初升高数学暑期衔接资料(教师版)
初升高数学暑假衔接(人教版)第01讲 集合的概念(教师版)

第01讲集合的概念1.通过实例了解集合的定义,体会元素与集合间的属于关系;2.能通过自然语言、图形语言、集合语言描述不同的具体问题,感受集合的意义和作用;一、集合的含义与表示1、元素:一般地,把研究对象统称为元素,元素常用小写的拉丁字母a ,b ,c ,…表示.2、集合:把一些元素组成的总体叫做集合(简称为集),集合通常用大写的拉丁字母A ,B ,C ,…表示.二、元素的三个特性1、确定性:给定的集合,它的元素必须是确定的.也就是说,给定一个集合,那么任何一个元素在不在这个集合中就确定了.简记为“确定性”.【注意】如果元素的界限不明确,即不能构成集合。
例如:著名的科学家、比较高的人、好人、很难的题目等2、互异性:一个给定集合中的元素是互不相同的.也就是说,集合中的元素是不重复出现的.简记为“互异性”.3、无序性:给定集合中的元素是不分先后,没有顺序的.简记为“无序性”.三、元素与集合关系的判断及应用1、属于与不属于概念:(1)属于:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A .(2)不属于:如果a 不是集合A 的元素,就说a 不属于集合A ,记作a ∉A .2、常用数集及表示符号名称自然数集正整数集整数集有理数集实数集记法N*N 或+N ZQ R四、集合的两种表示方法1、列举法:把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.【注意】(1)元素与元素之间必须用“,”隔开;(2)集合中的元素必须是明确的.(3)集合中的元素不能重复;(4)集合中的元素可以是任何事物.2、描述法:一般地,设A 表示一个集合,把集合A 中所有具有共同特征P (x )的元素x 所组成的集合表示为{x ∈A |P (x )},这种表示集合的方法称为描述法.有时也用冒号或分号代替竖线.考点一:判断元素是否构成集合例1.下列各组对象不能构成集合的是()A .上课迟到的学生B .2022年高考数学难题C .所有有理数D .小于x 的正整数【答案】B【解析】对于B 中难题没有一个确定的标准,对同一题有人觉得难,但有人觉得不难,故2022年高考数学难题不能构成集合,组成它的元素是不确定的.其它选项的对象都可以构成集合.故选:B【变式训练】下列各选项中能构成集合的是()A .学生中的跑步能手B .中国科技创新人才C .地球周围的行星D .唐宋散文八大家【答案】D【解析】对于A ,学生中的跑步能手不具有确定性,所以不能构成集合,所以A 错误,对于B ,中国科技创新人才不具有确定性,所以不能构成集合,所以B 错误,对于C ,地球周围的行星不具有确定性,所以不能构成集合,所以C 错误,对于D ,唐宋散文八大家分别为唐代柳宗元、韩愈和宋代欧阳修、苏洵、苏轼、苏辙、王安石、曾巩八位,研究的对象是确定的,可能构成集合,所以D 正确,故选:D考点二:判断元素与集合的关系例2.给出下列关系:①12ÎR ÏR ;③3-∈N ;④3Q -∈.其中正确的个数为()A .1B .2C .3D .4【答案】C【解析】12是无理数,均为实数,①正确,②错误;33-=,为自然数及有理数,③④正确.故选:C.【变式训练】(多选)给出下列关系中正确的有()A .1R3∈B Q C .3Z-∉D .N【答案】AD【解析】因为1R3∈Q ,3Z -∈,N ,所以AD 正确.故选:AD.考点三:集合中元素互异性的应用例3.设集合{}21,3M m m =--,若3M -∈,则实数m=()A .0B .1-C .0或1-D .0或1【答案】C【解析】设集合{}21,3M m m =--,若3M -∈,3M -∈ ,213m ∴-=-或33m -=-,当213-=-m 时,1m =-,此时{}3,4M =--;当33m -=-时,0m =,此时{}3,1M =--;所以1m =-或0.故选:C【变式训练】若{}31,3,a a ∈-,则实数a 的取值集合为______.【答案】{}0,1,3【解析】因为{}31,3,a a∈-,故1a =-或3a =或3a a=,当1a =-时,31a =-,与元素的互异性矛盾,舍;当3a =时,327a =,符合;当3a a =时,0a =或1a =±,根据元素的互异性,0,1a =符合,故a 的取值集合为{}0,1,3.故答案为:{}0,1,3考点四:用列举法表示集合例4.方程组13x y x y +=⎧⎨-=⎩的解集是()A .{}2,1-B .{}2,1x y ==-C .(){},2,1x y -D .(){}2,1-【答案】D【解析】由方程组13x y x y +=⎧⎨-=⎩,解得:21x y =⎧⎨=-⎩,集合应是点集,正确的形式是(){}21-,.故选:D【变式训练】集合+6=Z,N C x x x ∈∈⎧⎫⎨⎬⎩⎭用列举法表示为________.【答案】{}1,2,3,6【解析】因为x +∈N ,6Z x∈,所以x 的取值可能为1,2,3,6,所以{}1,2,3,6C =,故答案为:{}1,2,3,6.考点五:用描述法表示集合例5.(多选)集合{1,2}用描述法可以表示为()A .{Q 03}x x ∈<<∣B .{}*13x x ∈-<<N ∣C .{N12}x x ∈≤≤∣D .{}2320xx x -+=∣【答案】BCD【解析】{}Q |03x x ∈<<是无限集,A 错误;{}{}*N |131,2x x ∈-<<=,B 正确;{}{}N |121,2x x ∈≤≤=,C 正确;{}{}2|32(1)(2)01,2-+=--==x xx x x ,D 正确.故选:BCD.【变式训练】所有正奇数组成的集合用描述当表示为_________.【答案】{}21,N x x k k =+∈【解析】因为正奇数除以2,余数为1,所以所有正奇数组成的集合用描述当表示为{}21,N x x k k =+∈,故答案为:{}21,N x x k k =+∈1.下列四组对象能构成集合的是()A .高一年级跑步很快的同学B .晓天中学足球队的同学C .晓天镇的大河D .著名的数学家【答案】B【解析】集合元素具有确定性,高一年级跑步很快的同学、晓天镇的大河、著名的数学家,这三组对象不确定,不能构成集合.“晓天中学足球队的同学”满足集合元素的:确定性、互异性、无序性,所以“晓天中学足球队的同学”能够构成集合.故选:B2.已知集合(){}|10M x x x =-=,那么()A .0M ∈B .1M∉C .1M-∈D .0M∉【答案】A【解析】由题意知集合(){}|10{0,1}M x x x =-==,故0M ∈,故A 正确,D 错误,1M ∈,故B 错误,1M -∉,故C 错误,故选:A3.(多选)已知集合12=N,Z 8A x x x ⎧⎫∈∈⎨⎬-⎩⎭,则下列属于集合A 的元素有()A .4-B .3C .4D .6【答案】CD【解析】依题意,8x -是12的约数,而12的约数有1,2,3,4,6,12±±±±±±,即8{12,6,4,3,2,1,1,2,3,4,6,12}x -∈------,则{20,14,12,11,10,9,7,6,5,4,2,4}x ∈-,因为N x ∈,因此{20,14,12,11,10,9,7,6,5,4,2}x ∈所以CD 正确,AB 错误.故选:CD4.(多选)下列说法中,正确的是()A 2B .自然数集N 中最小的元素是0C .在数集Z 中,若a ∈Z ,则a -∈ZD .一个集合中可以有两个相同的元素【答案】BC【解析】对于A ,2元素不具有确定性,不能构成一个集合,故A 错误;对于B ,由自然数的定义可得B 正确;对于C ,若a ∈Z ,则a -∈Z ,故C 正确;对于D ,由集合的互异性可知,一个集合中不可以有两个相同的元素,故D 错误.故选:BC5.(多选)以下命题中正确的是()A .所有正数组成的集合可表示为{}0x x >B .大于2020小于2023的整数组成的集合为{}20202023x x <<C .全部三角形组成的集合可以写成{全部三角形}D .N 中的元素比N +中的元素只多一个元素0,它们都是无限集【答案】AD【解析】正数均大于0,故所有正数的集合应表示为{|0}x x >,故A 正确;大于2020小于2023的整数组成的集合应表示为{Z |20202023}x x ∈<<或{2021,2022},故B 不正确;全部三角形组成的集合应表示为{三角形}或{|x x 是三角形},故C 不正确;N 为自然数集,N +为正整数集,故N 中的元素比N +中的元素只多一个元素0,它们都是无限集,故D 正确.故选:AD.6.下列各种对象的全体可以构成集合的是______.(填写序号)①高一(1)班优秀的学生;②高一年级身高超过1.60m 的男生;③高一(2)班个子较高的女生;④数学课本中的难题.【答案】②【解析】①中“优秀”,③中“个子较高”,④中“难题”不满足构成集合元素的确定性,而②满足集合元素的性质,故②正确,故答案为:②.7.已知集合{}1,2,3,4,5,6A =,(){},,,B x y x A y A xy A =∈∈∈,则集合B 中的元素个数为________.【答案】14【解析】由题意得:()()()()()()()()()(){()1,1,1,2,1,3,1,4,1,5,1,6,2,1,2,2,2,3,3,1,3,2,B =()()()}4,1,5,1,6,1,B ∴中元素个数为14.故答案为:14.8.已知{}2312,4,a a a -∈+,则实数=a _______.【答案】1-【解析】若3a =-,则249123a a +=-=-,不符合集合元素的互异性,排除;若243a a +=-,则2430a a ++=,可得1a =-或3a =-(舍),所以1a =-,此时{}12,3,1--.故答案为:1-9.表示下列集合:(1210y ++=的解集;(2)请用描述法表示平面直角坐标系内所有第一、三象限内的点组成的集合;(3)请用描述法表示被5除余3的正整数组成的集合;(4)请用描述法表示二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.【答案】(1)11(,22⎧⎫-⎨⎬⎩⎭;(2){}(,)0x y xy ;(3){|53x x n +∈=+N ,}n ∈N ;(4)2{|210}y y x x =+-【解析】(1210y +=的解集为11,22⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭.(2)用描述法表示平面直角坐标系内所有第一、三象限内的点组成的集合为(){},0x y xy .(3)用描述法表示被5除余3的正整数组成的集合为{|53x x n +∈=+N ,}n ∈N (4)用描述法表示二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合为2{|210}y y x x =+-.10.已知集合{}2210,R A xax x a =++=∈∣.(1)若A 中只有一个元素,求a 的值;(2)若A 中至少有一个元素,求a 的取值范围.【答案】(1)0a =或1a =;(2){}|1a a ≤【解析】(1)由题意,当0a =时,210x +=,得12x =-,集合A 只有一个元素,满足条件;当0a ≠时,2210ax x ++=为一元二次方程,440a ∆=-=,得1a =,集合A 只有一个元素=1x -∴A 中只有一个元素时0a =或1a =.(2)由A 中至少有一个元素包含两种情况,一个元素和两个元素,A 中有两个元素时,0a ≠并且440a ∆=->,得1a <且0a ≠,再结合A 中一个元素的情况,∴a 的取值范围为{}|1a a ≤.12220x x ++=的实数解;④中国著名的高等院校.以上对象能构成集合的是()A .①②B .①③C .②③D .①②③④【答案】B【解析】对①,联合国安全理事会常任理事国包括中国、法国、美国、俄罗斯、英国,能构成集合.对③,方程2220x x ++=,4420∆=-⨯<,方程无实根,集合为空集,对④,中国著名的高等院校,不满足集合的确定性,不能构成集合,故选:B2.下列元素与集合的关系中,正确的是()A .1-∈NB .*0N ∉C QD .2R5∉【答案】B【解析】N 表示自然数集,-1不是自然数,故A 错;*N 表示正整数集,0不是正整数,故B 正确;QC 错;R 表示实数集,25是实数,故D 错.故选:B.3.已知集合{}212,4,2A a a a =+-,3A -∈,则=a ()A .-1B .-3或-1C .3D .-3【答案】D【解析】由题意,243a a +=- ①或23a -=- ②,由①得,1a =-,或3a =-,由②1a =-;当1a =-时,243,23a a a +=--=-,不符合集合描述规则,舍去,3a =-;故选:D.4.下列说法:①集合{}3N |x x x ∈=用列举法可表示为{-1,0,1};②实数集可以表示为{x |x为所有实数}或{}R ;③一次函数y =x +2和y =-2x +8的图像象交点组的集合为{x =2,y =4},正确的个数为()A .3B .2C .1D .0【答案】D【解析】由3x x =,得(1)(1)0x x x -+=,解得x =0或x =1或x =-1,又因为1N -Ï,故集合{x ∈N |x 3=x }用列举法可表示为{0,1},故①不正确.集合表示中的“{}”已包含“所有”“全体”等含义,而“R ”表示所有的实数组成的集合,故实数集正确表示应为{x |x 为实数}或R ,故②不正确.联立228y x y x =+⎧⎨=-+⎩,解得24x y =⎧⎨=⎩,∴一次函数与y =-2x +8的图像交点为(2,4),∴所求集合为{(,)|2x y x =且}4y =,故③不正确.故选:D.5.(多选)下列说法中,正确的是()A .若a ∈Z ,则a -∈ZB .R 中最小的元素是0CD .一个集合中不可以有两个相同的元素【答案】AD【解析】若a ∈Z ,则-a 也是整数,即a -∈Z ,故A 正确;因为实数集中没有最小的元素,所以B 错误;因为”不具有确定性,所以不能构成集合,故C 错误;同一集合中的元素是互不相同的,故D 正确.故选:AD.6.由下列对象组成的集体属于集合的是_____(填序号).①不超过10的所有正整数;②高一(6)班中成绩优秀的同学;③中央一套播出的好看的电视剧;④平方后不等于自身的数.【答案】①④【解析】①④中的对象是确定的,可以组成集合,②③中的对象是不确定的,不能组成集合.故答案为:①④7.已知集合A 中含有两个元素3a -和21a -.(1)若2-是集合A 中的元素,试求实数a 的值;(2)5-能否为集合A 中的元素?若能,试求出该集合中的所有元素;若不能,请说明理由.【答案】(1)1或12-;(2)不能,理由见解析【解析】(1)因为2-是集合A 中的元素,所以23a -=-或221a -=-.若23a -=-,则1a =,此时集合A 含有两个元素2-,1,符合要求;若221a -=-,则12a =-,此时集合A 中含有两个元素72-,2-,符合要求.综上所述,满足题意的实数a 的值为1或12-.(2)不能.理由如下:若5-为集合A 中的元素,则35a -=-或215a -=-.当35a -=-时,解得2a =-,此时212215()a ---=⨯=-,显然不满足集合中元素的互异性;当215a -=-时,解得2a =-,此时35a -=-显然不满足集合中元素的互异性.综上,5-不能为集合A 中的元素.8.用另一种方法表示下列集合:(1){}31135--,,,,;(2){}2221234 ,,,;(3)已知{}23M =,,(){}|P x y x M y M =∈∈,,,写出集合P ;(4)集合{}Z 22|A x x =∈-≤≤,{}21|B x x A =-∈,写出集合B .【答案】(1){|21Z x x k k =-∈,,且}13k -≤≤;(2){}2|Nx x n n *=∈,(3)()()()(){}22332332P =,,,,,,,;(4){}301B =-,,【解析】(1)因为31135--,,,,均为奇数,所以利用描述法表示为{|21Z x x k k =-∈,,且}13k -≤≤.(2)因为31135--,,,,均平方形式,所以利用描述法表示为{}2|N x x n n *=∈,.(3)因为{}23M =,,(){}|P x y x M y M =∈∈,,,所以利用列举法表示出()()()(){}22332332P =,,,,,,,.(4)因为集合{}Z 22|A x x =∈-≤≤,{}21|B x x A =-∈,所以{}301B =-,,.。
初升高数学暑假衔接(人教版)第04讲 充分条件与必要条件(教师版)

第04讲充分条件与必要条件1.理解充分条件、必要条件的概念,理解充要条件的意义;2.了解充分条件与判定定理、必要条件与性质定理的关系;3.能通过充分性、必要性解决简单的问题;4.能对充分条件进行证明。
一、命题的定义与表示1、命题的定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫命题.判断为真的语句是真命题,判断为假的语句是假命题.2、命题的表示:命题表示为“若p ,则q ”时,p 是命题的条件,q 是命题的结论.二、充分条件条件与必要条件1、充分条件与必要条件定义(1)一般地,“若p ,则q ”为真命题,是指由条件p 通过推理可以得出结论q .这时,我们就说,由p 可推出q ,记作p q ⇒,并且说,p 是q 的充分条件,q 是p 的必要条件。
(2)如果“若p ,则q ”为假命题,那么由条件p 不能推出结论q ,记作p q ¿.这时,我们就说,p 不是q 的充分条件,q 不是p 的必要条件。
2、充分条件与必要条件的关系p 是q 的充分条件反映了p q ⇒,而q 是p 的必要条件也反映了p q ⇒,所以p 是q 的充分条件与q 是p 的必要条件表述的是同一个逻辑关系,只是说法不同。
而p 是q 的充分条件只反映了p q ⇒,与q 能否推出p 没有任何关系。
三、充要条件1、充要条件的定义如果“若p ,则q ”和它的逆命题“若q ,则p ”均为真命题,即既有p q ⇒,又有q p ⇒,就记作p q ⇔。
此时,p 既是q 的充分条件,也是q 的必要条件,我们说p 是q 的充分必要条件,简称充要条件。
2、充要条件的含义若p 是q 的充要条件,则q 也是p 的充要条件,虽然本质上是一样的,但在说法上还是不同的,因为这两个命题的条件与结论不同。
3、充要条件的等价说法:p 是q 的充要条件又常说成是q 成立当且仅当p 成立,或p 与q等价。
四、充分、必要、充要条件的证明1、证明“充分不必要条件”“必要不充分条件”,一般先证明一个方面,然后验证另一个方面不成立。
初升高数学暑假衔接(人教版)初高衔接第04讲:二次函数与不等式(教师版)

第04讲:二次函数与不等式【考点梳理】考点一、一元二次不等式及其解法1.形如20(0) (0)ax bx c a ++><≠或其中的不等式称为关于x 的一元二次不等式.2.一元二次不等式20(0)或ax bx c ++><与二次函数2(0)y ax bx c a =++≠及一元二次方程20ax bx c ++=的关系(简称:三个二次).以二次函数26y x x =+-为例:(1)作出图象.(2)图象与x 轴的交点是(3,0),(2,0)-,即当32x =-或时,0y =.就是说对应的一元二次方程260x x +-=的两实根是32x =-或.(3)当32x x <->或时,0y >,对应图像位于x 轴的上方.(4)就是说260x x +->的解是32x x <->或.当32x -<<时,0y <,对应图像位于x 轴的下方.就是说260x x +-<的解是32x -<<.一般地,一元二次不等式可以结合相应的二次函数、一元二次方程求解,步骤如下:(1)将二次项系数先化为正数.(2)观察相应的二次函数的图象.①如果图象与x 轴有两个交点12(,0),(,0)x x ,此时对应的一元二次方程有两个不相等的实数根12,x x (也可由根的判别式0∆>来判断).那么(图1):2120 (0) ax bx c a x x x x ++>>⇔<>或2120 (0) ax bx c a x x x ++<>⇔<<②如果图象与x 轴只有一个交点(,0)2b a-,此时对应的一元二次方程有两个相等的实数根22x bx x a ==-(也可由根的判别式0∆=来判断).那么(图2):20 (0) 2bax bx c a x a++>>⇔≠-20 (0) ax bx c a ++<>⇔无解③如果图象与x 轴没有交点,此时对应的一元二次方程没有实数根(也可由根的判别式0∆<来判断).那么(图3):20 (0) ax bx c a x ++>>⇔取一切实数20 (0) ax bx c a ++<>⇔无解解一个一元二次不等式的话,也可以按以下步骤处理:(1)化二次项系数为正;(2)若二次三项式能分解成两个一次因式的积,则求出两根12,x x .那么“0>”型的解为12x x x x <>或(俗称两根之外);“0<”型的解为12x x x <<(俗称两根之间);(3)否则,对二次三项式进行配方,变成2224()24b ac b ax bx c a x a a -++=++,结合完全平方式为非负数的性质求解.考点二、简单分式不等式的解法说明:(1)转化为整式不等式时,一定要先将右端变为0.(2)也可以直接去分母,但应注意讨论分母的符号(比如例(2)):2220201532553(2)13(2)12333x x x x x x x x x x x >-<-⎧⎧+>+<⎧⎧⎪⎪≤⇒⇒⇒≥-<-⎨⎨⎨⎨+≥+≤+≥-≤-⎩⎩⎪⎪⎩⎩或或或.考点三、含有字母系数的一元一次不等式一元一次不等式最终可以化为 (0)ax b a >≠的形式.(1)当0a >时,不等式的解为:b x a >;(2)当0a <时,不等式的解为:b x a<;(3)当0a =时,不等式化为:0x b ⋅>;①若0b ≥,则不等式无解;②若0b <,则不等式的解是全体实数.【题型归纳】题型一:一元二次不等式的解法1.解下列不等式:(1)22530x x +-<;(2)23620x x -+-≤;(3)24410x x ++>.【答案】(1)1|32x x ⎧⎫-<<⎨⎬⎩⎭(2)33|3x x ⎧-⎪≤⎨⎪⎩或333x ⎫+⎪≥⎬⎪⎭(3)1|,R 2x x x ⎧⎫≠-∈⎨⎬⎩⎭【分析】(1)因式分解可得结果;(2)配方法可得结果;(3)配方法可得结果.【详解】(1)由22530x x +-<,得(3)(21)0x x +-<,得132x -<<,所以不等式22530x x +-<的解集为1|32x x ⎧⎫-<<⎨⎬⎩⎭.(2)由23620x x -+-≤得23620x x -+≥,得22203x x -+≥,得()2113x -≥,得313x -≤-或313x -≥,即333x -≤或333x +≥,所以原不等式的解集为33|3x x ⎧-⎪≤⎨⎪⎩或333x ⎫+⎪≥⎬⎪⎭.(3)由24410x x ++>得()2210x +>,所以12x ≠-.所以原不等式的解集为1|,R 2x x x ⎧⎫≠-∈⎨⎬⎩⎭.2.求解下列不等式的解集:(1)2450x x -++<;(2)20252x x ≤-+;(3)4170x --≤;(4)()()()21502x x x +-<-;(5)4123x x -≥+.【答案】(1){1x x <-或}5x >(2)122x x ⎧⎫≤≤⎨⎬⎩⎭(3)322x x ⎧⎫-≤≤⎨⎬⎩⎭(4){}12x x -<<(5)3123x x ⎧⎫-<≤⎨⎬⎩⎭【分析】(1)(2)利用二次不等式的解集解原不等式即可得其解集;(3)利用绝对值不等式的解法解原不等式即可得其解集;(4)(5)利用分式不等式的解法解原不等式可得其解集.【详解】(1)解:由2450x x -++<可得2450x x -->,解得1x <-或5x >,故原不等式的解集为{1x x <-或}5x >.(2)解:由20252x x ≤-+可得()()2120x x --≤,解得122x ≤≤,故原不等式的解集为122x x ⎧⎫≤≤⎨⎬⎩⎭.(3)解:由4170x --≤可得417x -≤,即7417x -≤-≤,解得322x -≤≤,故原不等式的解集为322x x ⎧⎫-≤≤⎨⎬⎩⎭.(4)解:由()()()21502x x x +-<-可得10250x x x +⎧<⎪-⎨⎪-≠⎩,解得12x -<<,故原不等式的解集为{}12x x -<<.(5)解:由4123x x -≥+可得()23443110232323x x x x x x x +-----==≤+++,解得3123x -<≤,故原不等式的解集为3123x x ⎧⎫-<≤⎨⎬⎩⎭.3.解下列不等式:(1)22530x x +-<;(2)2362x x -+≤;(3)5132x x +≤-;(4)()()()12253x x x x --<-+【答案】(1)13,2⎛⎫- ⎪⎝⎭(2)33,11,33⎛⎤⎡⎫-∞-++∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭ (3)[)13,3-(4)()(),11,-∞+∞ 【分析】(1)先因式分解,然后直接求解即可;(2)利用求根公式即可求解不等式;(3)分类讨论,将分式不等式变为整式不等式求解;(4)先整理,然后直接求解即可.【详解】(1)22530x x +-< ,()()2130x x ∴-+<,132x ∴-<<,即不等式的解集为13,2⎛⎫- ⎪⎝⎭;(2)2362x x -+≤ ,23620x x -∴+≥,解得313x ≤-或313x ≥+;即不等式的解集为33,11,33⎛⎤⎡⎫-∞-++∞ ⎪⎥⎢ ⎪⎝⎦⎣⎭;(3)5132x x +≤- ,()153230x x x ⎧+≤-⎪∴⎨⎪->⎩或()153230x x x ⎧+≥-⎪⎨⎪-<⎩解得133x -≤<,即不等式的解集为[)13,3-;(4)()()()12253x x x x --<-+ ,整理得2210x x -+>,解得1x ≠,即不等式的解集为()(),11,-∞+∞ .题型二:一元二次不等式求参数4.已知不等式210ax bx ++>的解集为11,32⎛⎫- ⎪⎝⎭,则不等式20x bx a -+≥的解集为()A .(,3][2,)-∞-⋃-+∞B .[3,2]--C .[2,3]-D .(,2][3,)-∞-⋃+∞【答案】D 【分析】由题意知11,32-是方程210ax bx ++=的两实数根,由韦达定理可求出6,1a b =-=,代入不等式20x bx a -+≥中,解不等式即可求出答案.【详解】由不等式210ax bx ++>的解集为11,32⎛⎫- ⎪⎝⎭,知11,32-是方程210ax bx ++=的两实数根,由根与系数的关系,得113211132b a a⎧-+=-⎪⎪⎨⎪-⋅=⎪⎩,解得:6,1a b =-=,所以不等式20x bx a -+≥可化为260x x --≥,解得:3x ≥或2x ≤-,故不等式20x bx a -+≥的解集为:(,2][3,)-∞-⋃+∞.故选:D.5.已知关于x 的不等式20ax bx c ++<的解集是()(),12,-∞-+∞ ,则不等式20bx ax c +-≤的解集是()A .[]1,2-B .][(),12,-∞-⋃+∞C .[]2,1-D .][(),21,∞∞--⋃+【答案】A【分析】首先根据不等式的解集,利用韦达定理得到,,a b c 的关系,再代入求解不等式的解集.【详解】由条件可知,20ax bx c ++=的两个实数根是1-和2,且a<0,则122b a c a⎧-=-+⎪⎪⎨⎪=-⎪⎩,得=-b a ,2c a =-,所以22020bx ax c ax a a +-≤⇔-++≤,即220x x --≤,解得:12x -≤≤,所以不等式的解集为[]1,2-.故选:A6.已知关于x 的不等式()20,ax x b a b -->∈R 的解集为{2x x >或1}x <-.(1)求a ,b 的值;(2)若c ∈R ,解关于x 的不等式()()2110ax ac b x b c -+-+-<.【答案】(1)1,2a b ==(2)答案见解析【分析】(1)根据不等式的解集和方程的根的关系,列方程组求a ,b 的值;(2)代入a ,b 的值,然后分c 与1的大小关系讨论来解不等式.【详解】(1)关于x 的不等式()20,ax x b a b -->∈R 的解集为{2x x >或1}x <-即方程20ax x b --=的根为2,1-,42010a b a b --=⎧∴⎨+-=⎩,解得1,2a b ==;(2)由(1)得关于x 的不等式()210x c x c -++<,即()()10x x c --<,当1c >时,不等式的解集为()1,c ;当1c =时,不等式的解集为∅;当1c <时,不等式的解集为(),1c .题型三:含参数的一元二次不等式的解法7.已知使不等式()210x a x a +++≤成立的任意一个x ,都不满足不等式20x +≤,则实数a 的取值范围为()A .(),1-∞-B .(],1-∞-C .[)2,-+∞D .(),2-∞【答案】D 【分析】由20x +≤得2x ≤-,因为使不等式()210x a x a +++≤成立的任意一个x ,都不满足不等式20x +≤,所以不等式()210x a x a +++≤的解集是()2,-+∞的子集.讨论a 解出不等式的解集,从而利用集合的包含关系即可求解【详解】由20x +≤得2x ≤-,因为使不等式()210x a x a +++≤成立的任意一个x ,都不满足不等式20x +≤,所以不等式()210x a x a +++≤的解集是()2,-+∞的子集.由()210x a x a +++≤,得()()10x a x ++≤,当1a =,{}()12,x ∈-⊆-+∞,符合题意;当1a >,[](),12,x a ∈--⊆-+∞,则2a ->-,12a <<;当1a <,[]()1,2,x a ∈--⊆-+∞,符合题意,综上所述,实数a 的取值范围为(),2-∞.故选:D .8.已知函数2(,R)y x bx c b c =++∈,且0y ≤的解集为[]1,2-.(1)求,b c ;(2)解关于x 的不等式2(2)2(1)(0)m x x x m m -->--≥【答案】(1)1b =-,2c =-(2)答案见解析【分析】(1)根据韦达定理列式求出,b c 即可得解;(2)将不等式整理为(2)(1)0mx x -->,再分类讨论m 可求出结果.【详解】(1)因为0y ≤的解集为[]1,2-,所以1-和2是方程20x bx c ++=的两根,所以12b -+=-,12c -⨯=,即1b =-,2c =-,(2)由2(2)2(1)m x x x m -->--,整理得(2)(1)0mx x -->,当0m =时,得1x <,解集为(,1)-∞;当02m <<时,2()(1)0x x m-->,得1x <或2x m >,解集为2(,1)(,)m -∞⋃+∞;当2m =时,2(1)0x ->,得1x ≠,解集为(,1)(1,)-∞⋃+∞;当2m >时,2()(1)0x x m-->,得2x m <或1x >,解集为2(,)(1,)m -∞⋃+∞.综上所述:当0m =时,不等式的解集为(,1)-∞;当02m <<时,不等式的解集为2(,1)(,)m -∞⋃+∞;当2m =时,不等式的解集为(,1)(1,)-∞⋃+∞;当2m >时,不等式的解集为2(,)(1,)m-∞⋃+∞.9.已知函数()()()211R f x m x mx m =+--∈(1)若函数()f x 在(0,)+∞上单调递增,求实数m 的取值范围;(2)若1m <-,解关于x 的不等式()0f x ≥.【答案】(1)10m -≤≤(2)答案见解析【分析】(1)1m =-时结合一次函数的单调性可得结果;1m ≠-由二次函数的开口方向、对称轴和单调性列出不等式组,可求出m 的取值范围;(2)因式分解后,分2m =-,21m -<<-和2m <-三种情况讨论,求出不等式组的解集即可.【详解】(1)()f x 在(0,)+∞单增,若10m +=,则1,()1m f x x =-=-,在(0,)+∞单增,所以1m =-;若1,()m f x ≠-在(0,)+∞单增,则1002(1)m m m +>⎧⎪-⎨≤⎪-+⎩,解得到,10m -<≤,综上所述:10m -≤≤;(2)若1,()0m f x <-≥,则2(1)10m x mx +--≥,即((1)1)(1)0m x x ++-≥,所以1(1)01x x m ⎛⎫+-≤ ⎪+⎝⎭,若11+=-m 即2m =-,不等式的解集为{1};若11m +>-即21m -<<-,此时111m ->+,不等式的解集为11,1m -⎡⎤⎢⎥+⎣⎦;若11m +<-即2m <-,此时111m -<+,不等式的解集为1,11m -⎡⎤⎢⎥+⎣⎦;综上,当2m =-时,不等式的解集是{1};当21m -<<-时,不等式的解集是11,1m -⎡⎤⎢⎥+⎣⎦;当2m <-时,不等式的解集是1,11m -⎡⎤⎢⎥+⎣⎦.题型四:一元二次方程根的分布问题10.若一元二次方程2240ax x --=(a 不等于0)有一个正根和一个负根,则实数a 的取值范围为()A .0a >B .2a >C .1a >D .1a >-【答案】A【分析】根据一元二次方程有一个正根和一个负根可得判别式大于零以及两根之积小于零,列不等式组即可求解.【详解】因为一元二次方程2240ax x --=(a 不等于0)有一个正根和一个负根,设两根为12,x x ,则()()212Δ244040a x x a ⎧=--⨯⨯->⎪⎨=-<⎪⎩,解得0a >,故选:A11.已知二次函数()()222433y m x m x m =+-+++与x 轴有两个交点,一个大于1,一个小于1,则m 可能为()A .2-B .1-C .0D .1【答案】B 【分析】根据一元二次方程根的分布情况,结合一元二次不等式的求解,列式计算即可.【详解】令()f x =()()222433m x m x m +-+++,则()12243321f m m m m =+--++=+,由题可知,2m ≠-,且()()210m f +<,即()()2210m m ++<,解得12, 2m ⎛⎫∈-- ⎪⎝⎭,故所有选项中满足题意的m 的值是:1-.故选:B.12.关于x 的方程22190x x a ⎛⎫+++= ⎪⎝⎭有两个不相等的实数根12,x x 且121x x <<,那么a 的取值范围是()A .22,75⎛⎫- ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .2,7⎛⎫-∞- ⎪⎝⎭D .2,011⎛⎫- ⎪⎝⎭【答案】D 【分析】由一元二次方程根的分布可得()Δ010f >⎧⎨<⎩,解不等式组可求得结果.【详解】设()2219f x x x a ⎛⎫=+++ ⎪⎝⎭,则()22Δ136021110a f a ⎧⎛⎫=+->⎪ ⎪⎪⎝⎭⎨⎪=+<⎪⎩,解得:2011a -<<,即a 的取值范围为2,011⎛⎫- ⎪⎝⎭.故选:D.题型五:一元二次不等式恒成立问题13.关于x 的不等式23208kx kx +-<的解集为R ,则k 的取值范围是().A .()3,0-B .(]3,0-C .[]3,0-D .()[),30,-∞-+∞ 【答案】B 【分析】分0k =以及0k ≠,结合二次函数的性质,列出不等式组,求解即可得出答案.【详解】当0k =时,原不等式可化为308-<在R 上恒成立;当0k ≠时,由不等式23208kx kx +-<的解集为R ,可知应有22203Δ42308k k k k k <⎧⎪⎨⎛⎫=-⨯⨯-=+< ⎪⎪⎝⎭⎩,解得30k -<<.综上所述,k 的取值范围是(]3,0-.故选:B.14.(1)解关于x 的不等式2(1)10ax a x -++<;(2)已知关于x 的不等式()()22454130m m x m x +---+>对一切实数x 恒成立,求实数m 的取值范围.【答案】(1)答案见解析;(2){}|119m m ≤<【分析】(1)分类讨论a 解不等式可得结果;(2)分类讨论2x 项系数,利用判别式可得结果.【详解】(1)①当a<0时,原不等式化为()110x x a ⎛⎫--> ⎪⎝⎭,解得1x a <或1x >;②当0a =时,原不等式即为1x -+0<,解得1x >;③当0a >时,原不等式化为()110x x a ⎛⎫--< ⎪⎝⎭,若01a <<时,解得11x a<<;若1a =时,得2(10)x -<,不等式无解;若1a >时,解得11x a<<.综上可知,当a<0时,解集为1{|x x a<或1}x >;②当0a =时,解集为{|1|x x >;③当01a <<时,解集为1{|1}x x a<<;当1a =时,解集为空集;当1a >时,解集为1{|1}x x a<<.(2)①当2450m m +-=,即5m =-或1m =时,若5m =-,不等式化为2430x +>,即18x >-,不符合题意;若1m =,不等式化为30>,符合题意.②当2450m m +-≠,即5m ≠-且1m ≠时,由二次不等式()()22454130m m x m x +---+>对一切实数x 恒成立,得()()222450Δ16112450m m m m m ⎧+->⎪⎨=--+-<⎪⎩,解得119m <<.综上所述:实数m 的取值范围为{}|119m m ≤<.15.已知函数()23f x mx mx =++,R m ∈.(1)若关于x 的不等式()0f x >在实数集R 上恒成立,求实数m 的取值范围;(2)解关于x 的不等式()()315f x m x >-+.【答案】(1){}012m m ≤<(2)当12m <-时,原不等式的解集为1|2x x m ⎧⎫-<<⎨⎬⎩⎭;当12m =-时,原不等式的解集为∅;当102m -<<时,原不等式的解集为1|2x x m ⎧⎫<<-⎨⎬⎩⎭;当0m =时,原不等式的解集为{|2}x x >;当0m >时,原不等式的解集为1|2x x x m ⎧⎫<->⎨⎬⎩⎭或【分析】(1)对m 进行分类讨论,根据一元二次不等式的性质即可求解.(2)化简问题得出()()210x mx -+>,对0,0,0m m m <=>分三类讨论,利用一元二次不等式的性质即可求解.【详解】(1)依题意,230mx mx ++>在实数集R 上恒成立.①当0m =时,30>,成立;②当0m ≠时,要使原不等式恒成立,则20Δ120m m m >⎧⎨=-<⎩,解得012m <<.综上所述,实数m 的取值范围是{}012m m ≤<.(2)不等式()()315f x m x >-+,等价于()21220mx m x +-->,即()()210x mx -+>.①当0m >时,解原不等式可得2x >或1x m<-;②当0m =时,不等式整理为20x ->,解得2x >;③当0m <时,方程()()210x mx -+=的两根为11x m=-,22x =,(i )当102m -<<时,因为12m ->,解原不等式得12x m<<-;(ii )当12m =-时,因为12m-=,原不等式的解集为∅;(iii )当12m <-时,因为12m -<,解原不等式得12x m -<<,综上所述,当12m <-时,原不等式的解集为1|2x x m ⎧⎫-<<⎨⎬⎩⎭;当12m =-时,原不等式的解集为∅;当102m -<<时,原不等式的解集为1|2x x m ⎧⎫<<-⎨⎬⎩⎭;当0m =时,原不等式的解集为{|2}x x >;当0m >时,原不等式的解集为1|2x x x m ⎧⎫<->⎨⎬⎩⎭或【专题归纳】一、单选题16.不等式23720x x -+>的解集是()A .1,23⎛⎫⎪⎝⎭B .12,3⎛⎫-- ⎪⎝⎭C .1,(2,)3⎛⎫-∞+∞ ⎪⎝⎭ D .1(,2),3⎛⎫-∞--+∞ ⎪⎝⎭【答案】C【分析】由因式分解结合一元二次不等式的解的特征即可求解.【详解】由23720x x -+>得()()2310x x -->,解得13x <或2x >,故不等式的解为1,(2,)3⎛⎫-∞+∞ ⎪⎝⎭ ,故选:C17.已知命题p :“R x ∃∈,210x ax -+<”为假命题,则实数a 的取值范围为().A .(],2-∞B .()2,2-C .()(),22,∞∞--⋃+D .[]22-,【答案】D【分析】由命题p ⌝为真命题,则0∆≤,解不等式得出实数a 的取值范围即可.【详解】命题2:,10p x R x ax ∃∈++<为假命题,所以2:,10p x R x ax ⌝∀∈++≥为真命题,则240a ∆=-≤,解得[]2,2a ∈-故选:D18.已知(1,5]x ∈-时,01->+a xx恒成立,则实数a 的取值范围是()A .(1,)-+∞B .[1,)-+∞C .(5,)+∞D .[5,)+∞【答案】C【分析】解出不等式01->+a xx可得集合A ,由(]1,5A -⊆,计算可得范围.【详解】设01->+a xx的解集为A ,因为(1,5]x ∈-时,01->+a xx恒成立,所以(]1,5A -⊆,由01->+a xx得()()10x a x +->,即()()10x x a +-<,当1a >-,解得1x a -<<,即(]1,A a =-,可得5a >;当1a <-,解得1a x <<-,即(],1A a =-,不合题意;当1a =-,解集为∅,不合题意;综上所述:实数a 的取值范围是(5,)+∞.故选:C.19.不等式|1|||x x -≥的解集为()A .1,2⎛⎫+∞ ⎪⎝⎭B .1,2⎡⎫+∞⎪⎢⎣⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎤-∞ ⎥⎝⎦【答案】D【分析】两边平方后可求不等式的解.【详解】因为|1|||x x -≥,故()221x x -≥,故210x -+≥,故12x ≤,故选:D.20.已知一元二次方程()22120x a x a +++-=的一根比1大,另一根比1小,则实数a 的取值范围是()A .(3,1)-B .(2,0)-C .(1,0)-D .(0,2)【答案】C【分析】由一元二次方程的根与二次函数的关系,即可由二次函数的性质求解.【详解】记()2212y x a x a =+++-,则为开口向上的二次函数,要使方程的根一个大于1一个小于1,则只需要21|=1120x y a a =+++-<,解得10a -<<,故选:C21.下列不等式中,解集为R 的是()A .2210x x ++>B .2210x x ++>C .20x >D .221x x x x +>-+【答案】B【分析】根据一元二次不等式的解,即可结合选项逐一求解.【详解】对于A,()2221101x x x x ++=+>⇒≠-,故A 不符合,对于B ,140∆=-<,且开口向上,所以对任意的x ∈R ,都有2210x x ++>,故B 符合,对于C,20x >得0x ≠,故C 不符合,对于D,由221x x x x +>-+得12x >,故D 不符合,故选:B22.已知不等式20ax bx c ++>的解集为{23}xx -<<∣,且对于[]1,5x ∀∈,不等式220bx amx c ++>恒成立,则m 的取值范围为()A .(,43⎤-∞⎦B .(),43∞-C .[)13,+∞D .(),13-∞【答案】B【分析】由不等式的解集为{23}xx -<<∣知可用a 表示,b c ,代入220bx amx c ++>中并用参数分离与基本不等式求得m 的取值范围.【详解】由不等式20ax bx c ++>的解集为{23}xx -<<∣,可知2,3-为方程20ax bx c ++=的两个根,故0<a 且()231,236b ca a-=-+==-⨯=-,即,6b a c a =-=-,则不等式220bx amx c ++>变为2120ax amx a -+->,由于[]0,1,5a x <∈,则上式可转化为12m x x<+在[]1,5恒成立,又1212243+≥⋅=x x x x,当且仅当23x =时等号成立,故43m <.故选:B.23.已知函数2y x bx c =-++只有一个零点,不等式20x bx c m -++->的解集为()00,2x x +,则m 的值为()A .4-B .3-C .2-D .1-【答案】D【分析】根据函数有一个零点可得240b c ∆=+=,再将不等式的解集转化为方程20x bx c m --+=的两根,最后利用韦达定理和两根的大小关系即可求解.【详解】函数2y x bx c =-++只有一个零点,则240b c ∆=+=,不等式20x bx c m -++->的解集为()00,2x x +,即20x bx c m --+<的解集为()00,2x x +.设方程20x bx c m --+=的两根为12,x x ,则1212,x x b x x c m +=⋅=-+,且212x x -=,∴()()2221211244x x x x x x -=+-=,则24()4b c m --+=,整理得2444b c m +-=,∴1m =-.故选:D .24.若1t >,则关于x 的不等式()10t x x t ⎛⎫--> ⎪⎝⎭的解集是()A .1|x x t t ⎧⎫<<⎨⎬⎩⎭B .1|x x t ⎧<⎨⎩或}x t >C .{|x x t <或1x t ⎫>⎬⎭D .1|x t x t ⎧⎫<<⎨⎬⎩⎭【答案】A【分析】首先根据不等式的性质可得1t t <,进而将不等式转化为()10x t x t ⎛⎫--< ⎪⎝⎭,求解即可得出结果.【详解】因为()()111t t t t t+--=,1t >,所以10t t ->,所以1t t >.原不等式()10t x x t ⎛⎫--> ⎪⎝⎭可化为所以()10x t x t ⎛⎫--< ⎪⎝⎭,解得1x t t <<.所以,不等式()10t x x t ⎛⎫--> ⎪⎝⎭的解集为1|x x t t ⎧⎫<<⎨⎬⎩⎭.故选:A.25.若关于x 的不等式()()2110kx k x ---<有且只有一个整数解,则实数k 的取值范围是()A .{351k k -≤<∣或435}k <≤+B .{01}kk <<∣C .{231k k -≤<∣或443}k <≤+D .3535122k k k ⎧⎫-+⎪⎪≤≤≠⎨⎬⎪⎪⎩⎭∣且【答案】D【分析】分类讨论解不等式,然后由解集中只有一个整数分析得参数范围.【详解】0k =时,不等式为(1)0x --<,解为1x >,不合题意,若0k <,则不等式的解是1x k k<+或1x >,不合题意,因此只有0k >,不等式的解为11x k k<<+,因此123k k <+≤,解得353522k -+≤≤且1k ≠.故选:D .26.若关于x 的不等式()2220x m x m -++<的解集中恰有2个整数,则实数m 的取值范围为()A .[][]1,04,5-B .()()1,04,5-C .[)(]1,04,5-D .(][)1,04,5-⋃【答案】C【分析】因式分解,分2,2,2m m m <=>三种情况讨论【详解】因为()2220x m x m -++<所以()()20x x m --<(1)当2m <时,不等式的解集为{}2x m x <<,,若不等式()2220x m x m -++<的解集中恰有2个整数,则满足10m -≤<;(2)当2m =时,易得解集为∅,所以不成立;(3)当>2m 时,不等式的解集为{}2x x m <<,若不等式()2220x m x m -++<的解集中恰有2个整数,则满足45m <≤.综上:m 的范围为[)(]1,04,5- 故选:C.二、填空题27.命题“[]1,3x ∃∈,220x x a --≥”为真命题的充要条件是________.【答案】3a ≤【分析】原命题等价于[]1,3x ∃∈使22a x x ≤-,求22x x -在[]1,3上的最大值即可.【详解】原命题可写为“[]1,3x ∃∈,22a x x ≤-”,当13x ≤≤时,22x x -随x 增大而增大,则3x =时,22x x -取最大值为3,所以3a ≤.故答案为:3a ≤28.已知()21f x x x =-+,当[1,2]x ∈-时,不等式()2f x x m >+恒成立,则实数m 的范围为__________.【答案】5,4⎛⎫-∞- ⎪⎝⎭【分析】由题意可得231m x x <-+对任意的[1,2]x ∈-恒成立,根据二次函数的性质求出()23524g x x ⎛⎫=-- ⎪⎝⎭,[1,2]x ∈-的最小值即可求解.【详解】由题意可得212x x x m -+>+对任意的[1,2]x ∈-恒成立,即231m x x <-+对任意的[1,2]x ∈-恒成立.令()231g x x x =-+,[1,2]x ∈-,()23524g x x ⎛⎫=-- ⎪⎝⎭,[1,2]x ∈-,则()min 3524g x g ⎛⎫==- ⎪⎝⎭,所以54m <-,所以实数m 的范围为5,4⎛⎫-∞- ⎪⎝⎭.故答案为:5,4⎛⎫-∞- ⎪⎝⎭.29.已知不等式230ax bx +-<的解集为{|13}x x -<<,则不等式10bx a ++>的解集为______.【答案】(),1-∞【分析】根据三个二次之间的关系求得1,2a b ==-,代入一次不等式运算求解.【详解】由题意可得:1-,3是方程230ax bx +-=的两根,且0a >,则由韦达定理可得:13313b aa ⎧-+=-⎪⎪⎨⎪-⨯=-⎪⎩,解得12a b =⎧⎨=-⎩,所以不等式10bx a ++>化为:220x -+>,解得1x <,故所求不等式的解集为(),1-∞.故答案为:(),1-∞.30.已知关于x 的一元二次不等式20ax bx c ++<的解集为11,23⎛⎫-- ⎪⎝⎭,则关于x 的不等式20bx cx a --<的解集为__________.【答案】61,5⎛⎫- ⎪⎝⎭【分析】由题意知11,23--是方程20ax bx c ++=的两根,且0a >,根据韦达定理可得出a ,b ,c 的关系,代入解不等式即可.【详解】因为关于x 的一元二次不等式20ax bx c ++<的解集为11,23⎛⎫-- ⎪⎝⎭,所以11,23--是方程20ax bx c ++=的两根,且0a >,则112311()()23b a c a ⎧--=-⎪⎪⎨⎪-⨯-=⎪⎩,解得5616b a c a ⎧=⎪⎪⎨⎪=⎪⎩,所以关于x 的不等式20bx cx a --<,即251066ax ax a --<,化简得2560x x --<,解得615x -<<,则关于x 的不等式20bx cx a --<的解集为61,5⎛⎫- ⎪⎝⎭.故答案为:61,5⎛⎫- ⎪⎝⎭.31.已知12,x x 是关于x 的方程2260x mx m -+-=的两个实根,且12111x x +=-,则m =__________.【答案】2【分析】根据根与系数的关系结合条件即得.【详解】因为12,x x 是关于x 的方程2260x mx m -+-=的两个实根,则()12212226Δ460x x mx x m m m ⎧+=⎪⎪=-⎨⎪=--≥⎪⎩,又12111x x +=-,所以12122121161x x m x x x x m +-+===-,解得3m =-或2m =,经判别式检验知2m =.故答案为:2.32.已知不等式﹣2x 2+bx +c >0的解集{x |﹣1<x <3},若对任意﹣1≤x ≤0,不等式2x 2+bx +c +t ≤4恒成立.则t 的取值范围是______.【答案】{}2t t ≤-【分析】根据不等式﹣2x 2+bx +c >0的解集{x |﹣1<x <3},求得b ,c ,再将对任意﹣1≤x ≤0,不等式2x 2+bx +c +t ≤4恒成立,转化为对任意﹣1≤x ≤0,不等式2242t x x ≤---恒成立求解.【详解】解:因为不等式﹣2x 2+bx +c >0的解集{x |﹣1<x <3},所以()132132b c ⎧-+=⎪⎪⎨⎪-⨯=-⎪⎩,解得46b c =⎧⎨=⎩,因为对任意﹣1≤x ≤0,不等式2x 2+bx +c +t ≤4恒成立,所以为对任意﹣1≤x ≤0,不等式2242t x x ≤---恒成立,令2242y x x =---,()2212x =-+≥-,所以2t ≤-,故答案为:{}2t t ≤-三、解答题33.已知函数()2212y ax a x =-++.(1)当3a =时,求关于x 的不等式0y ≤的解集.(2)若0a >,求关于x 的不等式0y ≤的解集.【答案】(1)1,23⎡⎤⎢⎥⎣⎦(2)答案见解析【分析】(1)解一元二次不等式,求出解集;(2)不等式因式分解得到()()120ax x --≤,分10,2a ⎛⎫∈ ⎪⎝⎭,12a =与1,2a ⎛⎫∈+∞ ⎪⎝⎭三种情况,求出不等式的解集.【详解】(1)3a =时,23720x x -+≤,解得:123x ≤≤,故解集为1,23⎡⎤⎢⎥⎣⎦;(2)0a >时,()22120ax a x -++≤,变形为()()120ax x --≤,当10,2a ⎛⎫∈ ⎪⎝⎭时,()()120ax x --≤,解得12x a ≤≤,当12a =时,解得2x =,当1,2a ⎛⎫∈+∞ ⎪⎝⎭时,()()120ax x --≤,解得12x a ≤≤,综上:当10,2a ⎛⎫∈ ⎪⎝⎭时,解集为12,a ⎡⎤⎢⎥⎣⎦,当12a =时,解集为{}2,当1,2a ⎛⎫∈+∞ ⎪⎝⎭时,解集为1,2a ⎡⎤⎢⎥⎣⎦.34.已知关于x 的不等式240ax ax --<.(1)若不等式的解集为{}12x x -<<,求a 的值;(2)若不等式的解集为R ,求a 的取值范围.【答案】(1)2(2)(]16,0-【分析】(1)分类讨论0a =,0a ≠,当0a =时,根据已知变形为4<0-,当0a ≠时,根据一元二次不等式解集与一元二次方程韦达定理列式即可解出答案;(2)分类讨论0a =,0a ≠,当0a =时,根据已知变形为4<0-,当0a ≠时,根据已知得出一元二次不等式在R 上恒成立,即可列式解出答案.【详解】(1)当0a =时,240ax ax --<为4<0-,不满足题意;当0a ≠时,若240ax ax --<的解集为{}12x x -<<,即240ax ax --=的两个解为1-与2,则412a--⨯=,解得2a =;(2)当0a =时,240ax ax --<为4<0-,在R 上恒成立,满足题意,当0a ≠时,240ax ax --<的解集为R ,即240ax ax --<在R 上恒成立,则()()20Δ440a a a <⎧⎪⎨=--⨯-<⎪⎩,解得160a -<<,综上:160a -<≤,故a 的取值范围(]16,0-.35.已知函数()22f x x ax a =-+.(1)若()0f x ≥的解集为R ,求实数a 的取值范围;(2)当3a ≠-时,解关于x 的不等式()()43f x a a x >-+.【答案】(1)[]0,1(2)答案见解析【分析】(1)由一元二次不等式在R 上恒成立可得0∆≤,由此可解得结果;(2)将所求不等式化为()()30x x a +->,分别在3a >-和3a <-的情况下解不等式即可.【详解】(1)由题意知:220x ax a -+≥在R 上恒成立,2440a a ∴∆=-≤,解得:01a ≤≤,即实数a 的取值范围为[]0,1.(2)由()()43f x a a x >-+得:()()()23330x a x a x x a +--=+->;当3a >-时,()()30x x a +->的解为3x <-或x a >;当3a <-时,()()30x x a +->的解为x a <或3x >-;综上所述:当3a >-时,不等式的解集为()(),3,a -∞-+∞ ;当3a <-时,不等式的解集为()(),3,a -∞-+∞ .36.若01a <<,解不等式()10a x x a ⎛-⎫ ⎪⎝⎭->.【答案】1x a x a ⎧⎫<<⎨⎬⎩⎭【分析】根据题意,1a a<,转化不等式,求解即可.【详解】解:∵01a <<,∴1a a <,原不等式可化为()10x a x a ⎛⎫--< ⎪⎝⎭,解得1a x a<<.故原不等式的解集为1x a x a ⎧⎫<<⎨⎬⎩⎭.37.已知二次函数()2f x x bx c =++,不等式()0f x <的解集为()2,3-.(1)求函数()f x 的解析式;(2)解关于x 的不等式()()2133a x ax f x ++>+(其中R a ∈).【答案】(1)()26f x x x =--(2)见解析【分析】(1)由一元二次不等式的性质结合根与系数的关系得出函数()f x 的解析式;(2)分类讨论a 的值,结合一元二次不等式的解法求解即可.【详解】(1)由题意知,在()2f x x bx c =++中,()0f x <的解集为()2,3-20x bx c ∴++=的根为2,3-.23,23b c ∴-+=--⨯=,解得:1,6b c =-=-()26f x x x ∴=--(2)由题意得,Ra ∈将()26f x x x =--代入()()2133a x ax f x ++>+得()221363a x ax x x ++>--+()23130ax a x ∴+++>即()()130ax x ++>.当0a =时,不等式化为:30x +>,解集为:{3}xx >-∣,当a<0时,10a ->,不等式化为()130a x x a ⎛⎫++> ⎪⎝⎭,即()130x x a ⎛⎫++< ⎪⎝⎭的解集为13x x a ⎧⎫-<<-⎨⎬⎩⎭∣当0a >时,10a -<,不等式化为()130a x x a ⎛⎫++> ⎪⎝⎭,即()130x x a ⎛⎫++> ⎪⎝⎭,若13a -=-,即13a =,则不等式化为:2(3)0x +>,其解集为{}3x x ≠-∣若13a -<-,即103a <<,则不等式()130x x a ⎛⎫++> ⎪⎝⎭的解集为1x x a ⎧<-⎨⎩∣或}3x >-,若13a ->-,即13a >,则不等式()130x x a ⎛⎫++> ⎪⎝⎭的解集为{3x x <-∣或1x a ⎫>-⎬⎭,综上所述:当a<0时,不等式的解集为13x x a ⎧⎫-<<-⎨⎬⎩⎭∣,当0a =时,不等式的解集为{3}xx >-∣;当103a <<时,不等式的解集为1{x x a<-∣或}3x >-;当13a =时,不等式的解集为{}3x x ≠-∣;当13a >时,不等式的解集为{3x x <-∣或1}x a >-.38.(1)解不等式:()2232240x m x m m ++++≤(2)已知集合3|01x A x x -⎧⎫=≤⎨⎬-⎩⎭,对于任意的集合A 中的每一个元素,()2220x m x m -+++≥恒成立,求m 的取值范围.【答案】(1)答案见解析;(2)2m ≤【分析】(1)先变形得到()()220x m x m +++≤,再通过讨论2m -和2m --的大小来解不等式;(2)先求出集合A 中的元素范围,再根据问题恒成立结合二次函数的性质列不等式求解.【详解】(1)()2232240x m x m m ++++≤ ()()220x m x m ∴+++≤,令()()220x m x m +++=得2x m =-或2x m=--当22m m -=--,即2m =时,4x =-,当22m m ->--,即2m <时,22m x m --≤≤-,当22m m -<--,即m>2时,22m x m -≤≤--,综上:当2m =时,不等式的解集为{}4-,当2m <时,不等式的解集为[]2,2m m ---,当m>2时,不等式的解集为[]2,2m m ---.(2)()()(]3103|0|1,3110x x x A x x x x ⎧⎫⎧--≤-⎪⎪⎧⎫=≤==⎨⎬⎨⎨⎬--≠⎩⎭⎪⎪⎩⎩⎭,因为对于任意的集合A 中的每一个元素,()2220x m x m -+++≥恒成立,则()()22420m m ∆=+-+≤或()()()()2Δ2420221322122092320m m m m m m m m ⎧=+-+>⎪++⎪⎪⎨⎪-+++≥⎪⎪-+++≥⎩或,解得2m ≤。
初升高数学暑假衔接(人教版)高一预习1.1 集合的概念与表示(教师版)

第一章《集合与常用逻辑用语》1.1集合的概念【知识梳理】知识点一元素与集合的概念1.元素:一般地,把研究对象统称为元素,常用小写的拉丁字母a ,b ,c …表示.2.集合:把一些元素组成的总体叫做集合,(简称为集),常用大写拉丁字母A ,B ,C …表示.3.集合相等:指构成两个集合的元素是一样的.4.集合中元素的特性:确定性、互异性、无序性.知识点二元素与集合的关系1.属于:如果a 是集合A 的元素,就说a 属于集合A ,记作a ∈A .2.不属于:如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a ∉A .知识点三常见的数集及表示符号数集非负整数集(自然数集)正整数集整数集有理数集实数集符号NN *或N +ZQR知识点四列举法把集合的所有元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法.知识点五描述法一般地,设A 是一个集合,把集合A 中所有具有共同特征P (x )的元素x 所组成的集合表示为{x ∈A |P (x )},这种表示集合的方法称为描述法.【基础自测】1.已知集合{1,,}{0,}ba ab b a+=,,则下列结论正确的是()A .0a =B .1a =C .1a b ==-D .11a b =-=,2.已知集合{}21,49,2021A a a a =++-,若4A -∈,则实数a 的值为().A .5-B .1C .5或1-D .5-或1【答案】B【详解】{}21,49,2021A a a a =++- ,且4A -∈,4=1a ∴-+或24=49a a -+-⑴当24=49a a -+-即=5-a 或=1a ,①当=5-a 时,1=4a +-,249=4a a +--,此时{}4,4,2021A =--,不满足集合元素的互异性,故舍去;②当=1a 时,1=2a +,249=4a a +--,此时{}2,4,2021A =-,符合题意;⑵当1=4a +-即=5-a 时,此时{}4,4,2021A =--,不满足集合元素的互异性,故舍去;综上所述:实数a 的值为1.故选:B3.已知集合{}1,2,3A =,则集合{},B x y x A y A =-∈∈∣中元素的个数是()A .2B .3C .4D .54.下列说法中:①集合N 与集合N *是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合Z 中的元素;④集合Q 中的元素都是集合R 中的元素.其中正确的有________.【答案】②④【详解】因为集合N*表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.5.用列举法表示集合:{(,)|4,,}x y x y x y +=∈∈N N 为________.【答案】()()()()(){}0413223140,,,,,,,,,【详解】由题知:(){}|4x y x y x +=∈∈N N ,,,y =()()()()(){}0413223140,,,,,,,,,故答案为:()()()()(){}0413223140,,,,,,,,,.【例题详解】一、集合的概念例1(1)下面给出的四类对象中,构成集合的是()A .某班视力较好的同学B .长寿的人C .π的近似值D .倒数等于它本身的数【答案】D【分析】根据集合的定义分析判断即可.【详解】对于A ,视力较好不是一个明确的定义,故不能构成集合;对于B ,长寿也不是一个明确的定义,故不能构成集合;对于C ,π的近似值没有明确近似到小数点后面几位,不是明确的定义,故不能构成集合;对于D ,倒数等于自身的数很明确,只有1和-1,故可以构成集合;故选:D.(2)(多选)下列各组中的M ,P 表示同一集合的是()A .M ={3,-1},P ={(3,-1)}B .M ={(3,1)},P ={(1,3)}C .M ={y |y =x -1},P ={t |t =x -1}D .集合M ={m |m +1≥5},P ={y |y =x 2+2x +5,x ∈R }【答案】CD跟踪训练1(1)以下元素的全体能构成集合的是()A .中国古代四大发明B .接近于1的所有正整数C .未来世界的高科技产品D .地球上的小河流【答案】A【分析】根据集合的知识可选出答案.【详解】中国古代四大发明具有确定性,能构成集合,故A 满足;接近于1的正整数不确定,不能构成集合,故B 不满足;未来世界的高科技产品不确定,不能构成集合,故C 不满足;地球上的小河流不确定,不能构成集合,故D 不满足;故选:A(2)已知集合A ={x |x 2+px +q =0}={2},则p =_______,q =_______.【答案】-44【分析】根据A ={x |x 2+px +q =0}={2},由2是方程x 2+px +q =0的等根求解.【详解】因为A ={x |x 2+px +q =0}={2},所以2420-40p q p q ++=⎧⎨=⎩,解得-44p q =⎧⎨=⎩,故答案为:-4,4二、元素与集合例2(1)下列元素与集合的关系中,正确的是()A .1-∈NB .*0∉N C QD .25∉R(2)如果集合2210A x ax x =--=只有一个元素,则a 的值是()A .0B .0或1C .1-D .0或1-跟踪训练2(1)已知集合(){}|10M x x x =-=,那么()A .0M ∈B .1M∉C .1M-∈D .0M∉【答案】A【分析】确定结合(){}|10M x x x =-=的元素,根据元素和集合的关系判断各选项,即得答案.【详解】由题意知集合(){}|10{0,1}M x x x =-==,故0M ∈,故A 正确,D 错误,1M ∈,故B 错误,1M -∉,故C 错误,故选:A(2)已知集合{}220A x ax x =-+=至多有一个元素,则a 的取值范围是__________.三、集合中元素的特性例3(1)若{}22,a a a ∈-,则a 的值为()A .0B .2C .0或2D .2-【答案】A【分析】分别令2a =和2a a a =-,根据集合中元素的互异性可确定结果.【详解】若2a =,则22a a -=,不符合集合元素的互异性;若2a a a =-,则0a =或2a =(舍),此时{}{}22,2,0a a -=,符合题意;综上所述:0a =.故选:A.(2)由实数2,,|,x x x -所组成的集合,最多可含有()个元素A .2B .3C .4D .5跟踪训练3(1)集合{3,x ,x 2–2x }中,x 应满足的条件是()A .x ≠–1B .x ≠0C .x ≠–1且x ≠0且x ≠3D .x ≠–1或x ≠0或x ≠3【答案】C【分析】利用集合元素的互异性求解.【详解】集合{3,x ,x 2–2x }中,x 2–2x ≠3,且x 2–2x ≠x ,且x ≠3,解得x ≠3且x ≠–1且x ≠0,故选:C .(2)若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【答案】D【分析】根据集合元素的互异性即可判断.【详解】由题可知,集合{},,M a b c =中的元素是ABC 的三边长,则a b c ≠≠,所以ABC 一定不是等腰三角形.故选:D .四、集合的表示方法例4(1)用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-__________.(2)用适当的形式表示下列集合,并指明它是有限集还是无限集.①方程32320x x x -+=的解集;②不等式3523x x +>+的解集;③被5除余1的自然数的集合;④二次函数2=23y x x --的值组成的集合.【答案】①{}0,1,2,有限集;②{}|2x x >-,无限集;③{}|51,x x k k N =+∈,无限集;④2{|23}y y x x =--,无限集.【分析】①直接解出方程即可,用列举法;②解不等式,解集为无限,用描述法表示;(3)元素有无限个,所以用描述法;④代表元素为y ,解集为无限集用描述法表示.【详解】①解方程可得解集为{}0,1,2,有限集;②解不等式可得解集为{}|2x x >-,无限集;③被5除余1的自然数的集合为{}|51,x x k k N =+∈,无限集;④二次函数223y x x =--的值组成的集合为2{|23}y y x x =--,无限集;跟踪训练4用列举法表示下列集合:(1)方程组31x y x y +=⎧⎨-=⎩的解集;(2)不大于10的非负奇数集;(3)6{|Z,N}4A x x x=∈∈-.【答案】(1)解集是{(2,1)};(2)不大于10的非负奇数集为{1,3,5,7,9};(3){3,2,1,2}A =-.【分析】根据列举法的定义进行表示即可.跟踪训练5表示下列集合:(1)210y +=的解集;(2)请用描述法表示平面直角坐标系内所有第一、三象限内的点组成的集合;(3)请用描述法表示被5除余3的正整数组成的集合;(4)请用描述法表示二次函数2210y x x =+-的图象上所有点的纵坐标组成的集合.【课堂巩固】1.下列各组对象中不能形成集合的是()A .高一数学课本中较难的题B .高二(2)班全体学生家长C .高三年级开设的所有课程D .高一(12)班个子高于1.7m 的学生【答案】A【分析】根据集合的三要素确定性,互异性和无序性逐个判断即可;【详解】对A ,高一数学课本中较难的题不具有确定性,不能形成集合;对BCD ,各组对象均满足确定性,互异性和无序性,能形成集合故选:A2.下列说法正确的是()A .由1,2,3组成的集合可表示为{}1,2,3或{}3,2,1B .∅与{}0是同一个集合C .集合{}21x y x =-与集合{}21y y x =-是同一个集合D .集合{}2560x x x ++=与集合{}2560x x ++=是同一个集合3.设a ,b ∈R ,集合{1,,}{0,,}ba b a b a+=,则b a -=()A .1B .-1C .2D .-24.下列关系中,正确的是()A NB .14∈ZC .{}00∈D .12∉Q5.若以集合A 的四个元素a b c d ,,,为边长构成一个四边形,则这个四边形可能是()A .矩形B .平行四边形C .梯形D .菱形【答案】C【分析】根据集合中元素的互异性,可得a b c d ,,,四个元素互不相等,结合选项,即可求解.【详解】由题意,集合A 的四个元素a b c d ,,,为边长构成一个四边形,根据集合中元素的互异性,可得a b c d ,,,四个元素互不相等,以四个元素a b c d ,,,为边长构成一个四边形,结合选项,只能为梯形.故选:C.6.(多选)下面说法中正确的是()A .集合N +中最小的数是1B .若N a +-∉,则N a +∈C .若N ,N a b ++∈∈,则a b +的最小值是2D .244x x +=的解组成的集合是{2}x =【答案】AC【分析】根据正整数集的含义即可判断A ,B ,C 的正误,根据集合中列举法即可判断D 选项的正误.【详解】对于A ,因为N +是正整数集,而最小的正整数是1,故A 正确;对于B ,当0a =时,N a +-∉,且N a +∉,故B 错误;对于C ,若N a +∈,则a 的最小值是1,若N b +∈,则b 的最小值也是1,当a 和b 都取最小值时,a b +取得最小值2,故C 正确;对于D ,由244x x +=得()220x -=,解得2x =,故其解集为{}2,而{2}x =不符合集合的表示方法,故D 错误.故选:AC .7.用列举法表示集合6|Z,2M x x x ⎧⎫=∈∈=⎨⎬-⎩⎭N ________________.【答案】{4,1,0,1}--【分析】根据题意可得21,2,3,6x -=,求出x 的值即可求解.【详解】由题意得21,2,3,6x -=,所以1,0,1,4x =--,所以{4,1,0,1}M =--.故答案为:{4,1,0,1}--.8.已知集合{}1,2,3,4,6A =,,x B x y A y ⎧⎫=∈⎨⎬⎩,则集合B 中的元素个数为______.1故答案为:139.已知,x y 均为非零实数,则代数式xy x y x y xy++的值所组成的集合的元素个数是______.10.给出下列说法:①平面直角坐标系中,第一象限内的点组成的集合为(){},0,0x y x y >>;②20y ++=的解集为{}2,2-;③集合{}21,y y x x =-∈R 与{}1,y y x x =-∈R 是不相等的.其中正确的是______(填序号).11.用列举法表示下列集合:(1)满足-2≤x ≤2且x ∈Z 的元素组成的集合A ;(2)方程(x -2)2(x -3)=0的解组成的集合M ;(3)方程组281x y x y +=⎧⎨-=⎩的解组成的集合B ;(4)15的正约数组成的集合N .12.用描述法表示下列集合,并思考能否用列举法表示该集合(1)所有能被3整除的自然数(2)不等式²230x x +-<的解集(3)²230x x +-=的解集【答案】答案见解析.【分析】根据集合的表示法求解.【详解】(1){|3,}x x n n N =∈,集合中元素个数无穷,不能用列举法表示;(2)2230x x +-<,即(1)(3)0x x -+<,31x -<<,集合为{|31}x x -<<,集合中元素有无数个,不能用列举法表示;(3)集合可表示为2{|230}x x x +-=,列举法表示为{3,1}-.【课时作业】1.已知集合A ={x |x 2+px +q =x },B ={x |(x -1)2+p (x -1)+q =x +3},当A ={2}时,集合B =()A .{1}B .{1,2}C .{2,5}D .{1,5}【答案】D【分析】根据集合的相等的意义得到x 2+px +q =x 即()210x p x q +-+=有且只有一个实数解2x =,由此求得p ,q 的值,进而求得集合B .【详解】由A ={x |x 2+px +q =x }={2}知,x 2+px +q =x 即()210x p x q +-+=有且只有一个实数解2x =,∴22+2p +q =2,且Δ=(p -1)2-4q =0.计算得出p =-3,q =4.则(x -1)2+p (x -1)+q =x +3可化为(x -1)2-3(x -1)+4=x +3;即(x -1)2-4(x -1)=0;则x -1=0或x -1=4,计算得出x =1或x =5.所以集合B ={1,5}.故选:D .2.已知x ,y ,z 为非零实数,代数式||||||||x y z xyz x y z xyz +++的值所组成的集合是M ,则下列判断正确的是()A .M∈4B .2M ∈C .0M ∉D .4M -∉3.以某些整数为元素的集合P 具有以下性质:(1)P 中元素有正数,也有负数;(2)P 中元素有奇数,也有偶数;(3)1P -∉;(4)若x y P ∈、,则x y P +∈.则下列选项哪个是正确的()A .集合P 中一定有0但没有2B .集合P 中一定有0可能有2C .集合P 中可能有0可能有2D .集合P 中既没有0又没有2【答案】A【分析】由(4)得x P ∈,则∈kx P (k 是正整数),由(1)可设,∈x y P ,且0x >,0y <,可得0P ∈.利用反证法可得若2P ∈,则P 中没有负奇数,若P 中负数为偶数,得出矛盾即可求解.【详解】解:由(4)得x P ∈,则∈kx P (k 是正整数).由(1)可设,∈x y P ,且0x >,0y <,则xy 、()-∈y x P ,而0()=+-∈xy y x P .假设2P ∈,则2∈k P .由上面及(4)得0,2,4,6,8,…均在P 中,故22-∈k P (k 是正整数),不妨令P 中负数为奇数21k -+(k 为正整数),由(4)得(22)(21)1-+-+=-∈k k P ,矛盾.故若2P ∈,则P 中没有负奇数.若P 中负数为偶数,设为2k -(k 为正整数),则由(4)及2P ∈,得2,4,6,--- 均在P 中,即22--∈m P (m 为非负整数),则P 中正奇数为21m +,由(4)得(22)(21)1--++=-∈m m P ,矛盾.综上,0P ∈,2∉P .故选:A .4.已知集合{}2,21,21M a a a =--,若1M ∈,则M 中所有元素之和为()A .3B .1C .3-D .1-【答案】C【解析】根据1M ∈,依次令{}2,21,21M a a a =--中的三个元素分别等于1,根据集合中元素的互异性作出取舍,求得结果.【详解】若1a =,则211a -=,矛盾;若211a -=,则1a =,矛盾,故2211a -=,解得1a =(舍)或1a =-,故{}1,3,1M =--,元素之和为3-,故选:C.【点睛】关键点点睛:该题考查的是有关集合的问题,在解题的过程中,关键是用好集合中元素的互异性对参数的值进行取舍.5.已知集合{}24A x x =≤,集合{}*1B x x N x A =∈-∈且,则B =()A .{}0,1B .{}0,1,2C .{}1,2,3D .{}1,2,3,46.由大于﹣3且小于11的偶数所组成的集合是A .{x|﹣3<x <11,x ∈Q}B .{x|﹣3<x <11}C .{x|﹣3<x <11,x=2k ,k ∈N}D .{x|﹣3<x <11,x=2k ,k ∈Z}【答案】D【详解】试题分析:先确定集合元素的范围是﹣3<x <11,同时再确定偶数的形式,利用描述法表示集合.解:因为所求的数为偶数,所以可设为x=2k ,k ∈z ,又因为大于﹣3且小于11,所以﹣3<x <11.即大于﹣3且小于11的偶数所组成的集合是{x|﹣3<x <11,x=2k ,k ∈Z}.故选D .点评:本题的考点是利用描述法表示集合.比较基础.7.方程组31x y x y +=⎧⎨-=-⎩的解集不可表示为()A .3(,)1x y x y x y ⎧⎫+=⎧⎪⎪⎨⎨⎬-=-⎩⎪⎪⎩⎭B .1(,)2x x y y ⎧⎫=⎧⎪⎪⎨⎨⎬=⎩⎪⎪⎩⎭C .{}1,2D .(){}1,2【答案】C【分析】先解方程组,然后再利用集合的表示方法判断即可【详解】由31x y x y +=⎧⎨-=-⎩,得12x y =⎧⎨=⎩,方程组只有一组解,对于AB ,是用描述法表示方程组的解集,所以AB 正确,对于C ,{}1,2表示两个元素1,2,所以C 错误,对于D ,是用列举法表示方程组的解集,所以D 正确,故选:C8.定义集合运算:{}|,,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B *的所有元素之和为()A .0B .2C .3D .6【答案】D【详解】试题分析:根据题意,结合题目的新运算法则,可得集合A*B 中的元素可能的情况;再由集合元素的互异性,可得集合A*B ,进而可得答案解:根据题意,设A={1,2},B={0,2},则集合A*B 中的元素可能为:0、2、0、4,又由集合元素的互异性,则A*B={0,2,4},其所有元素之和为6;故选D .考点:元素的互异点评:解题时,注意结合集合元素的互异性,对所得集合的元素的分析,对其进行取舍9.(多选)下列说法中,正确的是()A .若a ∈Z ,则a -∈ZB .R 中最小的元素是0CD .一个集合中不可以有两个相同的元素10.(多选)若集合{}22|,,A x x m n m n ==+∈Z ,则()A .1A∈B .2A ∈C .3A∈D .4A ∈11.含有三个实数的集合可表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可以示为{}2,,0a a b +,则20132014a b +的值为____.【答案】1-【分析】根据集合相等的定义及集合中元素的互异性即可求解.【详解】解:由题意,若2a a =,则0a =或1,检验可知不满足集合中元素的互异性,所以a a b =+,则0b =,所以21a =,则1a =-,故201320141a b +=-.故答案为:1-.12.已知集合A 是由0,m ,m 2-3m +2三个元素构成的集合,且2∈A ,则实数m =________.【答案】3【分析】根据集合与元素的关系,分类求得m 的值,然后利用集合元素的互异性检验取舍.【详解】由题意知,m =2或m 2-3m +2=2,解得m =2或m =0或m =3,经验证,当m =0或m =2时,不满足集合中元素的互异性,当m =3时,满足题意,故m =3.答案:313.用描述法表示图中阴影部分的点构成的集合为________.【答案】{(x ,y )|0≤x ≤2且0≤y ≤1}【详解】由题意得,图中的阴影部分构成的集合是点集,则{(,)|02x y x ≤≤且01}y ≤≤.故答案为{(,)|02x y x ≤≤且01}y ≤≤.点睛:本题考查集合的描述法的概念及其应用,解答本题的关键是图中的阴影部分的点的坐标满足的条件为集合的元素的公共属性.14.用列举法表示集合{}2|,12,y y x x y Z =-<<∈=__________【答案】{0,1,2,3}【分析】由集合的描述法可知集合所含元素.【详解】因为2,12y x x =-<<,所以04y ≤<,又y Z ∈,所以0,1,2,3y =故答案为{0,1,2,3}【点睛】本题主要考查了集合的描述法,属于中档题.b c abc 16.已知集合A ={1,2},B ={(x ,y )|x ∈A ,y ∈A ,x+y ∈A},则B 中所含元素的个数为____.【答案】1【分析】首先根据题中的条件,B ={(x ,y )|x ∈A ,y ∈A ,x+y ∈A},结合A ={1,2},写出集合B ,并且找到集合B 的元素个数.【详解】因为A ={1,2},B ={(x ,y )|x ∈A ,y ∈A ,x+y ∈A},所以{}(1,1)B =,所以集合B 中只有一个元素,故答案是1.【点睛】该题考查的是有关集合中元素的个数问题,解题的关键是根据题中所给的集合中元素的特征,将集合中的元素列出来,从而得到结果.17.已知方程ax 2-3x -4=0的解组成的集合为A .(1)若A 中有两个元素,求实数a 的取值范围;(2)若A 中至多有一个元素,求实数a 的取值范围.18.用适当的方法表示下列集合:(1)由1,2,3三个数字中的两个数字(没有重复数字)所组成的自然数的集合;(2|2|0y -=的解集.。
初升高数学暑假衔接(人教版)第03讲 集合的基本运算(教师版)

第03讲集合的基本运算1.理解并集、交集、补集、全集的概念与表示;2.了解并集、交集、补集的一些简单性质,会求两个简单集合的交集与并集,会求给定集合的补集;3.掌握并集、交集、补集的基本运算与混合运算;4.通过Venn图来描述集合的相关运算,进一步体会数形结合思想的作用。
一、并集的概念与运算1、文字语言:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集,记作A∪B,读作“A并B”2、符号语言:A∪B={x|x∈A或x∈B}3、图形语言:阴影部分为A∪B4、性质:A∪B=B∪A,A∪A=A,A∪∅=∅∪A=A,如果A⊆B,则A∪B=B.二、交集的概念与运算1、文字语言:由所有属于集合A且属于集合B的元素组成的集合,称为集合A与B的交集,记作A∩B,读作“A交B”2、符号语言:A∩B={x|x∈A且x∈B}3、图形语言:阴影部分为A∩B4、性质:A∩B=B∩A,A∩A=A,A∩∅=∅∩A=∅,如果A⊆B,则A∩B=A三、全集与补集的概念与运算1、全集(1)文字语言:一般地,如果一个集合包含所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U.(2)符号语言:若,,,A U B U C U ⊆⊆⊆ ,则U 为全集.(3)图形语言:2、补集(1)文字语言:若集合A 是全集U 的一个子集,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记作U A ð.(2)符号语言:{}U A x x U x A =∈∉且ð(3)符号语言:(4)性质:A ∪∁U A =U ;A ∩∁U A =∅;∁U (∁U A )=A .四、德摩根律与容斥原理1、德摩根定律:设集合U 为全集,A 、B 为U 的子集,则有(1)()()()U U U A B A B = 痧(2)()()()U U U A B A B = 痧2、容斥原理:在部分有限集中,我们经常遇到有关集合中元素的个数问题,常用Venn 图表示两集合的交、并、补。
初升高数学暑假衔接(人教版)第27讲 正切函数的性质与图象(教师版)

第27讲正切函数的性质与图象1.了解正切函数图象的画法,理解并掌握正切函数的性质;2.能利用正切函数的图象及性质解决有关问题。
一、正切函数的图象与性质1、定义域:⎭⎬⎫⎩⎨⎧∈+≠z k k x x ,2|ππ,2、值域:R3、周期性:正切函数是周期函数,最小正周期是π4、奇偶性:正切函数是奇函数,即()x x tan tan -=-.5、单调性:在开区间z k k k ∈⎪⎭⎫⎝⎛++-ππππ2,2内,函数单调递增二、正切函数型tan()(0,0)y A x A ωϕω=+≠>的性质1、定义域:将“x ωϕ+”视为一个“整体”.令,2x k k z πωϕπ+≠+∈解得x .2、值域:(),-∞+∞3、单调区间:(1)把“x ωϕ+”视为一个“整体”;(2)0(0)A A ><时,函数单调性与tan (,)2y x x k k z ππ=≠+∈的相同(反);(3)解不等式,得出x 范围.4、周期:T πω=三、求正切函数的定义域的方法及求值域的注意点1、求与正切函数有关的函数的定义域时,除了求函数定义域的一般要求外,还要保证正切函数tan y x =有意义,即,2x k k z ππ≠+∈。
而对于构建的三角不等式,常利用三角函数的图象求解,解形如tan x a >的不等式的步骤如下:(1)作图象:作在,22ππ⎛⎫- ⎪⎝⎭上的正切函数图象;(2)求界点:求在,22ππ⎛⎫- ⎪⎝⎭上使tan x a =成立的值;(3)求范围:求,22ππ⎛⎫- ⎪⎝⎭上使tan x a >成立的x 范围;(4)定义域:根据正切函数的周期性,写出定义域。
四、求函数tan()y A x ωϕ=+(,,A ωϕ都是常数)的单调区间的方法(1)若0ω>,由于tan y x =在每一个单调区间上都是增函数,故可用“整体代换”的思想,令,22k x k k Z πππωϕπ-<+<+∈,解得x 的范围即可;(2)若0ω<,可利用诱导公式先把tan()y A x ωϕ=+转化为tan[()]tan()y A x A x ωϕωϕ=--+=--+,即先把x 的系数化为正值,再利用“整体代换”的思想,求得x 的范围即可。
2024年暑期初升高衔接数学-上课讲义资料

目录1.1数与式的运算1.1.1绝对值1.1.2乘法公式1.1.3二次根式1.1.4分式1.2分解因式2.1一元二次方程2.1.1根的判别式2.1.2根与系数的关系(韦达定理)2.2二次函数2.2.1二次函数y=ax2+bx+c的图像和性质2.2.2二次函数的三种表示方式2.2.3二次函数的简单应用2.3方程与不等式2.3.1二元二次方程组解法2.3.2一元二次不等式解法3.1相似形3.1.1.平行线分线段成比例定理3.1.2相似形3.2三角形3.2.1三角形的“四心”3.2.2几种特殊的三角形3.3圆3.3.1直线与圆,圆与圆的位置关系3.3.2圆幂定理及其应用1.1数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.例1解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =;①若1<x ,不等式可变为(1)(3)4x x ---->,即24x -+>4,解得x <0,又x <1,∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->,即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->,即24x ->4,解得x >4.又x ≥3,∴x >4.综上所述,原不等式的解为x <0,或x >4.练习1、如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________.2、下列叙述正确的是()(A )若a b =,则a b =(B )若a b >,则a b>(C )若a b <,则a b <(D )若a b =,则a b=±3.求值:|x -5|-|2x -13|>5.1.1.2.乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式33223()33a b a a b ab b +=+++;(5)两数差立方公式33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=.练习1.填空:(1)221111()9423a b b a -=+();(2)(4m +22)164(m m =++);(3)2222(2)4(a b c a b c +-=+++).2.选择题:(1)若k mx x ++212是一个完全平方式,则k 等于()(A )2m (B )214m (C )213m (D )2116m (2)不论a ,b 为何实数,22248a b a b +--+的值()(A )总是正数(B )总是负数(C )可以是零(D )可以是正数也可以是负数1.1.3.二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如32a b 等是无理式,212x ++,22x y ++例1将下列式子化为最简二次根式:(1(20)a ≥;(30)x <.解:(1=;(20)a ==≥;(3220)x x x ==-<.例2(3-.解法一:(3÷=33393+-=1)6+=12+.例3试比较下列各组数的大小:(1;(2和.解:(11--==,11101==,+>,-(2)∵1==又4>22,∴6+4>6+22,<.例4化简:20172018⋅.解:20042005+⋅-=20042004+⋅⋅=2004⎡⎤+⋅-⋅⎣⎦=20041⋅-.例5化简:(1;(21)x <<.解:(1)原式===2=2=-.(2)原式1x x =-,∵01x <<,∴11x x>>,所以,原式=1x x-.例6已知x y ==,求22353x xy y -+的值.解:∵2210x y +=+=,1xy ==,∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.练习1.填空:(1=_____;(2(x =-,则x 的取值范围是_____;(3)-_____;(4)若2x ==________.2.选择题:等式22-=-x x x x成立的条件是()(A )2x ≠(B )0x >(C )2x >(D )02x <<3.若1b a =+,求a b +的值.4.比较大小:2-35-4(填“>”,或“<”).1.1.4分式1.分式的意义形如AB的式子,若B中含有字母,且0B≠,则称AB为分式.当M≠0时,分式AB具有下列性质:A A MB B M⨯=⨯;A A MB B M÷=÷.上述性质被称为分式的基本性质.2.繁分式像abc d+,2m n pmn p+++这样,分子或分母中又含有分式的分式叫做繁分式.例1若54(2)2x A Bx x x x+=+++,求常数,A B的值.解:∵(2)()2542(2)(2)(2)A B A x Bx A B x A xx x x x x x x x++++++===++++,∴5, 24, A BA+=⎧⎨=⎩解得2,3A B==.例2(1)试证:111(1)1n n n n=-++(其中n是正整数);(2)计算:111 1223910+++⨯⨯⨯;(3)证明:对任意大于1的正整数n,有1111 2334(1)2n n+++<⨯⨯+.(1)证明:∵11(1)11(1)(1)n nn n n n n n+--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯11111(1()()223910=-+-++-1110=-=910.(3)证明:∵1112334(1)n n +++⨯⨯+=111111(()()23341n n -+-++-+=1121n -+,又n ≥2,且n 是正整数,∴1n +1一定为正数,∴1112334(1)n n +++⨯⨯+<12.例3设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.解:在2c 2-5ac +2a 2=0两边同除以a 2,得2e 2-5e +2=0,∴(2e -1)(e -2)=0,∴e =12<1,舍去;或e =2.∴e =2.练习1.填空题:对任意的正整数n ,1(2)n n =+(112n n -+);2.选择题:若322=+-y x y x ,则yx=()(A )1(B )45(C )54(D )563.正数,x y 满足222x y xy -=,求x yx y-+的值.4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1A 组1.解不等式:(1)13x ->;(2)327x x ++-<;(3)116x x -++>.2.已知1x y +=,求333x y xy ++的值.3.填空:(1)1819(2(2-=________;(2)2,则a 的取值范围是________;________.B 组1.选择题:(1=,则()(A )a b<(B )a b>(C )0a b <<(D )0b a <<(2)计算等于()(A (B (C )(D )2.填空:(1)12a =,13b =,则2223352a ab a ab b -=+-________;(2)若2220x xy y +-=,则22223x xy y x y++=+____;3.已知:11,23x y ==,-的值.4.解方程22112()3()10x x x x+-+-=.5.计算:1111132435911++++⨯⨯⨯⨯.1.2分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1分解因式:(1)x 2-3x +2;(2)x 2+4x -12;(3)22()x a b xy aby -++;(4)1xy x y -+-.解:(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6).(3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by ---1-2x x 图1.2-1-1-211图1.2-2-2611图1.2-3-ay -byx x 图1.2-4-11x y 图1.2-5(4)1xy x y -+-=xy +(x -y )-1=(x -1)(y+1)(如图1.2-5所示).2.提取公因式法与分组分解法例2分解因式:(1)32933x x x +++;(2)222456x xy y x y +--+-.解:(1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3把下列关于x 的二次多项式分解因式:(1)221x x +-;(2)2244x xy y +-.解:(1)令221x x +-=0,则解得11x =-+21x =--,∴221x x +-=(1(1x x ⎡⎤⎡⎤--+---⎣⎦⎣⎦=(11x x +++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y +++.练习1.选择题:多项式22215x xy y --的一个因式为()(A )25x y -(B )3x y-(C )3x y+(D )5x y-2.分解因式:(1)x 2+6x +8;(2)8a 3-b 3;(3)x 2-2x -1;(4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1)31a +;(2)424139x x -+;(3)22222b c ab ac bc ++++;(4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+;(2)23x --;(3)2234x xy y +-;(4)222(2)7(2)12x x x x ---+.3.ABC ∆三边a ,b ,c 满足222a b c ab bc ca ++=++,试判定ABC ∆的形状.4.分解因式:x 2+x -(a 2-a ).2.1一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax 2+bx +c =0(a ≠0),用配方法可以将其变形为2224()24b b acx a a-+=.①因为a ≠0,所以,4a 2>0.于是(1)当b 2-4ac >0时,方程①的右端是一个正数,因此,原方程有两个不相等的实数根x 1,2=2b a-±;(2)当b 2-4ac =0时,方程①的右端为零,因此,原方程有两个等的实数根x 1=x 2=-2b a;(3)当b 2-4ac <0时,方程①的右端是一个负数,而方程①的左边2(2b x a+一定大于或等于零,因此,原方程没有实数根.由此可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可以由b 2-4ac 来判定,我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用符号“Δ”来表示.综上所述,对于一元二次方程ax 2+bx +c =0(a ≠0),有(1)当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a;(3)当Δ<0时,方程没有实数根.例1判定下列关于x 的方程的根的情况(其中a 为常数),如果方程有实数根,写出方程的实数根.(1)x 2-3x +3=0;(2)x 2-ax -1=0;(3)x 2-ax +(a -1)=0;(4)x 2-2x +a =0.解:(1)∵Δ=32-4×1×3=-3<0,∴方程没有实数根.(2)该方程的根的判别式Δ=a 2-4×1×(-1)=a 2+4>0,所以方程一定有两个不等的实数根12a x =,22a x -=.(3)由于该方程的根的判别式为Δ=a 2-4×1×(a -1)=a 2-4a +4=(a -2)2,所以,①当a =2时,Δ=0,所以方程有两个相等的实数根x 1=x 2=1;②当a ≠2时,Δ>0,所以方程有两个不相等的实数根x 1=1,x 2=a -1.(3)由于该方程的根的判别式为Δ=22-4×1×a =4-4a =4(1-a ),所以①当Δ>0,即4(1-a )>0,即a <1时,方程有两个不相等的实数根11x =+21x =②当Δ=0,即a =1时,方程有两个相等的实数根x 1=x 2=1;③当Δ<0,即a >1时,方程没有实数根.说明:在第3,4小题中,方程的根的判别式的符号随着a 的取值的变化而变化,于是,在解题过程中,需要对a 的取值情况进行讨论,这一方法叫做分类讨论.分类讨论这一思想方法是高中数学中一个非常重要的方法,在今后的解题中会经常地运用这一方法来解决问题.2.1.2根与系数的关系(韦达定理)若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根12b x a -+=,22b x a--=,则有122222b b b bx x a a a a----+=+==-;22122244(4)42244b b b b ac ac cx x a a a a a-+----====.所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=ba-,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即p =-(x 1+x 2),q =x 1·x 2,所以,方程x 2+px +q =0可化为x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.因此有以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0.例2已知方程2560x kx +-=的一个根是2,求它的另一个根及k 的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k ×2-6=0,∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35.所以,方程的另一个根为-35,k 的值为-7.解法二:设方程的另一个根为x 1,则2x 1=-65,∴135x =-.由(-35)+2=-5k,得k =-7.所以,方程的另一个根为-35,k 的值为-7.例3已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.分析:本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m的方程,从而解得m的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x1,x2是方程的两根,由韦达定理,得x1+x2=-2(m-2),x1·x2=m2+4.∵x12+x22-x1·x2=21,∴(x1+x2)2-3x1·x2=21,即[-2(m-2)]2-3(m2+4)=21,化简,得m2-16m-17=0,解得m=-1,或m=17.当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;当m=17时,方程为x2+30x+293=0,Δ=302-4×1×293<0,不合题意,舍去.综上,m=-1.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可.(2)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例4已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x,y,则x+y=4,①xy=-12.②由①,得y=4-x,代入②,得x (4-x )=-12,即x 2-4x -12=0,∴x 1=-2,x 2=6.∴112,6,x y =-⎧⎨=⎩或226,2.x y =⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程x 2-4x -12=0的两个根.解这个方程,得x 1=-2,x 2=6.所以,这两个数是-2和6.说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷.例5若x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根.(1)求|x 1-x 2|的值;(2)求221211x x +的值;(3)x 13+x 23.解:∵x 1和x 2分别是一元二次方程2x 2+5x -3=0的两根,∴1252x x +=-,1232x x =-.(1)∵|x 1-x 2|2=x 12+x 22-2x 1x 2=(x 1+x 2)2-4x 1x 2=253()4()22--⨯-=254+6=494,∴|x 1-x 2|=72.(2)22221212122222221212125325()2()3()2113722439()9()24x x x x x x x x x x x x --⨯-+++-+=====⋅-.(3)x 13+x 23=(x 1+x 2)(x 12-x 1x 2+x 22)=(x 1+x 2)[(x 1+x 2)2-3x 1x 2]=(-52)×[(-52)2-3×(32-)]=-2158.说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则12b x a -+=,22b x a--=,∴|x 1-x 2|=||||a a ==.于是有下面的结论:若x 1和x 2分别是一元二次方程ax 2+bx +c =0(a ≠0),则|x 1-x 2|=||a 中Δ=b 2-4ac ).今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论.例6若关于x 的一元二次方程x 2-x +a -4=0的一根大于零、另一根小于零,求实数a 的取值范围.解:设x 1,x 2是方程的两根,则x 1x 2=a -4<0,①且Δ=(-1)2-4(a -4)>0.②由①得a <4,由②得a <174.∴a 的取值范围是a <4.练习1.选择题:(1)方程033222=+-k kx x 的根的情况是()(A )有一个实数根(B )有两个不相等的实数根(C )有两个相等的实数根(D )没有实数根(2)若关于x 的方程mx 2+(2m +1)x +m =0有两个不相等的实数根,则实数m的取值范围是()(A )m <14(B )m >-14(C )m <14,且m ≠0(D )m >-14,且m ≠02.填空:(1)若方程x 2-3x -1=0的两根分别是x 1和x 2,则1211x x +=.(2)方程mx 2+x -2m =0(m ≠0)的根的情况是.(3)以-3和1为根的一元二次方程是.3.已知|1|0b -=,当k 取何值时,方程kx 2+ax +b =0有两个不相等的实数根?4.已知方程x 2-3x -1=0的两根为x 1和x 2,求(x 1-3)(x 2-3)的值.习题2.1A 组1.选择题:(1)已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是()(A )-3(B )3(C )-2(D )2(2)下列四个说法:①方程x 2+2x -7=0的两根之和为-2,两根之积为-7;②方程x 2-2x +7=0的两根之和为-2,两根之积为7;③方程3x 2-7=0的两根之和为0,两根之积为73-;④方程3x 2+2x =0的两根之和为-2,两根之积为0.其中正确说法的个数是()(A )1个(B )2个(C )3个(D )4个(3)关于x 的一元二次方程ax 2-5x +a 2+a =0的一个根是0,则a 的值是()(A )0(B )1(C )-1(D )0,或-12.填空:(1)方程kx 2+4x -1=0的两根之和为-2,则k =.(2)方程2x 2-x -4=0的两根为α,β,则α2+β2=.(3)已知关于x 的方程x 2-ax -3a =0的一个根是-2,则它的另一个根是.(4)方程2x 2+2x -1=0的两根为x 1和x 2,则|x 1-x 2|=.3.试判定当m 取何值时,关于x 的一元二次方程m 2x 2-(2m +1)x +1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x 2-7x -1=0各根的相反数.B组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于()(A(B )3(C )6(D )9(2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x 的值为()(A )6(B )4(C )3(D )32(3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为()(A )α+β≥12(B )α+β≤12(C )α+β≥1(D )α+β≤1(4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c=0的根的情况是()(A )没有实数根(B )有两个不相等的实数根(C )有两个相等的实数根(D )有两个异号实数根(5)若关于x 的方程x 2+(k 2-1)x +k +1=0的两根互为相反数,则k 的值为()(A )1,或-1(B )1(C )-1(D )02.填空:(1)若m ,n 是方程x 2+2005x -1=0的两个实数根,则m 2n +mn 2-mn 的值等于.(2)如果a ,b 是方程x 2+x -1=0的两个实数根,那么代数式a 3+a 2b +ab 2+b 3的值是.3.已知关于x 的方程x 2-kx -2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x 1和x 2,如果2(x 1+x 2)>x 1x 2,求实数k 的取值范围.4.一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1和x 2.求:(1)|x 1-x 2|和122x x +;(2)x 13+x 23.5.关于x 的方程x 2+4x +m =0的两根为x 1,x 2满足|x 1-x 2|=2,求实数m 的值.6.已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)(x 1-2x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由;(2)求使1221x x x x +-2的值为整数的实数k 的整数值;(3)若k =-2,12x x λ=,试求λ的值.7.若关于x 的方程x 2+x +a =0的一个大于1、另一根小于1,求实数a 的取值范围.2.2二次函数2.2.1二次函数y =ax 2+bx +c 的图像和性质问题1函数y =ax 2与y =x 2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象.先列表:x …-3-2-10123…x 2…9410149…2x 2…18822818从表中不难看出,要得到2x 2的值,只要把相应的x 2的值扩大两倍就可以了.再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系.通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.问题2函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.图2.2-2xyO -1y =2x 2y =2(x +1)2y =2(x +1)2+1y =x 2y =2x 2图2.2-1xO y类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a =ab ac a b x a 442(22-++所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a --,对称轴为直线x =-2b a ;当x <2ba-时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a-.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a-.上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决问题.例1求二次函数y =-3x 2-6x +1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x 取何值时,y 随x 的增大而增大(或减小)?并画出该函数的图象.解:∵y =-3x 2-6x +1=-3(x +1)2+4,∴函数图象的开口向下;对称轴是直线x =-1;顶点坐标为(-1,4);当x =-1时,函数y 取最大值y =4;当x <-1时,y 随着x 的增大而增大;当x >-1时,y 随着x 的增大而减小;采用描点法画图,选顶点A (-1,4)),与x 轴交于点B 3(,0)3和C 3(,0)3+-,与y 轴的交点为D (0,1),过这五点画出图象(如图2.2-5所示).说明:从这个例题可以看出,根据配方后得到的性质画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.例2把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.解法一:y =x 2+bx +c =(x +2b )224b c +-,把它的图像向上平移2个单位,再向左平移4个单位,得到22(4)224b b y xc =+++-+的图像,也就是函数y =x 2的图图2.2-3图2.2-4xO yx =-1A (-1,4)D (0,1)BC图2.2-5像,所以,240,220,4bb c ⎧--=⎪⎪⎨⎪-+=⎪⎩解得b =-8,c =14.解法二:把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,等价于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x 2+bx +c 的图像.由于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =(x -4)2+2的图像,即为y =x 2-8x +14的图像,∴函数y =x 2-8x +14与函数y =x 2+bx +c 表示同一个函数,∴b =-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,则是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.例3已知函数y =x 2,-2≤x ≤a ,其中a ≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.分析:本例中函数自变量的范围是一个变化的范围,需要对a 的取值进行讨论.解:(1)当a =-2时,函数y =x 2的图象仅仅对应着一个点(-2,4),所以,函数的最大值和最小值都是4,此时x =-2;(2)当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a 2;(3)当0≤a <2时,由图2.2-6②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;(4)当a ≥2时,由图2.2-6③可知,当x =a 时,函数取最大值y =a 2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的方法,对a 的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题.练习1.选择题:(1)下列函数图象中,顶点不在坐标轴上的是()(A )y =2x 2(B )y =2x 2-4x +2(C )y =2x 2-1(D )y =2x 2-4x(2)函数y =2(x -1)2+2是将函数y =2x 2()(A )向左平移1个单位、再向上平移2个单位得到的(B )向右平移2个单位、再向上平移1个单位得到的(C )向下平移2个单位、再向右平移1个单位得到的(D )向上平移2个单位、再向右平移1个单位得到的2.填空题(1)二次函数y =2x 2-mx +n 图象的顶点坐标为(1,-2),则m =,n=.(2)已知二次函数y =x 2+(m -2)x -2m ,当m =时,函数图象的顶点在y 轴上;当m =时,函数图象的顶点在x 轴上;当m =时,函数图象经过原点.(3)函数y =-3(x +2)2+5的图象的开口向,对称轴为,顶点坐标为;当x =时,函数取最值y=;当x时,y 随着x 的增大而减小.①图2.2-6②③3.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象.(1)y=x2-2x-3;(2)y=1+6x-x2.4.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3.2.2.2二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k(a≠0),其中顶点坐标是(-h,k).除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx+c=0的两根,所以x 1+x 2=b a -,x 1x 2=ca,即b a =-(x 1+x 2),ca=x 1x 2.所以,y =ax 2+bx +c =a (2b cx x a a++)=a [x 2-(x 1+x 2)x +x 1x 2]=a (x -x 1)(x -x 2).由上面的推导过程可以得到下面结论:若抛物线y =ax 2+bx +c (a ≠0)与x 轴交于A (x 1,0),B (x 2,0)两点,则其函数关系式可以表示为y =a (x -x 1)(x -x 2)(a ≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y =a (x -x 1)(x -x 2)(a ≠0),其中x 1,x 2是二次函数图象与x 轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.例1已知某二次函数的最大值为2,图像的顶点在直线y =x +1上,并且图象经过点(3,-1),求二次函数的解析式.分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a .解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y =x +1上,所以,2=x +1,∴x =1.∴顶点坐标是(1,2).设该二次函数的解析式为2(2)1(0)y a x a =-+<,∵二次函数的图像经过点(3,-1),∴21(32)1a -=-+,解得a =-2.∴二次函数的解析式为22(2)1y x =--+,即y =-2x 2+8x -7.说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.例2已知二次函数的图象过点(-3,0),(1,0),且顶点到x 轴的距离等于2,求此二次函数的表达式.分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x 轴的交点坐标,于是可以将函数的表达式设成交点式.解法一:∵二次函数的图象过点(-3,0),(1,0),∴可设二次函数为y =a (x +3)(x -1)(a ≠0),展开,得y =ax 2+2ax -3a ,顶点的纵坐标为2212444a a a a--=-,由于二次函数图象的顶点到x 轴的距离2,∴|-4a |=2,即a =12±.所以,二次函数的表达式为y =21322x x +-,或y =-21322x x -+.分析二:由于二次函数的图象过点(-3,0),(1,0),所以,对称轴为直线x =-1,又由顶点到x 轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点(-3,0),或(1,0),就可以求得函数的表达式.解法二:∵二次函数的图象过点(-3,0),(1,0),∴对称轴为直线x =-1.又顶点到x 轴的距离为2,∴顶点的纵坐标为2,或-2.于是可设二次函数为y =a (x +1)2+2,或y =a (x +1)2-2,由于函数图象过点(1,0),∴0=a (1+1)2+2,或0=a (1+1)2-2.∴a =-12,或a =12.所以,所求的二次函数为y =-12(x +1)2+2,或y =12(x +1)2-2.说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.例3已知二次函数的图象过点(-1,-22),(0,-8),(2,8),求此二次函数的表达式.解:设该二次函数为y =ax 2+bx +c (a ≠0).由函数图象过点(-1,-22),(0,-8),(2,8),可得22,8,842,a b c c a b c -=-+⎧⎪-=⎨⎪=++⎩解得a =-2,b =12,c =-8.所以,所求的二次函数为y =-2x 2+12x -8.通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式?练习1.选择题:(1)函数y =-x 2+x -1图象与x 轴的交点个数是()(A )0个(B )1个(C )2个(D )无法确(2)函数y =-12(x +1)2+2的顶点坐标是()(A )(1,2)(B )(1,-2)(C )(-1,2)(D )(-1,-2)2.填空:(1)已知二次函数的图象经过与x 轴交于点(-1,0)和(2,0),则该二次函数的解析式可设为y =a(a ≠0).(2)二次函数y =-x 2+23x +1的函数图象与x 轴两交点之间的距离为.3.根据下列条件,求二次函数的解析式.(1)图象经过点(1,-2),(0,-3),(-1,-6);(2)当x =3时,函数有最小值5,且经过点(1,11);(3)函数图象与x 轴交于两点(1-2,0)和(1+2,0),并与y 轴交于(0,-2).2.2.3二次函数的简单应用一、函数图象的平移变换与对称变换1.平移变换问题1在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可.例1求把二次函数y=x2-4x+3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位;(2)向上平移3个单位,向左平移2个单位.分析:由于平移变换只改变函数图象的位置而不改变其形状(即不改变二次项系数),所以只改变二次函数图象的顶点位置(即只改变一次项和常数项),所以,首先将二次函数的解析式变形为顶点式,然后,再依据平移变换后的二次函数图象的顶点位置求出平移后函数图像所对应的解析式.解:二次函数y=2x2-4x-3的解析式可变为y=2(x-1)2-1,其顶点坐标为(1,-1).(1)把函数y=2(x-1)2-1的图象向右平移2个单位,向下平移1个单位后,其函数图象的顶点坐标是(3,-2),所以,平移后所得到的函数图象对应的函数表达式就为y=2(x-3)2-2.(2)把函数y=2(x-1)2-1的图象向上平移3个单位,向左平移2个单位后,其函数图象的顶点坐标是(-1,2),所以,平移后所得到的函数图象对应的函数表达式就为。
初升高数学暑假衔接(人教版)第09讲 函数的概念及其表示(教师版)

第9讲函数的概念及其表示1.理解函数的概念,了解构成函数的三要素;2.能正确使用区间表示数集,会求简单函数的定义域、函数值和值域;3.掌握函数的三种表示法—解析法、图象法、列表法;4.了解两个函数相等的意义,会判断给定两个函数是否为同一个函数;5.会求函数的解析式,并正确画出函数的图象。
一、函数的定义及概念概念1、函数的定义:设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,称f :A →B 为从集合A 到集合B 的一个函数,记作:y =f (x ),x ∈A【注意】函数的本质含义:定义域内的任意一个x 值,必须有且仅有唯一的y 值与之对应。
(1)特殊性:定义的集合A ,B 必须是两个非空数集;(2)任意性:A 中任意一个数都要考虑到;(3)唯一性:每一个自变量都在B 中有唯一的值与之对应;(4)方向性:A →B2、函数的有关概念(1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(2)函数的三要素:定义域、对应关系和值域.(3)函数的表示法:表示函数的常用方法有解析法、图象法和列表法.3、函数的三要素的理解(1)定义域:使函数解析式有意义或使实际问题有意义的x 的取值范围;(2)对应关系:是函数关系的本质特征,是沟通定义域与值域的桥梁,在定义域确定的情况下,对应关系控制着值域的形态,f 可以看作是对“x ”施加的某种运算或法则。
例如:2()f x x =,f 就是对自变量x 求平方。
(3)值域:对应关系f 对自变量x 在定义域内取值时相应的函数值的集合,其中,()y f x =表示“y 是x 的函数”,指的是y 为x 在对应关系f 下的对应值。
4、同一个函数:两个函数定义域相同,并且对应关系完全一致,则称这两个函数为同一个函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015初升高暑假数学辅导资料(一) 集合的含义与表示(2课时)(Ⅰ)、基本概念及知识体系:1、了解集合的含义、领会集合中元素与集合的∈、关系;元素:用小写的字母a,b,c,…表示;元素之间用逗号隔开。
集合:用大写字母A,B,C,…表示;2、能准确把握集合语言的描述与意义:列举法和描述法:注意以下表示的集合之区别:{y=x2+1};{x2-x-2=0},{x| x2-x-2=0},{x|y=x2+1};{t|y=t2+1};{y|y=x2+1};{(x,y)|y=x2+1};;{},{0}3、特殊的集合:N、Z、Q、R;N*、;(Ⅱ)、典例剖析与课堂讲授过程:一、集合的概念以及元素与集合的关系:1、元素:用小写的字母a,b,c,…表示;元素之间用逗号隔开。
集合:用大写字母A,B,C,…表示;元素与集合的关系:∈、②、特殊的集合:N、Z、Q、R;N*、;③、集合中的元素具有确定性、互异性、无序性:★【例题1】、已知集合A={a-2,2a2+5a,10},又-3∈A,求出a之值。
●解析:分类讨论思想;a=-1(舍去),a=▲★课堂练习:1、书本P5:练习题1;P11:习题1.1:题1、2、5:①②2、已知集合A={1,0,x},又x2∈A,求出x之值。
(解:x=-1)3、已知集合A={a+2,(a+1)2,a2+3a+3},又1∈A,求出a之值。
(解:a=0)二、集合的表示---------列举法和描述法★【例题2】、书本P3:例题1、P4:例题2★【例题3】、已知下列集合:(1)、={n | n = 2k+1,kN,k5};(2)、={x | x = 2k, kN, k3};(3)、={x | x = 4k+1,或x = 4k-1,kk3};问:(Ⅰ)、用列举法表示上述各集合;(Ⅱ)、对集合,,,如果使kZ,那么,,所表示的集合分别是什么?并说明与的关系。
解:(Ⅰ)、⑴={n | n = 2k+1,kN ,k5}={1,3,5,7,9,11};⑵、={x | x = 2k, kN, k3}={0,2,4,6};⑶、={x | x = 4k1,kk3}={-1,1,3,5,7,9,11,13};(Ⅱ)、对集合,,,如果使kZ,那么、所表示的集合都是奇数集;所表示的集合都是偶数集。
▲点评:(1)通过对上述集合的识别,进一步巩固对描述法中代表元素及其性质的表述的理解;(2)掌握奇数集.偶数集的描述法表示和集合的图示法表示。
★【例题4】、已知某数集A满足条件:若,则.①、若2,则在A中还有两个元素是什么;②、若A为单元素集,求出A和之值.● 解:①和;②(此时)或(此时)。
▲●课堂练习:1、书本P5:练习题2;P12:题3、42、设集合M={x|x= 4m+2,m∈Z},N={y|y= 4n+3,n∈Z},若x0∈M,y0∈N,则x0·y0与集合M、N的关系是( A):A、x0·y0∈M B、x0·y0M C、x0·y0∈N D、无法确定●解:x0·y0= 4(4mn+3m+2n+1)+2,则x0·y0∈M三、今日作业:1、已知集合B={x|ax2-3x+2=0,a∈R},若B中的元素至多只有一个,求出a 的取值范围。
(解:a=0或a≥9/8)2、已知集合M={x∈N|∈Z},求出集合M。
(解:M={0,1,2,5}3、已知集合N={∈Z | x∈N},求出集合N。
(解:N={1,2,3,6}四、提高练习:★【题1】、(2006年·辽宁·T5·5分)设⊕是R上的一个运算,A是R上的非空子集,若对任意的a、b∈A,有a⊕b∈A,则称A对运算⊕封闭,下列数集对加法、减法、乘法和除法(除数不等于0)四则运算都封闭的是( C )A 自然数集B 整数集C 有理数集D 无理数集★【题2】(2006年·山东·T1·5分)定义集合运算:A⊙B={z︳z=xy(x+y),z∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为( D )(A)0 (B)6 (C)12 (D)18★【题3】(2005年·湖北·T1·5分)设P、Q为两个非空实数集合,定义集合P+Q=,则P+Q中元素的个数是( B )A.9 B.8 C.7 D.6★【题4】(广东2007年理科·8题)设是至少含有两个元素的集合,在上定义了一个二元运算“*”(即对任意的,对于有序元素对(),在中有唯一确定的元素与之对应).若对任意的,有,则对任意的,下列等式中不恒成立的是( A )A.B.C.D.(Ⅲ)、课堂回顾与小结:1、记准N、Z、Q、R;2、分清列举法和描述法,注意集合中的元素是否满足互异。
◆讲义二:集合之间的基本关系(2课时)(Ⅰ)、基本概念及知识体系:1、集合之间的基本关系:包含关系------子集、真子集、空集;集合的相等。
2、注意韦恩图、利用数轴的数形结合思想以及分类讨论的数学思想的培养与应用。
(Ⅱ)、典例剖析与课堂讲授过程:(一)、集合之间的基本关系:子集、真子集、空集(如方程x2+1=0的根);集合的相等。
(二)、含有n个元素的集合A的子集个数是_____2n,,真子集个数是___2n-1,非空真子集:2n-2★【例题1】、已知集合P={x|x2-5x+4≤0},Q={x|x2-(b+2)x+2b≤0}且有PQ,求实数b的取值范围。
●解:{b|1≤b≤4};注意利用数轴去加以判断。
★【例题2】、(2007年湖南·10题).设集合,都是的含两个元素的子集,且满足:对任意的,(,),都有(表示两个数中的较小者),则的最大值是( B )A.10 B.11 C.12 D.13 ★【例题3】、(2007年北京文科·15题·12分)记关于的不等式的解集为,不等式的解集为.()若,求;()若,求正数的取值范围.●解:()由,得.().由,得,又,所以,即的取值范围是.▲★课堂练习:1、书本P7:练习题1、2、3;P12: 5:①②③;B组第2题。
2、已知集合A={2,8,a}, B={2,a2-3a+4},又AB,求出a之值。
(解:a= -1或4)3、已知集合A={x|-3≤x≤4}B={x|2m-1≤x≤m+1},当BA时,求出m之取值范围。
(解:m≥-1)特别注意:当BA时,B一定包括有两种情形:B=或B≠,解题时极易漏掉B=这一情况从而出错!(三)、今日作业:●1、判断下列集合A与B之间有怎样的包含或相等关系:①、已知集合A={x|x=2k-1,k∈Z}B={x|x=2m+1,m∈Z}(解:A=B)②、已知集合A={x|x=2k,k∈Z}B={x|x=4m,m∈Z}(解:B A)●2、已知集合M={x|-2≤x≤5},N={x|m+1≤x≤2m-1}①、若NM,求实数m的取值范围;(解:m≤3,注意N为的情况!)②、若x∈Z,则M的非空真子集的个数是多少个?(解:28-2=254个)③、(选做)当x∈R 时,没有元素使得x∈M与x∈N同时成立,求实数m 的取值范围(解:m<2或m>4)(四)、提高练习:★【题1】、设集合S={a,b,c,d,e},则包含{a,b}的S的子集共有(D )个A 2B 3C 5D 8★【题2】、集合A={(x,y)|2x+y=5,x∈N,y∈N},则A的非空真子集的个数为(C )A4B5C6D7★【题3】、对于两个非空数集A、B,定义点集如下:A×B={(x,y)|x∈A,y∈B},若A={1,3},B={2,4},则点集A×B的非空真子集的个数是___14_个★【题4】、集合的真子集个数是( A )(A)16 (B)8 (C)7 (D)4●解答、,A的真子集有:,共7个,选C★【题5】、(2004湖北)已知集合P={m|-1<m<0},Q={m∈R|mx2+4mx-4<0对任意的x∈R恒成立},则有( B )A P=Q BPQ C PQ D P∩Q=Q★【题6】、设集合M={x|x=+,k∈Z},N={x|x=+,k∈Z},则( B)A M=N BMN C MN D M∩N=(Ⅲ)、课堂回顾与小结:3、分清子集、真子集、空集;注意的特殊性。
4、利用韦恩图,利用数轴,注意分类讨论思想的培养与应用。
讲义三:集合之间的基本运算(2课时)(Ⅰ)、基本概念及知识体系:1、集合之间的基本运算:①、交集A∩B={x|x∈A且x∈B};②、并集A∪B={x|x∈A或x∈B};③、全集和补集:CUA={x|x∈U且xA}2、注意韦恩图、利用数轴的数形结合思想以及分类讨论的数学思想的培养与应用。
(Ⅱ)、典例剖析与课堂讲授过程:(一)、集合之间的基本运算:A∩B={x|x∈A且x∈B}; A∪B={x|x∈A或x∈B};CUA={x|x∈U且xA}(二)、A∪B=A ?BA,要特别注意B是否为的情况的讨论。
★【例题1】、已知集合A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0}且有A∪B=A ,求实数a的取值集合。
●解:{a|a<-4,或a=-2,或a≥4};注意,注意分类讨论。
★【例题2】、已知全集U={x|x≤4},集合A={x|-2<x<3}, 集合B={x|-3<x≤3},求①、CUA,②、A∩B,③、CU(A∩B),④、(CUA)∩B,⑤、CU(A∪B)●解:{a|a<-4,或a=-2,或a≥4};注意,注意分类讨论。
★【例题3】、已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},且有A∩B≠,求实数m的取值范围。
●解:(正难则反,补集的思想){m|m≤-1}▲★课堂练习:◆1、书本P11:练习题1、2、3、4;P12: 6、7、8、9;B组第3、题。
◆2、、(2006年·辽宁·T1·5分)设集合A={1,2},则满足A∪B={1,2,3}的集合B的个数为( C )A 1B 3C 4D 8◆3、(2005年·全国Ⅰ·T2·5分)设I为全集,S1、S2、S3是I 上的三个非空子集,且S1∪S2∪S3=I,则下列论断正确的是( C )A CIS1∩(S2∪S3)=B S1(CIS2∩CIS3) CCIS1∩CIS2∩CIS3= D S1(CIS2∪CIS3)4、已知集合A={x|-3≤x≤4}B={x|2m-1≤x≤m+1},当A∪B=A时,求出m之取值范围。
(解:m≥-1)特别注意:当BA时,B一定包括有两种情形:B=或B≠,解题时极易漏掉B=这一情况从而出错!(三)、今日作业:●1、已知集合A={x|x+2>0},B={x|ax-3<0}且有A∪B=A,求a 的取值范围。