱动能力。

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作(一) 运算放大器 1.原理运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反响电路时,可以灵敏地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

运算放大器一般由4个局部组成,偏置电路,输入级,中间级,输出级。

图1运算放大器的特性曲线 图2运算放大器输入输出端图示图1是运算放大器的特性曲线,一般用到的只是曲线中的线性局部。

如图2所示。

U -对应的端子为“-〞,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。

U +对应的端子为“+〞,当输入U +单独由该端参加时,输出电压与U +同相,故称它为同相输入端。

输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益〔开环电压放大倍数〕。

在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。

2.理想运放在线性应用时的两个重要特性输出电压U O 与输入电压之间满足关系式:U O =A ud 〔U +-U -〕,由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。

即U +≈U -,称为“虚短〞。

由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断〞,这说明运放对其前级汲取电流极小。

上述两个特性是分析理想运放应用电路的根本原那么,可简化运放电路的计算。

3. 运算放大器的应用 (1)比例电路所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。

(a) 反向比例电路反向比例电路如图3所示,输入信号参加反相输入端:图3反向比例电路电路图对于理想运放,该电路的输出电压与输入电压之间的关系为:为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R ’=R 1 // R F 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运算放大器设计
电子竞赛初赛设计方案姓名:刘俊贤学号:班级: 2019301951 08031301
实验一:用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3)
的加法电路
一.实验要求
用集成运放设计一个能实现V0=-(4Vi1+3Vi2+2Vi3)的加法电路。

设计步骤:
(1)根据已知条件,确定电路方案,计算并选取各电路元件参数;
(2)在输出波形不失真的情况下,测量输入、输出波形的幅度,使之满足设计要求
二.实验原理
集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大器件。

当外界接入线性或非线性元器件组成输入和负反馈电路时,可以灵活实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

在大多数情况下,将运放看成是理想的,有以下三条基本结论: (1)开环电压增益Av=∞。

(2)运算放大器的两个输入端电压近似相等,即V+ = V-,成为虚短。

(3)运算放大器同相和反相两个输入端电流可视为0,成为虚断。

三.实验分析设计
题目要求设计能实现
V0=-(4Vi1+3Vi2+2Vi3)
U0Ui
..
的加法电路,分析得:
(1)输出与输入反相,则采用反相加法运算电路。

(2)由基本反相比例放大器的增益公式Auf=
=-
RfR1
可进一步推出反相加法
运算公式u=-(Rfu+Rfu+Rfu),则Rf=4 Rf=3 Rf=2,所以设计
0i1i2i3
R1R2R3R1R2R3
Rf=120kΩ,R1=30kΩ,R2=40kΩ,R3=60kΩ
(3)Vi1=100mV,Vi2=200mV,Vi3=300mV,三者频率都为1kHz的正弦信号,使输出波形不失真,观察并记录结果。

反相加法运算电路如下图所示:
四、仿真结果
理论计算(峰值):
u0=-(4*100+3*200+2*300)=1600mV
实验测得(峰值):
'
u0=1.590V
'
u0≈u0
所以该设计较合理。

实验二 RC文氏桥振荡器输出正弦波
一、实验要求
根据文氏电桥振荡电路原理,设计一个正弦波发生器电路。

设计任务: (1) 输出正弦波的振荡频率为1KHZ;
(2) 振荡频率的测量值与理论值的相对误差
二、实验原理
文氏电桥振荡电路又称RC串并联网络正弦波振荡电路,它是一种较好的正弦波产生电路,适用于频率小于1MHz,频率范围宽,波形较好的低频振荡信号。

从结构上看,正弦波振荡器是没有输入信号的,为了产生正弦波,必须在放大电路中加入正反馈,因此放大电路和正反馈网络是振荡电路的最主要部分。

但是,这样两部分构
成的振荡器通常是得不到正弦波的,这是由于正反馈量很难控制,故还需要加入一些其它电路。

如图所示,是用运算放大器组成的文氏电桥RC正弦波震荡电路:
图中R1,R2,R5构成负反馈支路,R3,R4,C1,C2的串并联选频网络构成正反馈支路并兼做选频网络,二极管构成稳幅电路。

调节电位器R5可以改变负反馈的深度,以满足振荡电路的振幅条件和改善波形。

二极管D1,D2要求温度稳定性好且特性匹配,这样才能保证输出波形正负半周对称,同时接入R2以消除二极管的非线性影响。

若R3=R4,C1=C2,则振荡频率为f0=1/2πRC,正反馈的电压与输出电压同相位(此为电路振荡的相位平衡条件),且正反馈的系数为1/3。

为满足电路的起振条件,放大器的电压放大倍数AV>3,其中AV=1+RP/R1,RP=R5+R2。

由此可得出当RP>2R1时,可满足自激振荡的振幅起振条件。

在实际应用中RP略大于R1,这样既可以满足起振条件,又不会因为过大而引起波形严重失真。

此外,若对所有的频率成分不加选择的反馈放大,则无法输出正弦信号。

为了输出单一的正弦波,还必须进行选频,仅仅使某一频率的正弦信号被放大和反馈形成震荡,而使其它的频率成分被抑制。

由于振荡的频率为f0=1/2πRC,故在电路中可变换电容来进行振荡的频率的粗调,可用电位器代替R3,R4来进行频率的细调。

电路起振后,由于元件参数的不稳定性,如果电路增益增大,输出幅度将越来越大,最后由于二极管的非线性限幅,这必然产生非线性失真。

反之,如果增益不足,则输出幅度减小,可能停振,为此振荡电路要有一个稳幅电路。

图中负反馈支路的两个二极管即为自动限幅元件,主要利用二极管的正向电阻随所加电压而改变的特性,来自动调节负反馈深度。

三、实验步骤
(1)按照实验电路图连接好仿真电路。

(2)结合上图,启动仿真按钮,用示波器观察有无正弦波的输出。

若无输出,可调节R5使得VO波形为无明显失真的正弦波,并观察V O的值是否稳定。

用示波器测量V O 的幅值,并测出频率。

如果不满足实验要求,则可调节两电容大小(保持大小相等)或电阻R1和R2来改变频率,合理改变R3、RP、R4阻值来改变输出电压幅值,直到满足要求为止。

(3)分析计算电压误差、频率误差。

四、仿真结果
幅值满足要求,且频率误差小于5%。

相关文档
最新文档