通信中的几个效应
(精选)通信中的几个效应

通信中的几个效应波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应阴影效应、拐角效应1、波导效应波导效应(即隧道效应)主要由建筑、峡谷等引起,如两旁建筑整齐的街道、隧道、较长的走廊、岩石峡谷等都会形成波导效应,信号传播如在波导内传播相似,沿波导方向损耗小,信号就强,其他方向损耗大,信号强度就弱。
波导效应容易引起越区覆盖和导频污染等,在井型街道会引起切换频繁、掉话等。
波长越短的无线电波,当遇到在物体时,在其表面发生镜面反射的可能也越大。
当信号在两侧是规则楼房的街道中传播时,便是以反射方式进行,我们称之为“波导效应”。
当手机收到强弱不同和接到达手机时间不同的信号会有什么效果,可能会掉话也有可能出现通话质量差,就像光波一样,有直射的信号也有反射和折射的信号被手机检测到。
波导效应在城市环境中存在,由于街道两旁有高大的建筑物,结果使得沿传播方向的街道上信号增强,垂直于传播方向的街道上信号减弱,两者相差达10dB以上,这种现象在离基站距离越远,减弱程度就越小,隧道覆盖会存在波导效应,微波传输也会存在波导效应,波导效应衰落的比较快。
2、乒乓效应移动通信系统中,如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的“乒乓效应”。
解决措施:1、调整两个小区的切换门限2、控制其中一个小区的覆盖(调整接入参数、调整天馈、降低功率等),保证该区域有主覆盖小区。
3、防止“乒乓切换”的办法是:迟滞在基站下载的参数文件中有两个参数需要我们注意,即“再呼叫型区间切换处理电平”(参考值:23dB)和“再呼叫型区间切换区域的选择电平”(参考值:32dB)。
这两个参数表示在通话时,当手机接收到原基站的信号强度降到23dB时,手机发起申请,要求做基站间的切换(Handover),即切换到下一个基站上通话。
但下一个基站信号必须在32 dB以上,手机才能真正切换过去,否则只能在原基站上通话。
之所以这两个参数间有9dB的差值,目的是防止“乒乓效应”。
通信中的效应问题

(3)抗多径信号处理与自适应抵消技术等。 多址干扰是由于在多用户系统中采用传统单用户接收方案而造 成的恶果。单用户接收机采用匹配滤波器作为相关判决的工具, 并不考虑多址干扰的存在,每个用户的检测都不考虑其他用户的 影响,是一种针对单用户检测的策略。一般说来,单个用户传输 时不存在多址干扰,但在多用户环境中,当干扰用户数增加或者 他们的发射功率增加时,多址干扰将不容忽视。因此多用户检测 技术应允而生,其算法有最优检测算法和次优检测算法。
3阴影效应(Shadow Effect):在无线通信系统中,移动台在运 动的情况下,由于大型建筑物和其他物体对电波的传输路径的阻 挡而在传播接收区域上形成半盲区,从而形成电磁场阴影,这种 随移动台位的不断变化而引起的接收点场强中值的起伏变化叫 做阴影效应。阴影效应是产生慢衰落的主要原因。 比较有效的方法是使用支撑杆将天线架高,或者将天线安放在建筑 物边缘 直放站,室分系统
2多普勒效应:在移动通信中,当移动台移向基站时,频率变高, 远离基站时频率变低,移动台高速移动时,会导致信号很快衰落。 所以我们在移动通信中要充分考虑多普勒效应。当然,由于日常 生活中,我们移动速度的局限,不可能会带来十分大的频率偏移, 但是这不可否认地会给移动通信带来影响,为了避免这种影响造 成我们通信中的问题,我们不得不在技术上加以各种考虑。也加 大了移动通信的复杂性。 解决措施
抗多径干扰主要解决措施: (1)提高接收机的距离测量精度,如窄相关码跟踪环、相位测距、 平滑伪距等; (2)抗多径天线; 智能天线利用多个天线阵元的组合进行信号处理,自动调整发射 和接收方向图,以针对不同的信号环境达到最优性能。智能天线是 一种空分多址(SDMA)技术,主要包括两个方面:空域滤波和波达方 向(DOA)估计。空域滤波(也称波束赋形)的主要思想是利用信号、 干扰和噪声在空间的分布,运用线性滤波技术尽可能地抑制干扰和 噪声,以获得尽可能好的信号估计。 智能天线通过自适应算法控制加权,自动调整天线的方向图使 它在干扰方向形成零陷,将干扰信号抵消,而在有用信号方向形成 主波束,达到抑制干扰的目的。加权系数的自动调整就是波束的形 成过程。智能天线波束成型大大降低了多用户干扰,同时也减少了 小区间干扰。
通信原理中的多径效应

通信原理中的多径效应
多径效应是通信原理中的一个重要概念。
它指的是信号从发射点到接收点经过多条路径传播,由于路径长度、传播媒介等因素的不同,信号到达接收点的时间、强度等特征也会产生变化。
这种变化会导致信号的失真、干扰、衰减等问题,影响通信系统的性能和可靠性。
多径效应在无线通信系统中尤为常见,因为无线信号在空气中传播时会受到多种反射、折射、散射等影响,形成多条路径。
这些路径可能经过建筑物、树木、山脉等障碍物,还可能受到天气、季节等环境因素的影响,导致信号到达接收点的时间、相位、幅度等参数发生变化。
为了克服多径效应带来的问题,通信系统中采用了多种技术手段,如频率选择性衰减、码分多址、时分多址等。
此外,还可以使用天线阵列、信号处理等方法,增强信号的鲁棒性和可靠性,提高通信质量和效率。
综上所述,多径效应是通信原理中不可忽视的因素,需要在设计和实现通信系统时加以考虑和解决。
- 1 -。
移动通信的几种效应(1)

多址技术
如下图所示的频分多址和时分多址方式: a. FDMA b. TDMA
多址技术
时分多址(TDMA)的特点
(1)TDMA系统中几个用户共享同一个载频,但每个用户使用彼 此互不重叠的时隙。
(2)TDMA系统中的数据发射是不连续的,是以突发方式发射, 耗电较少,移动台可在空闲的时隙里监听其他基站,使越区切换 大为简化。
蜂窝系统
蜂窝的分类
宏蜂窝(Macrocell):
每小区的覆盖半径大多为1~25km 用于大面积覆盖 基站天线置于相对较高的地方 基站的发射功率较强 存在热点和盲点问题
蜂窝系统的分类
微蜂窝(Microcell):
覆盖半径大约为30~300m
发射功率相对较小,一般在1~2W 基站天线置于相对低的地方 用于解决热点/盲点问题
多址技术
时分多址(TDMA)
TDMA是把时间分成周期性的帧,每一帧再分割成若干时隙,
一个时隙就是一个通信信道。
通信时,给每个用户分配一个时隙,使各移动台在每帧内只
能按指定的时隙向基站发射或接收信号。同一个频道就可供几个 用户同时进行通信。
GSM系统无线路径上采用TDMA方式,每一个载频可分成8个时 隙,一个时隙为一个信道,一个载频最多可有8个移动用户同时 进行通信。
多普勒效应
生活中有这样一个有趣的现象:当一辆救护车迎面驶来的时候,听到声音 越来越高;而车离去的时候声音越来越低。你可能没有意识到,这个现象 和医院使用的彩超同属于一个原理,那就是“多普勒效应”。 在移动通信中,当移动台移向基站时,频率变高,远离基站时频率变低, 所以在移动通信中要充分考虑多普勒效应。 产生原因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间 内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的 个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接 收到的完全波的个数决定的。当波源和观察者有相对运动时,观察者接收到的 频率会改变.在单位时间内,观察者接收到的完全波的个数增多,即接收到的 频率增大.同样的道理,当观察者远离波源,观察者在单位时间内接收到的完 全波的个数减少,即接收到的频率减小.
通信多普勒效应

通信多普勒效应
通信多普勒效应指的是,当发送器和接收器之间相对运动时,信号频率会发生变化的现象。
这种现象与多普勒效应类似,只不过在通信领域中出现。
当发送器和接收器相对静止时,信号频率不变。
但是如果它们相对运动,例如一个人在移动的汽车上使用手机进行通话,那么信号频率就会发生变化。
具体来说,当两者向着彼此移动时,接收器会收到一个高于发送器频率的信号;反之,当两者相向而行时,接收器会收到一个低于发送器频率的信号。
这是因为当两者相对靠近时,信号波长会缩短,频率就会增加;反之,当两者相对远离时,信号波长会拉长,频率就会降低。
通信多普勒效应在雷达和卫星通信中有着广泛的应用。
在雷达中,可以利用多普勒效应来确定目标物体的速度和方向;在卫星通信中,可以通过调整信号频率来克服多普勒效应的影响,使通信更加稳定可靠。
总之,通信多普勒效应是一种重要的现象,对于理解通信原理及其应用具有重要意义。
- 1 -。
多普勒效应与多径衰落对移动通信的影响

多普勒效应与多径衰落对移动通信的影响多普勒效应是移动通信中常见的现象,它主要是由于信号源和接收器之间的相对运动引起的频率偏移。
多径衰落则是移动通信中另一个重要的问题,它由于信号在传播过程中经历了多条不同路径的传播,而引起信号的干涉和衰减。
这两个问题都对移动通信的质量和性能产生了影响,下面将分别进行详细介绍。
首先,多普勒效应对移动通信的影响主要体现在频率偏移上。
频率偏移是由于信号源和接收器之间的相对运动而引起的,当信号源和接收器之间的相对速度较大时,频率偏移也相对较大。
这种频率偏移会导致移动通信中的一些问题,例如频率偏移可能会导致信号的解调错误,从而影响通信的准确性。
此外,频率偏移还会使得通信系统中的频谱资源分配产生问题,例如在频分多址(FDMA)和时分多址(TDMA)等多址技术中,频率偏移会导致不同用户的信号之间相互干扰,进而影响通信系统的容量和性能。
其次,多径衰落对移动通信的影响主要体现在信号的干扰和衰减上。
多径衰落是由于信号在传播过程中经历了多条不同路径的传播而引起的,这些不同路径的传播会导致信号在接收器处产生干涉和衰减。
干涉会使得接收器接收到多个相位和幅度不同的信号,从而造成信号的叠加和失真,进而影响信号的解调和恢复。
此外,多径衰落还会导致信号的衰减,在接收器处接收到的信号强度会随着距离的增加而逐渐减弱,从而导致通信系统的覆盖范围缩小,或者需要增加功率来提高通信质量。
为了应对多普勒效应和多径衰落对移动通信的影响,通信系统中通常采取一些技术手段来降低这些干扰和衰减。
例如,对于多普勒效应,通信系统可以采用频率补偿技术来纠正频率偏移,例如使用频率锁定环路(PLL)或数字信号处理(DSP)等方法来补偿频率偏移。
对于多径衰落,通信系统可以采用等化器和碰撞避免技术来减小干扰和衰减,例如使用最小均方误差(MMSE)等化器和反卷积等方法来减小多径衰落引起的干涉。
总的来说,多普勒效应和多径衰落是移动通信中常见的问题,它们都会对通信系统的质量和性能产生影响。
移动通信(第二章)

空间选择性衰落用相干距离描述。相干距离定义为两根天 线上的信道响应保持强相关时的最大空间距离。相干距离越短, 角度扩展越大,反之,相干距离越长,角度扩展越小。 典型的角度扩展值为:室内环境 360,城市环境为 20 ,平坦 的农村为 1。
传播损耗模型
❖ Okumura模型(奥村模型) ❖ Okumura-Hata模型 ❖ Hata模型扩展 ❖ COST-231模型 ❖ COST-231-Walfish-Ikegami模型
四种主要的效应
❖ 远近效应 由于接收用户的移动性,移动用户与基站之 间的距离也在随机变化,若各移动用户发射 信号的功率一样,那么到达基站时信号的强 弱将不同,离基站近者信号强,离基站远者 信号弱。通信系统中的非线性将进一步加重 信号强弱的不平衡性,甚至出现以强压弱的 现象,即为远近效应。
四种主要的效应
✓若频率管理或系统设计不当,就会造成同
频干扰;
✓在移动通信系统中,为了提高频率利用
✓农村:K 4 .7 8 lg f2 1 8 .3 3 lg f 4 0 .9 4
传播损耗模型
❖ Hata模型扩展(适合于个人通信系统)
适用条件: 频率:1500MHz-2000MHz 距离:1km-20km 基站天线高度:30m-200m 移动台天线高度:1m-10m
传播损耗公式 :
L 5 0 ( u r b a n ) 4 6 . 3 3 3 . 9 l g ( f c ) 1 3 . 8 2 l g ( h b ) ( h m ) ( 4 4 . 9 6 . 5 5 l g ( h b ) ) l g ( d ) C M
信号损耗
❖ 多径传播引起的损耗(快衰落): 在数十波长的范围内,接收信号场强的瞬时 值呈现快速变化的特征,这是由多径传播引 起的,称作快衰落,又称作小尺度衰落。其 电平分布一般服从瑞利(Rayleigh)分布或 莱斯(Rice)分布。
通信中的几大效应

孤岛效应是基站覆盖性问题,当基站覆盖在大型水面或多山地区等特殊地形时,由于水面或山峰的反射,使基站在原覆盖范围不变的基础上,在很远处出现"飞地",而与之有切换关系的相邻基站却因地形的阻挡覆盖不到,这样就造成"飞地"与相邻基站之间没有切换关系,"飞地"因此成为一个孤岛,当手机占用上"飞地"覆盖区的信号时,很容易因没有切换关系而引起掉话。
什么是孤岛效应?问:怎样发现某个掉话点是由于“孤岛效应”产生的?答:分析 1 掉话2 掉话现象:一直不切换,直至掉话。
主服小区与邻区同BCCH同BSIC也是这个现象吗?3 确定目前主服小区是多少,距离基站距离是多少?4 然后从掉话点开始查看是否存在六个邻区中没有与主服务小区建立邻区关系,5 如果有邻区关系,仍然一直不切换,直至掉话,是信号质量差。
6 如果没有邻区关系,是因为漏加了邻区关系,还是孤岛效应,怎样区分?7 如果确实是邻区,是漏加了邻区,如果不是邻区,是孤岛效应?8 怎样确定孤岛效应的区域范围?怎样消除孤岛效应?漂移小区与相邻小区同BCCH、BSIC,以至没有邻区可以切换什么是越区覆盖?它和孤岛效应有什么关系?孤岛的一个原因是越区覆盖。
孤岛效应和越区覆盖都属于基站覆盖性问题。
无遮挡传播远?天线高度高?高山站、街道的波导效应?湖泊的反射效应?“飞地效应”:当基站覆盖在大型水面或多山地区等特殊地形时,由于水面或山峰的反射,使基站在原覆盖范围不变的基础上,在很远处出现"飞地",而与之有切换关系的相邻基站却因地形的阻挡覆盖不到,这样就造成"飞地"与相邻基站之间没有切换关系,"飞地"因此成为一个孤岛,当手机占用上"飞地"覆盖区的信号时,很容易因没有切换关系而引起掉话。
楼房会有“飞地效应”吗?“伞状覆盖”效应:服务小区由于各种原因(无线传输环境太好、基站位置过高或天线的倾角较小),导致覆盖太大以至于将邻小区覆盖在内,造成在某些小区的覆盖范围出现一片孤独区域(所谓的伞状覆盖),此孤独区域在地理上没有邻区,类似于“孤岛”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信中的几个效应
(波导效应、乒乓效应、记忆效应、孤岛效应、多径效应、远近效应)
1、波导效应
波导效应(即隧道效应)主要由建筑、峡谷等引起,如两旁建筑整齐的街道、隧道、较长的走廊、岩石峡谷等都会形成波导效应,信号传播如在波导内传播相似,沿波导方向损耗小,信号就强,其他方向损耗大,信号强度就弱。
波导效应容易引起越区覆盖和导频污染等,在井型街道会引起切换频繁、掉话等。
波长越短的无线电波,当遇到在物体时,在其表面发生镜面反射的可能也越大。
当信号在两侧是规则楼房的街道中传播时,便是以反射方式进行,我们称之为“波导效应”。
当手机收到强弱不同和接到达手机时间不同的信号会有什么效果,可能会掉话也有可能出现通话质量差,就像光波一样,有直射的信号也有反射和折射的信号被手机检测到。
波导效应在城市环境中存在,由于街道两旁有高大的建筑物,结果使得沿传播方向的街道上信号增强,垂直于传播方向的街道上信号减弱,两者相差达10dB以上,这种现象在离基站距离越远,减弱程度就越小,隧道覆盖会存在波导效应,微波传输也会存在波导效应,波导效应衰落的比较快。
2、乒乓效应
移动通信系统中,如果在一定区域里两基站信号强度剧烈变化,手机就会在两个基站间来回切换,产生所谓的“乒乓效应”。
解决措施:
1、调整两个小区的切换门限
2、控制其中一个小区的覆盖(调整接入参数、调整天馈、降低功率等),保证该区域有主覆盖小区。
3、防止“乒乓切换”的办法是:迟滞
在基站下载的参数文件中有两个参数需要我们注意,即“再呼叫型区间切换处理电平”(参考值:23dB)和“再呼叫型区间切换区域的选择电平”(参考值:32dB)。
这两个参数表示在通话时,当手机接收到原基站的信号强度降到23dB时,手机发起申请,要求做基站间的切换(Handover),即切换到下一个基站上通话。
但下一个基站信号必须在32 dB以上,手机才能真正切换过去,否则只能在原基站上通话。
之所以这两个参数间有9dB的差值,目的
是防止“乒乓效应”。
为说明这个问题,我们假设这两个电平值接近,比如都为23dB。
此时,手机虽然可以很容易地切换到下一个基站上去,但是由于移动通信的信号有不稳定的特点,很可能刚切换过来的基站的信号又变弱,手机又开始往回切换,从而造成“乒乓效应”。
这两个值相差越大,“乒乓效应”发生的可能性就越小。
但太大又可能造成手机在合适的时候无法使用下一基站通话。
一般情况下,我们都采用上面给出的参考值;一些特殊环境也可考虑改变这些参数。
上面我们讨论的是由手机发起切换申请的情形,另外还有由基站发起申请的情形,即当基站接收手机的信号弱到一定程度(6dB),由基站通知手机做切换,如果此时手机能找到一个信号强的基站(32dB以上),则切换到该基站上通话。
造成“乒乓效应”有两种可能,一是通信信号很不稳定,二是两参数值间隔太小。
有这样一个例子,某一高层楼房,外面采用日立大功率基站定向覆盖,楼内采用20mW 京瓷基站覆盖。
在楼房内的办公室中,当客户通话过程中如果转动身体,则手机便做频繁的切换,甚至无法通话。
这是因为,开始时假如用户使用外面的基站进行通话,手机的上行信号能够经过窗口(较强)和透过墙壁(较弱)到达基站。
当转动身体时,手机通过窗口的信号减弱,造成外面基站几乎收不到手机的信号,于是基站申请要手机做切换,以使用周围的比如室内基站。
当用户再转动身体时,室内基站信号又变弱,室外基站信号变强,手机又往回切,造成“乒乓效应”。
这里的情况主要是由于外面基站采用定向天线的天线阵阵元数目太少(基站侧的另两根全向接收天线对手机的上行信号几乎不起任何作用,因为它们在该用户方向上的接收增益非常微弱),造成下行信号在室内和上行信号在基站侧的多径衰落深度加大,信号不稳定。
对于室内20mW基站,其信号强度本身就弱,并且它的天线也为简单阵元结构,本身消除多径效应的能力也很弱。
所以,用户所处环境多径衰落非常明显,信号在空间上(手机侧)和时间上(基站侧)很不稳定。
要解决这个问题,须将两个定向天线同时覆盖该楼房,并将另外两根全向接收天线也换成定向天线,以接收来自大楼方向的手机信号;还可以适当调高周围相关基站的两个切换参数间的差值。
或者将日立基站换作京瓷基站(因京瓷基站4根天线均为发射和接收天线,可以更好的减小多径衰落;但此时基站会由于采用了定向天线,其自适应功能而被浪费掉)。
在满足话务覆盖的情况下,室内的20mW基站也可以不用安装。
3、记忆效应
记忆效应多发生在基站分布较密集,移动台快速行使的情况下,如城市的高架道路、城市的轻轨以及磁悬浮列车路线等。