方案选择的应用题

合集下载

初一方案选择问题

初一方案选择问题

知识点2:方案选择问题9..甲乙两班到市场里去买苹果价格如下:甲班分两次共购买苹果70千克(第二次多于第一次)共付出189元,乙班则一次性购买70千克(1)乙班比甲班少付多少元?(2)甲班第一次,第二次分别购买苹果多少千克?10.一家游泳馆每年6-8月出售夏季会员证,每会员证80元,只限本人使用,凭证购入场券每1元,不凭证购入场券每3元。

(1)在这个游泳馆游泳多少次时,购会员证与不购证所付的钱数一样?(2)某人今年计划要游泳60次,购会员证与不购会员证哪些合算?11.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市).若一个月通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系式(即等式).(2)一个月通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月使用话费120元,则应选择哪一种通话方式较合算?解:(1)y1=0.2x+50,y2=0.4x.(2)由y1=y2得0.2x+50=0.4x,解得x=250.即当一个月通话250分钟时,两种通话方式的费用相同.(3)由0.2x+50=120,解得x=350由0.4x+50=120,得x=300因为350>300故第一种通话方式比较合算.12.小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是,购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是,从第一本开始按标价的80%卖。

(1)小明要买20本时,到哪家商店省钱?(2)买多少本时到两个商店买都一样?(3)小明现在又31元钱,最多可以买多少本?1、15本,甲商店:10*1+5*1*70%=13.5(元);乙商店:15*1*85%=12.75(元)。

在乙商店买便宜些。

应用题9方案选择问题【范本模板】

应用题9方案选择问题【范本模板】

方案选择问题1、根据下面的两种移动电话计费方式表,考虑下列问题.一个月内在本地通话200分和350分,按方式一需交费多少元?按方式二呢?对于某个本地通话时间,会出现按两种计费方式收费一样多吗?2、一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元,讨论并回答:(1)什么情况下,购会员证与不购证付一样多的钱?(2)什么情况下,购会员证比不购划算?(3)什么情况下,不购会员证比购证划算?3、公园门票价格规定如下表:某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问:(1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?4、甲、已两个团体共120人去某风景区旅游。

风景区规定超过80人的团体可购买团体票,已知每张团体比个人票优惠20%,而甲、乙两团体人数均不足80人,两团体决定合起来买团体票,共优惠了 480元,则团体票每张多少元?5、张老师带领该校七年级“三好学生"去开展夏令营活动,甲旅行社说:“如果老师买全票一张,则学生可享受半价优惠。

”乙旅行社说:“包括老师在内按全票价的6折优惠。

”若全票价为240元,当学生从数为多少人时,两家旅行社的收费一样多?6、某厂生产一种计算器,其成本价为每只36元,现有两种销售方式:第一种是直接由厂门市部销售,每只售价为48元,但需要每月支出固定费用6480元(固定费用指门市部房租、水电费用、销售人员工资等);第二种是批发给文化用品商店销售,批发价为每只42元,又知两种销售方式均需缴纳税款为销售金额的10%。

(1)求该厂每月销售多少只计算器时两种方式所获利润相等?(2)若该厂今年6月份计划销售这种计算器1500只,问:哪种方式最合适?7、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。

七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册不等式组《方案选择》专题1、为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 和B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元。

(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担。

规定若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的改扩建资金分别为每所300万元和500万元。

请问共有哪几种改扩建方案?解:(1)设改扩建1所A 类学校需资金x 万元,改扩建1所B 类学校需资金y 万元则依题意可得⎩⎨⎧=+=+54003780032y x y x∴⎩⎨⎧==18001200y x ∴改扩建1所A 类学校需资金1200万元,改扩建1所B 类学校需资金1800万元 (2)设改扩建A 类学校m 所,则改扩建B 类学校(10-m )所依题意可得:()()()()⎩⎨⎧≥-+≤--+-400010500300118001050018003001200m m m m∴⎩⎨⎧≥-+≤-+4000500500030011800130013000900m m m m ∴⎩⎨⎧≤≥53m m∴53≤≤m ∵m 是正整数 ∴m=3或4或5 即共有3种方案方案一:改扩建A 类学校3所,B 类学校7所 方案二:改扩建A 类学校4所,B 类学校6所 方案三:改扩建A 类学校5所,B 类学校5所2、某房地产开发公司计划建A、B两种户型的住房共80套。

该公司所筹资金不少于2090万元,但不超过2096万元。

且所筹资金全部用于建房,两种户型的建房成本和售价如下表(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a 万元(a>0),且所建的两种住房可全部售出,该公司如何建房获得利润最大?解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套根据题意,得()()⎩⎨⎧≤-+≥-+20968028252090802825xxxx,解得48≤x≤50∵x取非负整数,∴x为48,49,50(2由题意知:W=5x+6(80-x)=480-x∵k=-1,W随x的增大而减小∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套当a=l时,a-1=0,三种建房方案获得利润相等当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套3、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册。

一次函数应用题(选择方案)(一)

一次函数应用题(选择方案)(一)

一次函数应用题(选择方案)(一)1类型一: 利用函数值的大小选择方案例1 紧俏商品,经过市场调查发现,如果月初出售,可获得15%的利润,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付存储费700元,请根据商场的资金情况,判断一下选择哪种销售方式获利较多,并说明商场投资25000元时,哪种销售方式获利较多。

2 类型二选择购买方案例2 甲乙两家体育器材商店出售同样地乒乓球拍和乒乓球,球拍每幅定价60元,乒乓求每盒定价10元。

今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠。

某校乒乓球队需要2副乒乓球拍,乒乓球若干盒(不少于4盒)设该校要买乒乓求x盒,所需商品在甲商店购买需用y1元,在乙商店购买需要用y2元。

(1)请分别写出y1、y2与之间的函数解析式(不注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案。

例3、商店出售茶壶和茶杯,茶壶每只定价为20元,茶杯每只定价为5元,该店制定了两种优惠办法:(1)买一只茶壶送一只茶杯;(2)按总价的92%付款。

某顾客需购茶壶4只,茶杯若干只(不少于4只),若设购买茶杯数为x(只),付款数为y(元),试分别写出两种优惠办法中y(元)与x(只)之间的函数解析式,并讨论两种办法中哪种更省钱。

3类型三选择生产方案问题例4、某工厂生产某种产品,每件产品出厂价为1万元,其原材料成本价(含其他损耗)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产出,为达到国家环保要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元。

方案二:工厂将废渣集中到废渣厂处理,每处理一吨需付0.1万元的处理费。

初一的方案选择问题应用题

初一的方案选择问题应用题

初一的方案选择问题应用题初一的方案选择问题应用题一、背景介绍初一学生在选择方案时常常面临一定的困惑。

这个问题不仅涉及到学科选择,还包括社团活动、兴趣班等方面的选择。

初一学生正处在青春期的重要阶段,他们对未来的选择产生了浓厚的兴趣和好奇心。

因此,为了帮助初一学生解决方案选择问题,我们需要制定一套科学、实用的方案。

二、方案一:学科选择1. 初一学生在学科选择上应充分发挥自己的兴趣和优势,尽量选择自己喜欢和擅长的学科。

2. 学科选择要考虑到未来的发展方向和职业规划。

可以通过职业规划测试、就业前景调研等方式了解各个学科的就业前景和发展趋势,从而做出科学的选择。

3. 学科选择还要考虑到个人的兴趣爱好和性格特点。

可以根据自己的兴趣和特长来选择相应的学科,这样可以更加激发学习的动力。

三、方案二:社团活动选择1. 初一学生可以参加学校提供的各种社团活动,如音乐社团、美术社团、科技社团等。

通过参加社团活动,学生可以培养自己的兴趣爱好,锻炼自己的团队合作能力和领导能力。

2. 在选择社团活动时,初一学生可以结合自己的兴趣和特长来选择适合自己的社团。

可以参加一两个自己感兴趣的社团,这样可以更加全面地发展自己的各个方面。

四、方案三:兴趣班选择1. 初一学生可以参加各种兴趣班,如舞蹈班、音乐班、体育班等。

通过参加兴趣班,学生可以培养自己的兴趣爱好,提高自己的技能水平。

2. 在选择兴趣班时,初一学生可以根据自己的兴趣和特长来选择适合自己的兴趣班。

可以选择一两个自己感兴趣的兴趣班,这样可以更加全面地发展自己的各个方面。

五、方案四:家长的指导和参与1. 家长在初一学生方案选择中起着重要的作用。

家长可以通过与孩子的沟通了解孩子的兴趣和特长,帮助孩子做出科学的选择。

2. 家长可以提供一些参考意见和建议,但不应当强制孩子做出选择。

应该尊重孩子的意愿和选择,给予他们充分的自主权。

六、方案五:专业辅导和咨询1. 初一学生可以通过咨询老师和专业辅导师的帮助来解决方案选择问题。

初中数学方案选择类应用题复习专题

初中数学方案选择类应用题复习专题

初中数学应用题复习专题一、方程型例1、(长沙市)“5·12”汶川大地震后.灾区急需大量帐篷.某服装厂原有4条成衣生产线和5条童装生产线.工厂决定转产.计划用3天时间赶制1000顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线.一天可以生产帐篷105顶;若启用2条成衣生产线和3条童装生产线.一天可生产帐篷178顶.(1)每条成衣生产线和童装生产线每天生产帐篷各多少顶?(2)工厂满负荷全面转产.是否可以如期完成任务?练习:中考关键分P15 第20题例2、某市剧院举办大型文艺演出.其门票价格为:一等席300元/人,二等席200元/人.三等席150元/人,某公司组织员工36人去观看,计划用5850元购买2种门票,请你帮助公司设计可能的购票方案。

练习:某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机.出厂价分别为A种每台1500元.B种每台2100元.C种每台2500元。

(1)若家电商场同时购进两种不同型号的电视机共50台.用去9万元.请你研究一下商场的进货方案。

(2)若商场销售一台A种电视机可获利150元.销售一台B种电视机可获利200元.销售一台C种电视机可获利250元.在同时购进两种不同型号的电视机方案中.为了使销售时获利最多.你选择哪种方案?二、不等式型例3、(青岛市)2008年8月.北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张.B种船票120元/张.某旅行社要为一个旅行团代购部分船票.在购票费不超过5000元的情况下.购买A、B两种船票共15张.要求A种船票的数量不少于B种船票数量的一半.若设购买A种船票x张.请你解答下列问题: (1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?练习:中考关键分P17 第10题三、一次函数型例4、(乌鲁木齐市)某公司在A、B两地分别库存挖掘机16台和12台.现在运往甲、乙两地支援建设.其中甲地需要15台.乙地需要13台.从A地运一台到甲、乙两地的费用分别是500元和400元;从B地运一台到甲、乙两地的费用分别是300元和600元.设从A地运往甲地x台挖掘机.运这批挖掘机的总费用为y元.运往甲地的费用运往乙地的费用从A地500元/台400元/台从B地300元/台600元/台(1)写出y与x之间的函数关系式;(2)公司应设计怎样的方案.能使运这批挖掘机的总费用最省?练习:(2005年宁波市蛟川杯初二数学竞赛)某租赁公司共有50台联合收割机.其中甲型20台.乙型30台.现将这50台联合收割机派往A、B两地收割小麦.其中30•台派往A地.20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:甲型收割机的租金乙型收割机的租金A地1800元/台1600元/台B地1600元/台1200元/台(1)设派往A地x台乙型联合收割机.租赁公司这50台联合收割机一天获得的租金为y(元).请用x表示y.并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元.说明有多少种分派方案.并将各种方案写出.四、二次函数型例4、(2013•咸宁)为鼓励大学毕业生自主创业.某市政府出台了相关政策:由政府协调.本市企业按成本价提供产品给大学毕业生自主销售.成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元.出厂价为每件12元.每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元.那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元).当销售单价定为多少元时.每月可获得最大利润?(3)物价部门规定.这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于300元.那么政府为他承担的总差价最少为多少元?练习:(13年山东青岛、22)某商场要经营一种新上市的文具.进价为20元.试营销阶段发现:当销售单价是25元时.每天的销售量为250件.销售单价每上涨1元.每天的销售量就减少10件(1)写出商场销售这种文具.每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时.该文具每天的销售利润最大;(3)商场的营销部结合上述情况.提出了A、B两种营销方案方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件.且每件文具的利润至少为25元请比较哪种方案的最大利润更高.并说明理由。

一次函数选择方案应用题

一次函数选择方案应用题

一次函数选择方案应用题
一次函数是数学中非常基础的一种函数形式,常被用于实际问题的建模和求解。

下面我们就来看一个应用一次函数的选择方案问题。

假设你正在考虑购买一部手机,现在市场上有两种手机可供选择。

第一款手机价格为1500元,每年需要花费200元进行维修保养;第二款手机价格为2000元,每年需要花费150元进行维修保养。

你需要计算出,如果你打算使用这部手机3年,那么应该选择哪一款手机更为合适。

我们可以用一次函数来表示这个问题,设第一款手机的总花费为
f1(x),其中x表示使用年限,f1(x) = 1500 + 200x;同理,设第二款手机的总花费为f2(x),f2(x) = 2000 + 150x。

那么我们只需要计算出f1(3)和f2(3),并比较两者大小即可。

f1(3) = 1500 + 200×3 = 2100元
f2(3) = 2000 + 150×3 = 2450元
从计算结果可以看出,如果你打算使用这部手机3年,那么应该选择第一款手机,因为它的总花费比第二款手机少350元。

这个问题展示了如何应用一次函数来进行选择方案,它的思路可以应
用于很多其他实际问题中,如购买家具、选择车型等等。

在实际生活中,我们可以通过建立适当的数学模型,利用一次函数来进行各种选择方案的分析和比较,从而做出最优的决策。

一元一次方程应用题方案选择问题训练题(含解析)

一元一次方程应用题方案选择问题训练题(含解析)

一元一次方程应用题方案选择问题(含解析)一、单选题(共5题;共10分)1.(2020·丰南模拟)下图为歌神KTV的两种计费方案说明.若晓莉和朋友们打算在此KTV的一间包厢里连续欢唱6小时,经服务生计算后,告知他们选择包厢计费方案会比人数计费方案便宜,则他们在同一间包厢里欢唱的至少()A. 6人B. 7人C. 8人D. 9人2.(2020·黑龙江)母亲节来临,小明去花店为妈妈准备节日礼物.已知康乃馨每支2元,百合每支3元.小明将30元钱全部用于购买这两种花(两种花都买),小明的购买方案共有()A. 3种B. 4种C. 5种D. 6种3.(2019七上·合肥月考)“欢乐购”元旦促销活动即将到来,小芳的妈妈计划花费1000元,全部用来购买价格分别为80元和120元的两种商品若干件,则可供小芳妈妈选择的购买方案有()A. 4种B. 5种C. 6种D. 7种4.(2019七上·崇川月考)小明和爸爸妈妈三人暑假准备参加旅游团去北京旅游,甲旅行社说:“如果父母买全票,小孩可半价优惠”:乙旅行社说:“全部按全票价的8 折优惠”,若全票价为1200元,则小明应选择哪家旅行社()A. 选择甲B. 选择乙C. 选择甲、乙都一样D. 无法确定5.(2016·赤峰)8月份是新学期开学准备季,东风和百惠两书店对学习用品和工具实施优惠销售.优惠方案分别是:在东风书店购买学习用品或工具书累计花费60元后,超出部分按50%收费;在百惠书店购买学习用品或工具书累计花费50元后,超出部分按60%收费,郝爱同学准备买价值300元的学习用品和工具书,她在哪家书店消费更优惠()A. 东风B. 百惠C. 两家一样D. 不能确定二、综合题(共16题;共173分)6.(2020七上·武威月考)某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1分钟需付话费0.4元(这里均指市内电话),若一个月内通话分钟,两种通话方式的费用分别为元和元.(1)写出,与之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?7.(2020八上·宁波月考)某体育用品商店对甲、乙两种品牌的足球开展促销活动,已知甲、乙两种品牌的足球的标价分别是160元/个,60元/个,现有如下两种优惠方案;方案一:未购买会员卡时,甲品牌足球享受八五折优惠,乙品牌足球买5个(含5个)以上时所有足球享受八五折,5个以下必须按标价购买方案二:办理一张会员卡100元,会员卡只限本人使用,全部商品享受七五折优惠(1)若购买甲品牌足球3个,乙品牌足球4个,哪一种方案更优惠?优惠了多少元?(2)如果购买甲品牌足球若干个,乙品牌足球6个,方案一与方案二所付钱数一样多,求购买甲品牌的足球的个数8.(2020七上·合肥期中)合肥庐阳区实验学校七(6)班为迎接学校秋季运动会计划购买30支签字笔,若干本笔记本(笔记本数量超过签字笔数量),用来奖励运动会中表现出色的运动员和志愿者,甲、乙两家文具店的标价都是签字笔8元/支、笔记本2元/本,甲店的优惠方式是签字笔打九折,笔记本打八折;乙店的优惠方式是每买5支签字笔送1本笔记本,签字笔不打折,购买的笔记本打七五折.(1)如果购买笔记本数量为60本,并且只在一家店购买的话,请通过计算说明,到哪家店购买更合算?(2)若都在同一家店购买签字笔和笔记本,试问购买笔记本数量是多少时,两家店的费用一样?9.(2020七上·庐阳期中)某校组织学生外出研学,旅行社报价每人收费300元,当研学人数超过50人时,旅行社给出两种优惠方案:方案一:研学团队先交1500元后,每人收费240元;方案二:5人免费,其余每人收费打九折(九折即原价的90%)(1)用代数式表示,当参加研学的总人数是x()人时,用方案一共收费________元;用方案二共收费________元;(2)当参加旅游的总人数是80人时,采用哪种方案省钱?说说你的理由10.(2020七上·沂南期中)甲、乙两家商场以同样的价格出售同样的电器,但各自推出的优惠方案不同,甲商场规定:凡超过元的电器,超出的金额按收取;乙商场规定:凡超过元的电器,超出的金额按收取,某顾客购买的电器价格是元.(1)当时,分别用代数式表示在两家商场购买电器所需付的费用(2)当时,该顾客应选择哪一家商场购买比较合算?说明理由.11.(2020七上·吉安期中)初一年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?12.(2020七上·新津期中)某市电话拨号入网有两种收费方式,用户可以任选其一:(A)计时制:3元/时;(B)包月制:60元/月(限一部个人住宅电话上网);此外,每一种上网方式都得加收通信费1.2元/时.(1)某用户某月上网的时间为x小时,请分别写出两种收费方式下该用户应该支付的费用;(2)当某用户某月上网的时间为90小时,你认为采用哪种方式较为合算?(3)根据上网时间的不同,你认为采用哪种方式较为合算?13.(2020七上·舒城月考)某学校班主任暑假带领该班三好学生去旅游,甲旅行社说:“如果教师买全票一张,其余学生享受半价优惠;”乙旅行社说:“教师在内全部按票价的6折优惠;”若全部票价是240元. (1)如果有10名学生,应参加哪个旅行社,并说出理由;(2)当学生人数是多少时,两家旅行社收费一样多?14.(2020七上·慈溪期中)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价20元,乒乓球每盒定价5元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提示:灯的费用由哪几部分组成?如何计算?
费用=灯的售价+电费
电费=0.5×灯的功率(千瓦)×照明时间(时)
拓展提高
新问题 如果灯的使用寿命是3000小时,而
计划照明3500小时,则需要购买两个灯,试
计划你认为能省钱的选灯方案.
买灯的方案有三种:
4300小
1. 一个节能灯,一个白炽灯; 时呢?
2. 两个节能灯;
(2)若商场销售一台甲种电视机可获利150元, 销售一台乙种电视机可获利200元,销售一台丙 种电视机可获利250元,在同时购进两种不同型 号的电视机的方案中,为了使销售时获利最多, 该选择哪种进货方案?
练习1:商场计划投入一笔资金采购一
批紧俏商品,经过市场调查发现:如果 月初出售可获利15%,并可用本利再投 资其他商品,到月底可获利10%;如果 月底出售,可获利30%,但要付出700元 的仓储费,请问根据商场的资金情况, 如何购销获利较多?
例1: “衣衣时装店”老板去进货,某种衣服的
批发价每件为100元,(批发件数不得小于10件), 厂家推出两种优惠批发方案.
(1) “十件按原价,其余按原价的8.5折优惠”;
(2)“全部按原价的8.9 折优惠”。
假如你是老板,你会选择哪种优惠方案?
例2:小明想在两种灯中选购一种,其中一种是10瓦
(即0.01千瓦)的节能灯,售价60元;另一种是60瓦 (即0.06千瓦)的白炽灯,售价30元。两种灯的照明 效果一样,使用寿命也相同(3000小时)。节能灯售 价高,但是较省电;白炽灯售价低,但是用电多。如 果电费是0.5元/(千瓦时),选哪种灯可以节省费用?
某牛奶加工厂现有鲜奶9吨,若在市场上直接 销售鲜奶,每吨可获利润500元;制成酸奶销售, 每吨可获利润1200元;制成奶片销售,每吨可获 利润2000元,该厂的生产能力是:如制成酸奶, 每天可加工3吨;制成奶片每天加工1吨,受人员 限制,两种加工方式不可同时进行;受气温条件 限制,这批牛奶必须在4天内全部销售或加工完毕。 为此,该厂设计了两种可行方案:
练习2:133如意手机无月租费,通话费为0.5ห้องสมุดไป่ตู้
元/min,133普通型手机的月租费为50元,通 话费为0.3元/min
(1)若一个月内通话200min,那么使用哪 一种手机话费多?
(2)不同人群应如何在这两种方式下作出 选择?
练习3:某商场出售的A型冰箱每台的售价为
2190元,每天耗电1kW,B型节能冰箱每台的售 价比A型冰箱高出10%,但每日的耗电量却为现 将A型冰箱打折出售,问:商家至少打几折, 消费者购买才合算?按使用期为10年,每年有 365天,每千瓦时的电价为0元计算
方案一:将蔬菜全部进行粗加工;
方案二:尽可能多的对蔬菜进行精加工,没有来得及进行加工 的蔬菜,在市场上直接销售;
方案三:将部分蔬菜进行精加工,其余
蔬菜进行粗加工,并恰好15天完成。
你认为选择哪种方案获利最多?为什么?
设计进货方案 例4:商场计划拨款9万元,从厂家购进50台电
视机,已知该厂家生产三种不同型号的电视机, 出厂价分别为甲种每台1500元,乙种每台2100 元,丙种每台2500元。 (1)若商场同时购进其中两种不同型号的电视 机共50台,用去9万元,请你研究一下商场的进 货方案。
3. 两个白炽灯.
选灯方案为:一个白炽灯,一个节能灯,且节能灯 先用3000小时,再用白炽灯500小时,最省钱。
例3:某地生产一种绿色蔬菜,若在市场上直接销售,每吨利
润为1000元;经粗加工后销售,每吨利润可达4500元;经精加 工后销售,每吨利润可达7500元。当地一家农商公司收购这种 蔬菜140t,该公司的生产力能力是:如果对蔬菜进行粗加工, 每天可加工16t;如果进行精加工,每天可加工6t。但两种加 工方式不能同时进行。受季节条件限制,公司必须在15天内将 这批蔬菜全部售出或加工完毕,为此公司拟定了三种可行方案:
方案一:尽可能多地制成奶片,其余直接销售 鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销 售,并恰好4天完成; 你认为选择哪种方案获利较多?为什么?
小结:
今天你学会了什么?
在实际生活中,我们要运用所 学的知识,进行计算分析,找到最 优的方案。
相关文档
最新文档