苏教版高中数学必修4三角函数

合集下载

2024年度高中数学必修四三角函数PPT课件

2024年度高中数学必修四三角函数PPT课件

建筑设计
在建筑设计中,利用三角函数计算建筑物的角度、高度和距离等 参数,确保设计的准确性和美观性。
机械设计
在机械设计中,三角函数用于计算齿轮、轴承等机械元件的尺寸和 角度,保证机械传动的精确性和稳定性。
航空航天工程
在航空航天工程中,利用三角函数分析飞行器的姿态、航向和速度 等参数,确保飞行安全。
21
2024/3/24
32
THANKS
感谢观看
2024/3/24
33
周期性、奇偶性、单调性等
解三角形
正弦定理、余弦定理及应用
29
常见题型解析及技巧点拨
01
三角函数求值问题:利 用同角关系式、诱导公 式等求解
2024/3/24
02
三角函数的图像与性质 应用:判断单调性、周 期性等
03
04
三角恒等变换的应用: 证明等式、化简表达式 等
30
解三角形问题:利用正 弦定理、余弦定理求解 边或角
易错知识点剖析及防范措施
混淆三角函数定义域和值域
注意定义域和值域的区别,避免混淆
忽视三角函数的周期性
在解题时要考虑周期性,避免漏解或 多解
2024/3/24
错误使用三角恒等变换公式
注意公式的适用条件和变形方式,避 免误用
忽视解三角形的限制条件
在解三角形时要注意边和角的限制条 件,避免得出不符合题意的解
第三象限
正弦、余弦均为负、正切为正 。
第四象限
正弦为负、余弦为正、正切为 负。
2024/3/24
7
02 三角函数诱导公 式与变换
2024/3/24
8
诱导公式及其应用
2024/3/24
诱导公式的基本形式

2020学年高中数学第1章三角函数章末复习课讲义苏教版必修4(2021-2022学年)

2020学年高中数学第1章三角函数章末复习课讲义苏教版必修4(2021-2022学年)

第1章三角函数任意角的三角函数概念(1)已知角α的终边过点P(-4m,3m)(m≠0),则2sinα+cosα的值是________.(2)函数y=错误!+错误!未定义书签。

的定义域是________.思路点拨:(1)根据三角函数的定义求解,注意讨论m的正负.(2)利用三角函数线求解.(1)错误!未定义书签。

或-错误!(2)错误![(1)r=|OP|=错误!未定义书签。

=5|m|。

当m>0时,sin α=错误!未定义书签。

=\f(3m,5m)=\f(3,5),cos α=错误!未定义书签。

=错误!未定义书签。

=-错误!未定义书签。

,∴2sin α+cosα=错误!.当m<0时,sin α=错误!=错误!=-错误!未定义书签。

,cos α=错误!=错误!未定义书签。

=错误!,∴2sin α+cos α=-错误!.故2sin α+cosα的值是\f(2,5)或-错误!未定义书签。

.(2)由错误!得错误!未定义书签。

如图,结合三角函数线知:错误!解得2k π≤x≤2k π+错误!未定义书签。

(k ∈Z ),∴函数的定义域为错误!未定义书签。

]三角函数的概念所涉及的内容主要有以下两方面:(1)任意角和弧度制。

理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。

(2)任意角的三角函数.掌握任意角的正弦、余弦、正切的定义及三角函数线,能够利用三角函数线判断三角函数的符号,借助三角函数线求三角函数的定义域.1.(1)已知角α的顶点在原点,始边为x 轴的非负半轴.若角α的终边经过点P (-\r(3),y ),且sin α=错误!y (y≠0),判断角α所在的象限,并求cos α和ta n α的值;(2)若角α的终边在直线y =-3x 上,求10si n α+错误!的值.[解] (1)依题意,点P 到原点O的距离为|PO |=错误!,∴sin α=错误!未定义书签。

=错误!=错误!y .∵y≠0,∴9+3y 2=16,∴y2=错误!未定义书签。

高中数学必修四 第一章三角函数 1.4.2.1 周期函数

高中数学必修四 第一章三角函数 1.4.2.1 周期函数

7 2
-4
, 即������
7 2
= ������
-
1 2
.
又当 x∈(-1,0)时,f(x)=2x+1,
∴������
7 2
= ������
-
1 2
=2×
-
1 2
+ 1 = 0.
题型一 题型二 题型三 题型四
反思1.解答此类题目的关键是利用化归的思想,借助周期函数的 定义把待求问题转化到已知区间上,代入求值即可.
π 6
+ 2π = 2(������ + π) − π6,
∴f(x+π)=sin
2(������
+
π)-
π 6
=sin
2������-
π 6
+

= sin
2������-
π 6
= ������(������).
∴T=π.
本节结束,谢谢大家!
题型一 题型二 题型三 题型四
题型二 求三角函数的周期
【例 2】 求下列函数的周期:
(1)f(x)=sin
1 4
������
+
π 3
(������∈R);
(2)y=|sin x|(x∈R).
分析:对于(1),可结合周期函数的定义求解;对于(2),可通过画函
数图象求周期.
题型一 题型二 题型三 题型四
(2)函数 y=sin
������������
+
π 4
(������
>
0)的周期是
2π 3
,
则������
=
_____.

高中数学3_2二倍角的三角函数教材梳理素材苏教版必修4

高中数学3_2二倍角的三角函数教材梳理素材苏教版必修4

高中数学 3.2 二倍角的三角函数教材梳理素材 苏教版必修4知识·巧学 1.二倍角公式在两角和三角公式中,令α=β就可以得到下面的结论: sin2α=2sinαcosα,cos2α=cos 2α-sin 2α, tan2α=αα2tan 1tan 2-,由于sin 2α+cos 2α=1,所以公式cos2α=cos 2α-sin 2α还可以变形为cos2α=2cos 2α-1,cos2α=1-2sin 2α.上面的几个等式称为倍角公式.倍角公式是和角公式的特例.记忆要诀 在两角和的正弦、余弦、正切公式和二倍角公式的推导的基础上进行记忆. 深化升华 倍角公式的推导,是化一般为特殊的化归思想的具体运用. 对于倍角公式应注意以下几点: (1)在二倍角的正、余弦公式中,角α的取值范围可以是全体实数,在二倍角的正切公式中,α≠2πk +4π,α≠kπ+2π(k ∈Z ).特别地,当α=2π+kπ(k∈Z )时,显然tanα的值不存在,但tan 2α的值是存在的,这时求tan2α的值,可用诱导公式进行,即tan2(2π+kπ)=tan(π+2kπ)=tanπ=0.公式中的角可以是具体的数,也可以是字母和代数式.(2)二倍角只是一个相对的概念,如:4α是8α的倍角,α±β是2βα±的倍角,在公式中角α可以是数、字母或代数式,是一个不可分割的整体.在运用倍角公式对半角的三角函数进行变换时,无论正用还是逆用,都可直接使用这一公式.例sin 3α=2sin 6αcos 6α,cos3α=cos26α-sin26α=2cos26α-1=1-2sin 26α;sin3α·cos3α=21(2sin3αcos3α)=21sin6α;cos 22α-sin 22α=cos4α;21sin 63αcos 63α=41sin3α;tan3x=23tan123tan22x x -;︒-︒35tan 135tan 22=tan70°等.应熟悉倍角公式的结构特点,加强训练.(3)二倍角公式的几种变形形式:(sinα±cosα)2=1±sin2α;1+cos2α=2cos 2α;1-cos2α=2sin 2α;cos 2α=22cos 1α+;sin 2α=22cos 1α-. 其中升幂换半角公式是1+cosα=2cos 22α,1-cosα=2sin 22α,利用该公式能消去常数项,便于提取公因式化简三角函数式;降幂换倍角公式是cos 2α=22cos 1α+,sin 2α=22cos 1α-,利用该公式能使之降次,便于合并同类项化简三角函数式. 深化升华 由二倍角公式及同角三角函数的基本关系式,可得sin2α=αα2tan 1tan 2+、cos2α=αα22tan 1tan 1+-,利用这两个公式我们可以用单角的正切表示二倍角的三角函数. 2.二倍角公式的应用利用倍角公式可以求值、证明三角恒等式和化简三角函数式.在运用公式时,要注意审查公式成立的条件,要做到三会:会正用;会逆用;会变形应用.公式的正用是常见的,但逆用和变形使用往往容易被忽视,而公式的逆用和变形使用更能开拓思路.只有熟悉了公式的逆用和变形应用后,才真正掌握了公式的应用.学法一得 运用二倍角公式的先决条件是认识它的本质,要善于避开表面的东西,正确捕捉公式的原形,更好地运用公式. 典题·热题知识点1 二倍角公式 例1 已知sinα=135,α∈(2π,π),求sin2α,cos2α,tan2α的值. 思路分析:本题是倍角公式、同角三角函数基本关系的应用及已知一个三角函数值求其他三角函数值的方法.思路一:可根据已知条件求出cosα,再利用倍角公式求出sin2α,cos2α,进而利用同角三角函数基本关系求出tan2α.此外,也可以求出tanα的值利用倍角公式求tan2α.思路二:也可以只求出sin2α,cos2α,tan2α中的一个,其余的利用同角三角函数基本关系求解.解:方法一∵sinα=135,α∈(2π,π), ∴cosα=-α2sin 1-=-1312.∴sin2α=2sinαcosα=-169120,cos2α=1-2sin 2α=169119,tan2α=-119120. 方法二∵sinα=135,∴cos2α=1-2sin 2α=169119.又∵α∈(2π,π),∴2α∈(π,2π).∴sin2α=-α2cos 12-=-169120,tan2α=-119120.方法归纳 在三角部分经常用到“凑公式”的方法解题,但要注意已知条件和所求式子中角之间的关系.当已知一个三角函数值而求其他的三角函数值时,一定要注意角的范围,若角的范围没给,这就需要分类讨论. 例2 求证:θθθtan 24cos 4sin 1-+=θθθ2tan 14cos 4sin 1-++.思路分析:可将等式进行等价变形,再利用倍角公式进行证明.证明:原式等价于θθθθθθ2tan 1tan 44cos 4sin 14cos 4sin 1-=++-+=tan2θ, 左边=)2cos 2(sin 2cos 2)2sin 2(cos 2sin 22cos 22cos 2sin 22sin 22cos 2sin 2)4cos 1(4sin )4cos 1(4sin 22θθθθθθθθθθθθθθθθ++=++=++-+ =tan2θ=右边.方法归纳 在三角恒等式的证明中,如果原等式不易证明时,可将等式进行适当的等价变形,转化为较易证明的等式. 例3 若23π<x <2π,化简x 2cos 21212121++. 思路分析:本题的关键是将根号下的式子化为完全平方式以便于去掉根号.根据本题的式子特点,可重复利用二倍角余弦公式的变形. 解:由于23π<x <2π,则43π<2x <π. 所以原式=2cos 2cos cos 212122cos 121212xx x x -==+=++. 方法归纳 解答这类题,在实施脱根号的过程中要注意对符号的选取.深化升华 对于三角函数式的化简,要明确化简的目标和标准.化简的最后结果,三角函数的个数应最少,次数应尽可能地低,能化为常数的一定要化为常数,能不用分式就尽可能地不用分式.例4 求sin6°cos24°sin78°cos48°的值.思路分析:将78°的正弦值化为12°的余弦值,重复利用二倍角公式化简求值. 解:由于sin78°=cos12°,所以原式=sin6°cos12°cos24°cos48°=︒︒︒︒︒︒6cos 48cos 24cos 12cos 6cos 6sin=21·︒︒︒︒︒6cos 48cos 24cos 12cos 12sin =41·︒︒︒︒6cos 48cos 24cos 24sin =161·︒︒6cos 96sin =161. 方法归纳 形如cos αcos2αcos4α…cos2n-1α(n ∈N 且n >1)或能够化为cos αcos2αcos4α…cos2n-1α(n ∈N 且n >1)的三角函数式,由于它们的角是2倍关系,可将分子、分母同乘以最小角的正弦,运用二倍角公式进行化简. 例5 求(tan10°-3)sin40°的值.思路分析:利用切割化弦,再逆用差角公式和倍角公式. 解法一:(tan10°-3)sin40°=(︒︒-︒10cos 10cos 310sin )sin40°=︒︒-=︒︒︒-=︒︒︒︒-︒︒10cos 80sin 10cos 40sin 50sin 210cos 40sin )60sin 10cos 60cos 10(sin 2=-1.解法二:(tan10°-3)sin40°=(tan10°-tan60°)sin40°=(︒︒-︒︒60cos 60sin 10cos 10sin )sin40°=︒︒︒︒-︒︒60cos 10cos 60sin 10cos 60cos 10sin ·sin40° =︒︒-=︒︒︒-10cos 80sin 10cos 2140sin 50sin =-1. 方法归纳 (1)根据本题的特点,采用切割化弦是解答本题的关键一步,它为逆用差角公式和倍角公式铺平了道路.(2)在三角函数式的化简或求值的过程中,还要注意利用和、差的三角函数公式,它可将三角函数式化为一个角的三角函数式,为化简或求值提供方便. 例6 已知tanα=71,tanβ=31,α、β均为锐角,求α+2β的值. 思路分析:根据已知条件选择正切函数,先求出α+2β的正切值,再根据题设条件求出α+2β的范围,并使正切函数在此范围内只有一个值,然后即可求α+2β的值.解:∵tanα=71,tanβ=31,α、β均为锐角, ∴0<α,β<4π.∴0<α+2β<43π.又∵tan2β=ββ2tan 1tan 2-=43,∴tan(α+2β)=βαβα2tan tan 12tan tan -+=437114371⨯-+=1.∴α+2β=4π. 方法归纳 在给值求角时,一般是选择一个适当的三角函数,根据题设确定角的范围,利用三角函数的值求出角的大小,其中确定角的范围是一个关键,一定要使角在此范围内和三角函数值是一一对应的.此外也可根据角的范围来选择三角函数的名称. 问题·探究 交流讨论探究问题 是否存在三个内角都适合方程cos2x+2sinxsin2x=2cosx 的三角形? 探究过程:师:这是一个探索性问题,解决这类题时可先假设结论存在,然后再利用所学知识进行推理,探求结论.如果能求出,则结论存在,否则不存在.对于这个问题考查的知识是什么? 学生甲:由于所给的等式中既有单角又有倍角,则用到了二倍角公式.处理这个问题可先从已知条件cos2x+2sinxsin2x=2cosx 入手,将二倍角的正弦展开建立关于x 的三角方程,再结合三角形三个内角和是π这一性质即可. 师:处理这个问题的具体操作步骤是怎样的?学生乙:我知道,显然方程可化为cos2x+4sin 2xcosx=2cosx, 即cos2x(2cosx-1)=0,解得cos2x=0或cosx=21. 但接下来怎样求x 的值我还不清楚.学生丙:可以三角形这一前提条件,在这一前提下可得x 的取值只能是4π,43π,3π.而在这些值中只有3π+3π+3π=π,所以存在三个内角都适合cos2x+2sinxsin2x=2cosx 的三角形,它是一个正三角形.探究结论:存在,它是一个正三角形. 思维陷阱探究问题 在处理问题“已知cos(x+4π)=53,2π≤x<23π,求cos(2x+4π)的值”时,一个同学给出了下面的解题过程: 因为cos(x+4π)=53,所以cos(2x+4π)=2cos 2(2x+4π)-1=2×259-1=-257.上述解法是否正确?探究过程:二倍角只是一个相对的概念,在公式中角α可以是数、字母或代数式,是一个不可分割的整体.在上面的解题过程中以为2x 是x 的二倍,则2x+4π也是x+4π的两倍了,说明片面地理解了二倍角的概念.而事实上x+4π的二倍应是2x+2π. 探究结论:上面的解法不正确,正确的解法如下: cos(2x+4π)=cos2xcos 4π-sin2xsin 4π=22(cos2x-sin2x). 因为2π≤x<2π,则43π≤x+4π<47π,又cos(x+4π)=53>0,则sin(x+4π)=-54,则cos2x=sin(2x+2π)=2sin(x+4π)cos(x+4π)=-2524, sin2x=-cos(2x+2π)=2cos 2(x+4π)-1=257,所以cos(2x+4π)=22(cos2x-sin2x)=-50231.。

高中数学苏教版必修4第1章《1.2.1 任意角的三角函数》优质课教案省级比赛获奖教案公开课教师面试试讲教案

高中数学苏教版必修4第1章《1.2.1 任意角的三角函数》优质课教案省级比赛获奖教案公开课教师面试试讲教案

高中数学苏教版必修4第1章《1.2.1 任意角的三角函数》优质课教案省级比赛获奖教案公开课教师面试试讲教案
【名师授课教案】
1教学目标
1、知识与技能:
理解并掌握任意角的三角函数(正弦、余弦、正切)的定义;根据任意角的三角函数的定义认识其定义域,能够判断三角函数值的符号.
2、过程与方法:
学生经历从锐角三角函数定义过渡到任意角三角函数定义,体验三角函数概念的形成、发展过程,领悟直角坐标系的工具功能,渗透函数思想和数形结合的思想方法.
3、情感态度价值观:
通过学生积极参与知识的“再创造”过程,从中感悟数学概念的严谨性与科学性.
2学情分析
对于学习任意角三角函数而言,学生的认知困难主要体现在用终边上点的坐标表示三角函数,把锐角三角函数线段比的感性认识上升到坐标化的理性高度,这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比较困难.
3重点难点
1、教学重点
任意角的正弦、余弦、正切函数的定义.
2、教学难点
用角终边上点的坐标定义任意角的三角函数.
4教学过程
4.1第一学时
教学活动
1【导入】一、设置情境引入新课
情景1.感受生活中周期性现象:周二的七天一循环、一岁一枯荣的小草、摩天轮等。

苏教版高中数学教材必修4第1章三角函数

苏教版高中数学教材必修4第1章三角函数
例8 求y=Asin(ωx+φ)的周期.(其中 A,ω,φ为常数,且A≠0,ω>0, x∈R)
苏教版高中数学教材必修4 三角函数·平面向量
金陵中学金凤义
金陵中学
Jin Ling High School
(五)课堂练习 求下列三角函数的周期: (1) y=sin(x+3); (2) y=cos2x; x (3) y=3sin(2+5).
a b | a || b | cos
规定:零向量与任意向量的数量积为0,即 a 0 0.
( 1)两向量的数量积是一个数量,而不是向量,符号由夹 角决定;
苏教版高中数学教材必修4 三角函数·平面向量 金陵中学金凤义
金陵中学
Jin Ling High School
2.4向量的数量积
苏教版高中数学教材必修4 三角函数·平面向量
金陵中学金凤义
金陵中学
Jin Ling High School
一、问题情景
一个物体在力F 的作用下产生的位移 s,且F与s的夹角为θ ,那么力F 所做的功应 当怎样计算? F θ s
θ为钝角时, | b | cosθ<0
θ为直角时, | b | cosθ=0
金陵中学金凤义
苏教版高中数学教材必修4 三角函数·平面向量
金陵中学
Jin Ling High School
数学理论
平面向量的数量积的定义 已知两个非零向量a 和b ,它们的夹角为 ,我们把数量 | a || b | cos 叫做a 与b 的数量积(或内积),记作a ·b ,即
苏教版高中数学教材必修4 三角函数·平面向量 金陵中学金凤义
金陵中学
Jin Ling High School
(四)数学应用 例1 课本P26

数学必修4——三角函数的图像与性质

数学必修4——三角函数的图像与性质

数学必修4——三⾓函数的图像与性质数学必修4——三⾓函数的图像与性质⼀. 教学内容:三⾓函数的图像与性质⼆. 教学⽬标:了解正弦函数、余弦函数、正切函数的图像和性质,会⽤“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。

三. 知识要点:1. 正弦函数、余弦函数、正切函数的图像2. 三⾓函数的单调区间:的递增区间是,递减区间是;的递增区间是,递减区间是的递增区间是,3. 函数最⼤值是,最⼩值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中⼼。

4. 由y=sinx的图象变换出y=sin(ωx+)的图象⼀般有两个途径,只有区别开这两个途径,才能灵活地进⾏图象变换。

利⽤图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.⽆论哪种变形,请切记每⼀个变换总是对字母x⽽⾔,即图象变换要看“变量”起多⼤变化,⽽不是“⾓变化”多少。

途径⼀:先平移变换再周期变换(伸缩变换)先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得到y=sin(ωx+)的图象。

途径⼆:先周期变换(伸缩变换)再平移变换。

先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0,平移个单位,便得到y=sin(ωx+)的图象。

5. 对称轴与对称中⼼:的对称轴为,对称中⼼为;的对称轴为,对称中⼼为;对于和来说,对称中⼼与零点相联系,对称轴与最值点相联系。

6. 五点法作y=Asin(ωx+)的简图:五点法是设X=ωx+,由X取0、、π、、2π来求相应的x值及对应的y值,再描点作图。

【典型例题】例1. 把函数y=cos(x+)的图象向左平移个单位,所得的函数为偶函数,则的最⼩值是()A. B. C. D.解:先写出向左平移4个单位后的解析式,再利⽤偶函数的性质求解。

高中数学 第1章 三角函数 1.2.2 同角三角函数关系教学设计 苏教版必修4(2021年整理)

高中数学 第1章 三角函数 1.2.2 同角三角函数关系教学设计 苏教版必修4(2021年整理)

高中数学第1章三角函数1.2.2 同角三角函数关系教学设计苏教版必修4 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第1章三角函数1.2.2 同角三角函数关系教学设计苏教版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第1章三角函数1.2.2 同角三角函数关系教学设计苏教版必修4的全部内容。

1。

2.2 同角三角函数关系错误!教学分析与三角函数的定义域、符号的确定一样,同角三角函数的基本关系式的推导,紧扣了定义,按照一切从定义出发的原则进行,通过对基本关系的推导,培养学生重视对基本概念学习的良好习惯,并通过对基本概念的学习,善于钻研,从中不断发掘更深层次的内涵.同角三角函数的基本关系式将“同角”的三种不同的三角函数直接或间接地联系起来,在使用时一要注意“同角”,如sin24π+cos24π=1等,二要注意这些关系式都是对于使它们有意义的那些角而言的,如tanα中的α是使得tanα有意义的值,即α≠kπ+错误!,k∈Z。

通过联系,让学生了解到基本关系式具有等式的一切性质(正用、逆用、变形用),对公式不仅能牢固掌握,还能灵活运用,不仅掌握公式的标准形式,而且还应掌握它们的等价形式:sin2α=1-cos2α,1=sin2α+cos2α,cosα=±错误!,sinα=tanαcosα,cosα=错误!.熟练掌握这些等价形式,在应用上可更为方便,但在变形中要注意定义域从左到右的变化,如sinα=tanαcosα,这时定义域由α∈R变为α≠kπ+错误!,k∈Z,而tanαcosα=sinα,这时定义域由α≠kπ+错误!,k∈Z,变为α∈R.已知任意角的正弦、余弦、正切中的一个值便可以运用基本关系式求出另外的两个,这是同角三角函数关系式的一个最基本功能,在求值时,根据已知的三角函数值,确定角的终边的位置是关键和必要的,有时由于角的终边的位置不确定,因此解的情况不止一种,解题时产生遗漏的主要原因:一是没有确定好或不去确定终边的位置;二是利用平方关系开方时,漏掉了负的平方根.三维目标1.通过三角函数的定义导出同角三角函数基本关系式,并能运用同角三角函数的基本关系式进行三角函数的化简与证明.2.掌握如何进行三角函数式的化简与三角恒等式的证明.3.通过同角三角函数关系的应用使学生养成探究、分析的习惯,提高三角恒等变形的能力,树立转化与化归的思想方法.重点难点教学重点:课本的两个公式的推导及应用.教学难点:课本的两个公式的推导及应用.课时安排1课时错误!导入新课思路1.先请学生回忆任意角的三角函数定义,然后引导学生先计算后观察以下各题的结果,并鼓励学生大胆进行猜想,教师点拨学生能否用定义给予证明,由此展开新课.计算下列各式的值:(1)sin290°+cos290°;(2)sin230°+cos230°;(3)错误!;(4)错误!.思路2.既然角α的正弦、余弦、正切都是角α的函数,自然想到它们之间会有什么内在的联系呢?由此引导学生探究同角三角函数的关系式.推进新课错误!如图1,以正弦线MP、余弦线OM和半径OP三者的长构成直角三角形,而且OP=1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学习材料
金戈铁骑整理制作
三角函数
1. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,
c
.已知222
222sin 2sin sin C
b a
c A C c a b --=---.
(1)求角B 的大小;
(2)设222sin sin sin T A B C =++,求T 的取值范围.
2. 已知△ABC 的内角A 的大小为120°,面积为3.
(1)若AB 22=,求△ABC 的另外两条边长;
(2)设O 为△ABC 的外心,当21BC =时,求AO BC ⋅uuu r uu u r 的值.
4. 在ABC ∆中,角A B C 、、所对的边分别为a b c 、、,已知a b 3=.
(1)当6C π
=,且ABC ∆的面积为43
时,求a 的值;
(2)当3
3cos =C 时,求)cos(A B -的值.
5. △ABC 中,角,,A B C 所对的边分别为,,a b c .
(1)若π1sin(),63A += 求πsin(2)6
A -的值;
(2)若△ABC 的外接圆半径为1,4cos cos a B A b =. ① 求C 的值; ② 求
22
ab a b -+-的取值范围.
5. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且
2b - 3c 3a =cos C cos A . (1)求角A 的值;
(2)若角6B π=
,BC 边上的中线AM =7,求ABC ∆的面积.
1. 在△ABC 中,已知916AB AC AB BC ⋅=⋅=-,.求:
(1)AB 的值;(2)
sin()sin A B C
-的值.
4. 在平面直角坐标系xOy 中,已知点A (2,0),P (cos α,sin α),其中0 <α< π.
(1)若cos α=12,求AP OP ⋅的值; (2)若||655||AP OP =,求()
πcos 24α-的值.
1. 已知,(0,)2αβπ∈,且7sin(2)sin 5
αβα+=. (1)求证:tan()6tan αββ+=;(2)若tan 3tan αβ=,求α的值.
2. 设函数()sin()(0,0)f x x ωϕωϕπ=+><<的图象相邻两条对称轴之间的距离为2π,函数()2
y f x π=+为偶函数. (1)求()f x 的解析式;
(2)若α为锐角,3()2125f απ
+=,求sin 2α的值.
2.如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1
BB 的中点,(1)证明:11
//BC ACD ; (2)设12,22AA AC CB AB ====,求三棱锥1D A CE -的体积
1.如图,四棱锥P ABCD -中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π
=∠=,M 为BC 上一点,且12
BM =. (1)证明:BC ⊥平面POM ;
(2)若MP AP ⊥,求四棱锥P ABMO -的体积.
2.在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,且8=++c b a
(1)若2
5,2=
=b a ,求C cos 的值; (2)若C A B B A s i n 22
c o s s i n 2c o s s i n 22=+,且ABC ∆的面积C S sin 29=,求a 和b 的值.
1.已知a 、b 、c 为正实数,()0,θπ∈.
(1)当a 、b 、c 为ABC ∆的三边长,且a 、b 、c 所对的角分别为A 、B 、C .若3,1a c ==,且060A ∠=.求b 的长;
(2)若2222
c o s a b c b c θ=+-.试证明长为a 、b 、c 的线段能构成三角形,而且边a 的对角为θ.
2.如图,△ABC 内接于圆O,AB 是圆O 的直径,四边形DCBE 为平行四边形,DC ⊥平面ABC,2AB =,3=EB
(1)证明:平面ACD ⊥平面ADE ;
(2)记AC x =,()V x 表示三棱锥A -CBE 的体积,求函数()V x 的解析式及最大值.
1.在如图所示的多面体中,已知正三棱柱ABCA 1B 1C 1的所有棱长均为2,四边形ABDC 是菱形.
(1)求证:平面ADC 1⊥平面BCC 1B 1;
(2)求该多面体的体积.
2.已知m=(2cos 23sin ,1)x x +,n=(cos ,)x y -,满足0⋅=m n .
(1)将y 表示为x 的函数()f x ,并求()f x 的最小正周期;
(2)已知a ,b ,c 分别为∆ABC 的三个内角A ,B ,C
对应的边长,()(R)f x x ∈的最大值是()2
A f ,且a=2,求b+c 的取值范围.
1.已知多面体ABCDFE 中, 四边形ABCD 为矩形,//AB EF ,AF BF ⊥,平面ABEF ⊥平面ABC D , O 、M 分别为AB 、FC 的中点,且2AB =,1AD EF ==.
(1)求证:AF ⊥平面FBC ;
(2)求证://OM 平面DAF ;
(3)设平面CBF 将几何体EFABCD 分成的两个锥体的体积分别为F ABCD V -,F CBE V -,求:F ABCD F CBE V V -- 的值.。

相关文档
最新文档