数学期望优秀PPT
合集下载
《数学期望》课件

注意事项
在计算过程中需要注意积分的上下 限以及概率密度函数的取值范围。
连续型随机变量的数学期望的性质
01
02
03
非负性
E(X) ≥ 0,即数学期望的 值总是非负的。
可加性
如果X和Y是两个独立的随 机变量,那么E(X+Y) = E(X) + E(Y)。
线性性质
如果a和b是常数,那么 E(aX+b) = aE(X)+b。
方差是数学期望的度量,表示随机变量取值 与数学期望的偏离程度。
04
CATALOGUE
连续型随机变量的数学期望
连续型随机变量的定义
连续型随机变量
如果一个随机变量X的所有可能 取值是实数轴上的一个区间变量。
概率密度函数
描述连续型随机变量X在各个点 上取值的概率分布情况,其数学
《数学期望》PPT课件
CATALOGUE
目 录
• 引言 • 数学期望的基本性质 • 离散型随机变量的数学期望 • 连续型随机变量的数学期望 • 数学期望的应用 • 总结与展望
01
CATALOGUE
引言
数学期望的定义
数学期望是概率论和统计学中的 一个重要概念,它表示随机变量
取值的平均数或加权平均数。
数学期望的定义基于概率论的基 本原理,通过将每个可能的结果 与其对应的概率相乘,然后将这
些乘积相加得到。
数学期望具有一些重要的性质, 如线性性质、期望值不变性质等 ,这些性质在概率论和统计学中
有着广泛的应用。
数学期望的起源和历史
数学期望的起源可以追溯到17世纪,当时的一些数学家开始研究概率论和统计学中 的一些基本概念。
通过计算投资组合的数学期望, 我们可以了解投资组合的预期收 益,从而制定更加合理的投资策
在计算过程中需要注意积分的上下 限以及概率密度函数的取值范围。
连续型随机变量的数学期望的性质
01
02
03
非负性
E(X) ≥ 0,即数学期望的 值总是非负的。
可加性
如果X和Y是两个独立的随 机变量,那么E(X+Y) = E(X) + E(Y)。
线性性质
如果a和b是常数,那么 E(aX+b) = aE(X)+b。
方差是数学期望的度量,表示随机变量取值 与数学期望的偏离程度。
04
CATALOGUE
连续型随机变量的数学期望
连续型随机变量的定义
连续型随机变量
如果一个随机变量X的所有可能 取值是实数轴上的一个区间变量。
概率密度函数
描述连续型随机变量X在各个点 上取值的概率分布情况,其数学
《数学期望》PPT课件
CATALOGUE
目 录
• 引言 • 数学期望的基本性质 • 离散型随机变量的数学期望 • 连续型随机变量的数学期望 • 数学期望的应用 • 总结与展望
01
CATALOGUE
引言
数学期望的定义
数学期望是概率论和统计学中的 一个重要概念,它表示随机变量
取值的平均数或加权平均数。
数学期望的定义基于概率论的基 本原理,通过将每个可能的结果 与其对应的概率相乘,然后将这
些乘积相加得到。
数学期望具有一些重要的性质, 如线性性质、期望值不变性质等 ,这些性质在概率论和统计学中
有着广泛的应用。
数学期望的起源和历史
数学期望的起源可以追溯到17世纪,当时的一些数学家开始研究概率论和统计学中 的一些基本概念。
通过计算投资组合的数学期望, 我们可以了解投资组合的预期收 益,从而制定更加合理的投资策
随机变量的数学期望 ppt课件

概率论与数理统计
第一节 数学期望
离散型随机变量的数学期望 连续型随机变量的数学期望 随机变量函数的数学期望 数学期望的性质 课堂练习
ppt课件
2
在前面的课程中,我们讨论了随机变量及其分 布,如果知道了随机变量X的概率分布,那么X的 全部概率特征也就知道了.
然而,在实际问题中,概率分布一般是较难 确定的. 而在一些实际应用中,人们并不需要知 道随机变量的一切概率性质,只要知道它的某些 数字特征就够了.
分布为pij , i,j=1,2, …,则
E(Z) E[g(X ,Y )]
g(xi , y j ) pij
j1 i1
(2) 如果X、Y是连续型随机变量,联合概
率密度为f(x,y),则
E(Z ) E[g( X ,Y )] g( x, y) f ( x, y)dxdy
ppt课件
24
例4.6 设 ( X , Y ) 的分布律为
概率
1/6 3/6 2/6
一旅客8:20到车站,求他候车时间的数学期望.
ppt课件
12
解:设旅客的候车时间为X (以分计),其分布率为
X 10 30 50 70 90
pk 3 6
上表中例如
2 11 13 12 6 66 66 66
P{X 70} P(AB) P( A)P(B) 1 3 66
ppt课件
32
例10 设二维连续型随机变量(X ,Y)的概率密度为
f
( x,
y)
Asin( x
y)
0 x
2
0
其它
(1)求系数A, (2)求E( X ), E( XY ).
解:(1)由于
f
( x,
y)dxdy
第一节 数学期望
离散型随机变量的数学期望 连续型随机变量的数学期望 随机变量函数的数学期望 数学期望的性质 课堂练习
ppt课件
2
在前面的课程中,我们讨论了随机变量及其分 布,如果知道了随机变量X的概率分布,那么X的 全部概率特征也就知道了.
然而,在实际问题中,概率分布一般是较难 确定的. 而在一些实际应用中,人们并不需要知 道随机变量的一切概率性质,只要知道它的某些 数字特征就够了.
分布为pij , i,j=1,2, …,则
E(Z) E[g(X ,Y )]
g(xi , y j ) pij
j1 i1
(2) 如果X、Y是连续型随机变量,联合概
率密度为f(x,y),则
E(Z ) E[g( X ,Y )] g( x, y) f ( x, y)dxdy
ppt课件
24
例4.6 设 ( X , Y ) 的分布律为
概率
1/6 3/6 2/6
一旅客8:20到车站,求他候车时间的数学期望.
ppt课件
12
解:设旅客的候车时间为X (以分计),其分布率为
X 10 30 50 70 90
pk 3 6
上表中例如
2 11 13 12 6 66 66 66
P{X 70} P(AB) P( A)P(B) 1 3 66
ppt课件
32
例10 设二维连续型随机变量(X ,Y)的概率密度为
f
( x,
y)
Asin( x
y)
0 x
2
0
其它
(1)求系数A, (2)求E( X ), E( XY ).
解:(1)由于
f
( x,
y)dxdy
数学期望E(x)D(x).ppt

绝对收敛,则有
E(Y ) E[g( X )] g( x) f ( x)dx
注释
A.在计算随机变量的函数Y=g(X)的期望时,我们可以先 确定Y=g(X)的分布进而计算函数Y的期望E(Y)。但由 前两章的讨论可以看出,确定Y=g(X)的分布并不容易。 因此在计算随机变量函数的期望时,我们一般利用定 理的结论去计算。定理的重要意义在于当我们求E(Y) 时,不必知道Y的分布而只需知道X的分布就可以了。
B.在计算一些分布较复杂甚至难以确定的随机变量的期 望时,如能将X表示成有限个简单随机变量之和,那 么利用期望的性质计算就可大大简化我们的问题。这
也是计算期望的一个技巧。
C.上述定理还可以推广到二个或二个以上随机变量的函 数情况。例如,设Z是随机变量X,Y的函数Z=g(X, Y)(g是连续函数),那么,Z也是一个随机变量,若二
1
x 2
e 2 2 dx
2
令 x t,
E(X) 1
t2
t e 2 dt
t2
e 2 dt .
2
2
特别地,若XN(0,1),则E(X)=0。
(1) 几个常见连续型随机变量的数学期望 i.若XU(a,b),则E(X)=(a+b)/2. 证:X的概率密度为
f
(
x)
b
Y 8 2 9 5 10 3 9.1 10
结果:甲平均击中的环数9.3, 乙平均击中的环 数9.1,甲水平较高。
根据概率的统计定义作分析:击中次数N 与N的比值,是这 i
N次试验中射中环数的频率,按概率的统计定义,当N很大时, N /N接近于射中环数的概率。
i
1. 离散型随机变量的数学期望
维随机变量(X,Y)的概率密度为f(x,y)则有
E(Y ) E[g( X )] g( x) f ( x)dx
注释
A.在计算随机变量的函数Y=g(X)的期望时,我们可以先 确定Y=g(X)的分布进而计算函数Y的期望E(Y)。但由 前两章的讨论可以看出,确定Y=g(X)的分布并不容易。 因此在计算随机变量函数的期望时,我们一般利用定 理的结论去计算。定理的重要意义在于当我们求E(Y) 时,不必知道Y的分布而只需知道X的分布就可以了。
B.在计算一些分布较复杂甚至难以确定的随机变量的期 望时,如能将X表示成有限个简单随机变量之和,那 么利用期望的性质计算就可大大简化我们的问题。这
也是计算期望的一个技巧。
C.上述定理还可以推广到二个或二个以上随机变量的函 数情况。例如,设Z是随机变量X,Y的函数Z=g(X, Y)(g是连续函数),那么,Z也是一个随机变量,若二
1
x 2
e 2 2 dx
2
令 x t,
E(X) 1
t2
t e 2 dt
t2
e 2 dt .
2
2
特别地,若XN(0,1),则E(X)=0。
(1) 几个常见连续型随机变量的数学期望 i.若XU(a,b),则E(X)=(a+b)/2. 证:X的概率密度为
f
(
x)
b
Y 8 2 9 5 10 3 9.1 10
结果:甲平均击中的环数9.3, 乙平均击中的环 数9.1,甲水平较高。
根据概率的统计定义作分析:击中次数N 与N的比值,是这 i
N次试验中射中环数的频率,按概率的统计定义,当N很大时, N /N接近于射中环数的概率。
i
1. 离散型随机变量的数学期望
维随机变量(X,Y)的概率密度为f(x,y)则有
《数学期望》课件

《数学期望》PPT课件
欢迎来到《数学期望》PPT课件。从定义到应用,本课程将为您全面介绍数学 期望的相关知识。
什么是数学期望
1 定义
数学期望是随机变量取值的加权平均数,是 一个平均性的数值特征。
2 意义
数学期望能够用来描述随机变量的中心位置, 是概率分布的重要特征之一。
离散型随机变量的期望
1
期望的运算规律
期望的运算规律
期望也具有线性性、单调性和保号性等运算规律, 但概率密度函数的图像更难以直观展示。
期望的性质
期望的线性性质
期望具有加法和数乘的线性运算规律,对于相互独 立的随机变量,期望还满足可加性。
期望的矩估计
期望的矩估计可以帮助我们了解随机变量的高阶特 征,如方差、偏度和峰度等。
应用实例
期望在概率分布中的应用
量的期望
离散型随机变量的期望等于随机变量取
每个值的概率乘以该值的加权和,连续
型随机变量的期望等于其概率密度函数
3
期望的运算规律和性质
的加权积分。
期望具有线性性、单调性和保号性等运
算规律,还具有可加性和矩估计等特性。
应用实例
4
期望在概率分布中和随机变量期望在实 际问题中都有广泛应用。
参考资料
• 离散数学 • 概率论与数理统计 • 数理统计方法及其应用
2
期望具有线性性、单调性和保号性等运
算规律。
3
离散型随机变量的期望定义
离散型随机变量的期望等于随机变量取 每个值的概率乘以该值的加权和。
概率分布的图像
概率分布的图像能够直观地展示数学期 望的定义和特性。
连续型随机变量的期望
连续型随机变量的期望定义
连续型随机变量的期望等于其概率密度函数的加权 积分。
欢迎来到《数学期望》PPT课件。从定义到应用,本课程将为您全面介绍数学 期望的相关知识。
什么是数学期望
1 定义
数学期望是随机变量取值的加权平均数,是 一个平均性的数值特征。
2 意义
数学期望能够用来描述随机变量的中心位置, 是概率分布的重要特征之一。
离散型随机变量的期望
1
期望的运算规律
期望的运算规律
期望也具有线性性、单调性和保号性等运算规律, 但概率密度函数的图像更难以直观展示。
期望的性质
期望的线性性质
期望具有加法和数乘的线性运算规律,对于相互独 立的随机变量,期望还满足可加性。
期望的矩估计
期望的矩估计可以帮助我们了解随机变量的高阶特 征,如方差、偏度和峰度等。
应用实例
期望在概率分布中的应用
量的期望
离散型随机变量的期望等于随机变量取
每个值的概率乘以该值的加权和,连续
型随机变量的期望等于其概率密度函数
3
期望的运算规律和性质
的加权积分。
期望具有线性性、单调性和保号性等运
算规律,还具有可加性和矩估计等特性。
应用实例
4
期望在概率分布中和随机变量期望在实 际问题中都有广泛应用。
参考资料
• 离散数学 • 概率论与数理统计 • 数理统计方法及其应用
2
期望具有线性性、单调性和保号性等运
算规律。
3
离散型随机变量的期望定义
离散型随机变量的期望等于随机变量取 每个值的概率乘以该值的加权和。
概率分布的图像
概率分布的图像能够直观地展示数学期 望的定义和特性。
连续型随机变量的期望
连续型随机变量的期望定义
连续型随机变量的期望等于其概率密度函数的加权 积分。
《数学期望》PPT课件

于X 和Y 的二元函数,则同样可定义随机变量 Z 的数学期望如下:
24
(1)c(rX,Y)已{知 pij},
则 ZgX,Y的数学期望为
E Z E gX ,Y gx i,yj p i.j i, 1j 1
(2)c(tX,Y)已f知 (x,y),
则 ZgX,Y的数学期望为
P { X x } p k 1 , 2 , , kk
若级数 gxk收 敛pk,则 k1 E (Y )E g X gxk pk k1
16
例1 设离散型随机变量X 的分布列为
X
-1
0
2
3
1131
P k
8
4
8
4
试计算:E X , E X 2和 E 2 X 1 。
17
解 由数学期望的定义可得
E X 1 10123311;1
8 4 8 48
E X 2 1 2 1 0 2 1 2 2 3 3 2 1 3;1 8 4 8 48
E 2 X 1 3 1 1 1 3 3 5 1
84 8 4
7. 4
18
例2 设 X 服从参数为 的泊松分布,试
Ex
x
fxd
x
9
反之,如果积分
x
发f 散x,d则x
称随机变量 X 的数学期望不存在。
例4 设 X 服从 (a,b)区间上的均匀分布, 求 X 的数学期望。
10
解 已知 X 的概率密度为
1
f
x
b
ቤተ መጻሕፍቲ ባይዱ
a
0
, xa,b,
从而
, 其它。
E x xx fd x b ax b 1 a d x 1 2 a b
14
24
(1)c(rX,Y)已{知 pij},
则 ZgX,Y的数学期望为
E Z E gX ,Y gx i,yj p i.j i, 1j 1
(2)c(tX,Y)已f知 (x,y),
则 ZgX,Y的数学期望为
P { X x } p k 1 , 2 , , kk
若级数 gxk收 敛pk,则 k1 E (Y )E g X gxk pk k1
16
例1 设离散型随机变量X 的分布列为
X
-1
0
2
3
1131
P k
8
4
8
4
试计算:E X , E X 2和 E 2 X 1 。
17
解 由数学期望的定义可得
E X 1 10123311;1
8 4 8 48
E X 2 1 2 1 0 2 1 2 2 3 3 2 1 3;1 8 4 8 48
E 2 X 1 3 1 1 1 3 3 5 1
84 8 4
7. 4
18
例2 设 X 服从参数为 的泊松分布,试
Ex
x
fxd
x
9
反之,如果积分
x
发f 散x,d则x
称随机变量 X 的数学期望不存在。
例4 设 X 服从 (a,b)区间上的均匀分布, 求 X 的数学期望。
10
解 已知 X 的概率密度为
1
f
x
b
ቤተ መጻሕፍቲ ባይዱ
a
0
, xa,b,
从而
, 其它。
E x xx fd x b ax b 1 a d x 1 2 a b
14
概率论与数理统计-数学期望_图文

因每个球落入每个盒子是等可能的均为1/M, 所以,对第i 个盒子,一个球不落入这个盒子 内的概率为(1-1/M)。故N个球都不落入这个 盒子内的概率为(1-1/M)n ,即
最常用的数字特征是:期望和方差。
第四章 数字特征
§4.1 数学期望
4.1.1 离散型随机变量的数学期望 概念引入:
某车间对工人生产情况进行考察,车工 小张每天生产的废品数 X 是一个随机变量 。如何定义 X 的平均值?
若统计了100天小张生产产品的情况,发现 : 32天没有出废品;30天每天出一件废品; 17天每天出两件废品;21天每天出三件废品。
可以得到这n天中,每天的平均废品数为
这是以频率为 权的加权平均
由频率与概率的关系,
不难想到:求废品数X的平 均值时,用概率替代频率, 得平均值为:
这样,就得到一个确定的数
这是以概率为 权的加权平均
——随机变量X的期望(均值) 。
定义1: 设X是离散型随机变量, 概率分布为 P{X=xk}=pk , k=1,2, …。
解:设组织货源 t 吨。显然,应要求
2000≤t ≤4000。国家收益Y(单位:万元)是X
的函数Y=g(X)。表达式为
由已知条件, 知X的概率密度函为
可算得当 t = 3500 时, E(Y)=-2t2 + 14000t-8000000
达到最大值 1.55×106。 因此,应组织3500吨货源。
概率论与数理统计-数学期望_图文.ppt
前面讨论了随机变量及其分布。 如果我 们知道了随机变量 X 的概率分布,那么,关 于 X 的全部概率特征也就知道了。
然而,在实际问题中,概率分布是较难 确定的。且有时在实际应用中,我们并不需 要知道随机变量的所有性质,只要知道其一 些数字特征就够了。
数学期望ppt课件

k 1
10:24
11
2、连续型随机变量的数学期望
定义 设连续型随机变量X的概率密度为 f (x)
若积分
xf (x)dx
绝对收敛,则称积分 xf (x)dx 的值为
随机变量X的数学期望,记为 ( X )
即
( X ) xf (x)dx
10:24
12
关于定义的几点说明:
则X 所取可能值为: 200
0
其概率分别为:
3
1
4
4
因而A期望所得的赌金即为X的 “期望”值
等于 200 3 0 1 150(法郎).
4
4
即为 X的可能值与其概率之积的累加.
10:24
9
二、数学期望的定义
数学期望的分类
数学期望
离散型随机变量的 数学期望
连续型随机变量的 数学期望
10:24
10:24
4
分析:
很容易设想出以下两种分法:
(1)A得200·(1/2) 法郎,B得200·(1/2) 法郎;
(2)A得200·(2/3) 法郎,B得200·(1/3) 法郎。
10:24
5
既然前两种分法都 不合理,那么第(3) 种更合理的办法又该 怎样分呢?
10:24
6
假设继续赌两局,则结果有以下四种情况:
数学期望在生活中的应用
医学信息工程系
10:24
1
内容提要:
1 数学期望的起源
2 数学期望的定义
3 数学期望的应用
10:24
2
表示随机事件发生可 能性大小的量
表述随机变量取值 的概率规律
随机试验结果的 量的表示
10:24
11
2、连续型随机变量的数学期望
定义 设连续型随机变量X的概率密度为 f (x)
若积分
xf (x)dx
绝对收敛,则称积分 xf (x)dx 的值为
随机变量X的数学期望,记为 ( X )
即
( X ) xf (x)dx
10:24
12
关于定义的几点说明:
则X 所取可能值为: 200
0
其概率分别为:
3
1
4
4
因而A期望所得的赌金即为X的 “期望”值
等于 200 3 0 1 150(法郎).
4
4
即为 X的可能值与其概率之积的累加.
10:24
9
二、数学期望的定义
数学期望的分类
数学期望
离散型随机变量的 数学期望
连续型随机变量的 数学期望
10:24
10:24
4
分析:
很容易设想出以下两种分法:
(1)A得200·(1/2) 法郎,B得200·(1/2) 法郎;
(2)A得200·(2/3) 法郎,B得200·(1/3) 法郎。
10:24
5
既然前两种分法都 不合理,那么第(3) 种更合理的办法又该 怎样分呢?
10:24
6
假设继续赌两局,则结果有以下四种情况:
数学期望在生活中的应用
医学信息工程系
10:24
1
内容提要:
1 数学期望的起源
2 数学期望的定义
3 数学期望的应用
10:24
2
表示随机事件发生可 能性大小的量
表述随机变量取值 的概率规律
随机试验结果的 量的表示
数学期望的定义与性质优秀课件

N
4
kNk
k2
N
4
=k
k2
Nk N
4
kfk
k2
4
定 义 :设离散型随机变量 的可能的取为ai(i=1,2...),
其分布列为 P { a i} p i, i 1 ,2 , . 若
aipi
绝对收
i1
敛,则称随机变量 存在数学期望
E = ai pi i 1
思考 :1、为什么要绝对收敛?
变量,设其可能取值为bj,(j 1,2,...)
则 P(bj)
P(ai)
g(ai )bj
由数学期望的定义有:Eg()EbjP(bj) j1
b j P ( ai ) j1 g (ai )b j
g (ai )Байду номын сангаасP ( ai ) j 1 g ( ai )b j
g(ai)P( ai) i1 16
其 分 布 列 为 : 1 k 1 1 k
q
k
1 qk
由此可求的每人所需的平均检验次数:
E=a1p1a2p2 1kqk (11k)(1qk)
1qk 1k
每 人 检 验 一 次 , 所 以 当 1-qk+1k1时 , 即 q>1kk,
需 要 分 组 , 若 q已 知 , 还 可 以 从 E=1-qk+1k
6
例1 谁的技术比较好? 甲,乙两个射,他 手们的射击技术分别为
甲射手
击中环数 概率
8 9 10 0.3 0.1 0.6
乙射手
击中环数 8 9 10
概率
0.2 0.5 0.3
试问哪个射手技术较好?
7
解 设 甲 ,乙 射 手 击 中 的 环 数 分 别 为 ,.
4
kNk
k2
N
4
=k
k2
Nk N
4
kfk
k2
4
定 义 :设离散型随机变量 的可能的取为ai(i=1,2...),
其分布列为 P { a i} p i, i 1 ,2 , . 若
aipi
绝对收
i1
敛,则称随机变量 存在数学期望
E = ai pi i 1
思考 :1、为什么要绝对收敛?
变量,设其可能取值为bj,(j 1,2,...)
则 P(bj)
P(ai)
g(ai )bj
由数学期望的定义有:Eg()EbjP(bj) j1
b j P ( ai ) j1 g (ai )b j
g (ai )Байду номын сангаасP ( ai ) j 1 g ( ai )b j
g(ai)P( ai) i1 16
其 分 布 列 为 : 1 k 1 1 k
q
k
1 qk
由此可求的每人所需的平均检验次数:
E=a1p1a2p2 1kqk (11k)(1qk)
1qk 1k
每 人 检 验 一 次 , 所 以 当 1-qk+1k1时 , 即 q>1kk,
需 要 分 组 , 若 q已 知 , 还 可 以 从 E=1-qk+1k
6
例1 谁的技术比较好? 甲,乙两个射,他 手们的射击技术分别为
甲射手
击中环数 概率
8 9 10 0.3 0.1 0.6
乙射手
击中环数 8 9 10
概率
0.2 0.5 0.3
试问哪个射手技术较好?
7
解 设 甲 ,乙 射 手 击 中 的 环 数 分 别 为 ,.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的期望值与算术平均值相等.
0
14
三、数学期望的应用
数学期望反映了离散型随机变量取 值的平均水平,在社会生活中存在着广 泛的应用。
0
15
实例1 谁的技术比较好? 甲、乙两个射手 , 他们射击的分布律分别为
甲射手
击中环数 8 9 10
概率
0.3 0.1 0.6
乙射手
击中环数 8 9 10
概率
0.2 0.5 0.3
(2) 随机变量的数学期望与一般变量的算 术平均值不同.
0
13
X1 2 假设
p 0.02 0.98
则随机变量 X 的算术平均值为1 2 1.5,
而其数学期望为:
2
E( X ) 1 0.02 2 0.98 1.98.
•
• • ••
x
O
1
2
它从本质上体现了随机变量X 取可能值的平均值.
当随机变量 X 取各个可能值是等概率分布时 , X
设头等奖1个, 奖金 1万元, 二等奖2个,奖金各 5 千元;三等奖 10个, 奖金各1千元; 四等奖 100个,奖金各100元;五等奖1000个,奖金各 10 元。每张彩票的成本费为 0.3 元, 请计算彩 票发行单位的创收利润。
分析:设每张彩票中奖的数额为随机变量X, 则
X 10000 p 1 105
若积分
xf (x)dx
绝对收敛,则称积分 xf (x)dx 的值为
随机变量X的数学期望,记为 ( X )
即
( X ) xf (x)dx
0
12
关于定义的几点说明:
(1) E(X)是一个实数,而非变量,它是一 种加权平均,与一般的平均值不同 , 它从本 质上体现了随机变量 X 取可能值的真正 的平均值, 也称均值.
产生的一个概念。当时研究的概率问题大
多与赌博有关。
0
3
一、数学期望的起源
引例 分赌本问题(产生背景)
A, B 两人赌技相同, 各出 赌金100法郎,并约定先胜三局者 为胜, 取得全部 200 法郎.由于出 现意外情况 ,在 A 胜 2 局 B 胜1 局时,不得不终止赌博, 如果要分 赌金,该如何分配才算公平?
即A 应获得赌金的 3 , 4
而
B
1
只能获得赌金的4
.
因此, A 能“期望”得到的数
为
200 3 0 1 150 (法郎),
44
而B 能“期望”得到的数目则
为
200 1 0 3 50(法郎).
44
0
8
若设随机变量 X 为:在 A胜2局B胜1局的前提下 , 继续赌下去 A 最终所得的赌金.
0
5000 2 105
1000 100 10 0 10 105 100 105 1000 105 p0
18
每张彩票平均能得到奖金
1
2
E( X ) 10000 105 5000 105 0 p0
0.5(元),
每张彩票平均可赚 2 0.5 0.3 1.2(元),
因此彩票发行单位发行 10 万张彩票的创收利润为
0
21
分析:
设这个人一次购物得奖金X元,X的分布 列为:
X 500 100
10
20
p 1 105 10 105 102 105 103 105 0
0
22
X的数学期望为:
( X ) 500 1/105 100 10 /105 10 102 /105 2103 /105 0 0 0.045(元)
问哪个射手技术比较好?
0
16
分析:
设甲乙两射手射中的环数分别为:X1, X2 故有:
E( X1) 8 0.3 9 0.1 10 0.6 9.3(环), E( X2 ) 8 0.2 9 0.5 10 0.3 9.1(环),
0
17
实例2 发行彩票的创收利润 某一彩票中心发行彩票 10万张, 每张2元。
E(X ) 8 0.3 2 0.7 1(万元)
存入银行的利息: 10 5% 0.5(万元)
0
20
实例4 有奖促销决策问题
某商场某月开展有奖促销活动,按规定 100000人次中,一等奖1个,奖金500元;二 等奖10个,各奖100元;三等奖100个,各奖 10元;四等奖1000个,各奖2元。某人这个月 内在该商场买了5次商品,他期望得奖多少元?
0
4
分析:很容易设想出以下两种源自法:(1)A得200·(1/2) 法郎,B得200·(1/2) 法郎;
(2)A得200·(2/3) 法郎,B得200·(1/3) 法郎。
0
5
既然前两种分法都 不合理,那么第(3) 种更合理的办法又该 怎样分呢?
0
6
假设继续赌两局,则结果有以下四种情况:
AA
AB
BA
100000 1.2 120000(元).
0
19
实例3 投资决策问题
某人现有10万元现金,想投资 于某项目,预估成功的机会为 30%, 可得利润8万元 , 失败的机会为70% ,将损失 2 万元。若存入银行,同期 间的利率为5% ,问是否作此项投资?
分析:设 X 为投资利润,则
X8 p 0.3
2 0.7
定义 设离散型随机变量X 的分布律为
P{ X xk } pk , k 1,2, .
若级数 xk pk 绝对收敛, 则称级数 xk pk
k 1
k 1
为随机变量 X 的数学期望, 记为 E( X ). 即
E( X ) xk pk .
k 1
0
11
2、连续型随机变量的数学期望
定义 设连续型随机变量X的概率密度为 f (x)
BB
A胜B负 A胜B负
A胜B负 B胜A负
B胜A负 B胜A负 A胜B负 B胜A负
把已赌过的三局(A 胜2局B胜1局)与上述结果 相结合, 即 A、B 赌完五局,
前三局: A 胜 2 局 B 胜 1 局
后二局: A A A B B A BB
A胜
B胜
0
7
故有, 在赌技相同的情况下, A, B 最终获胜的 可能性大小之比为 3 : 1,
则X 所取可能值为: 200
0
其概率分别为:
3
1
4
4
因而A期望所得的赌金即为X的 “期望”值
等于 200 3 0 1 150(法郎).
4
4
即为 X的可能值与其概率之积的累加.
0
9
二、数学期望的定义
数学期望的分类
数学期望
离散型随机变量的 数学期望
连续型随机变量的 数学期望
0
10
1、离散型随机变量的数学期望
数学期望在生活中的应用
医学信息工程系
0
杨敏
1
内容提要:
1 数学期望的起源
2 数学期望的定义
3 数学期望的应用
0
2
表示随机事件发生可 能性大小的量
表述随机变量取值 的概率规律
随机试验结果的 量的表示
数学期望又称期望或均值,是随机变量
按概率的加权平均,表征其概率分布的中心
位置。数学期望是概率论早期发展中就已