【苏科版】2019年春八年级数学下册 导学案 7数据的收集整理描述小结与思考
第7章 数据的收集、整理、描述(小结与思考)(单元复习课件)八年级数学下册(苏科版)

设计调查问卷
抽样调查
整理数据
分析数据
用样本估计总体
巩固练习
1. 某地区有25所中学,其中八年级学生共6000名.为了了解该地区八
年级学生的体重情况,请你运用所学的统计知识,将解决上述问题所
要经历的几个主要步骤进行排序.①抽样调查;②设计调查问卷;③
用样本估计总体;④整理数据;⑤分析数据.
C.韩式
D.其他
日
)(单选)
考点分析
【整理、描述数据】调查员根据调查结果绘制了如下不完整的统计表.
装修风格
A
B
C
D
合计
划记
正正正正正
正正正
正
正
/
(1)补全统计表;
人数
25
15
5
5
50
考点分析
【分析数据】
(2)求喜爱中式与欧式装修风格的人数之和在所有被调查的客户中所占
的比例;
解:(25+15)÷50×100%=80%.
年级抽取,那么这样的抽样是否合理?请说明理由.
解:()不合理,理由:
∵如果名学生全部在同一个年级抽取,那么这样抽取的学生不具
有随机性,比较片面,
∴这样的抽样不合理.
巩固练习
()根据抽样调查的结果,将估计出的全校名学生上学方式的情况
绘制成条形统计图(如图② ).
解:()估计步行的人数为 × % =
从统计图(表)中获取信息解决问题
例6 九年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全
为一特定目的而对部分考察对象所做的调查叫做抽样调
查.
总体、个体、样本、样本容量
数据的整理
【苏科版】八年级数学下册7数据的收集整理描述小结与思考导学案

课题
小结与思考
自主空间
学习目标
知识与技能:掌握扇形统计图,条形统计图,折线统计图,频数分布直方图和频数分布折线图.
过程与方法:从事收集、整理、描述和分析数据的活动,回顾、交流、梳理本章的学习内容,构建知识框架,体会并初步培养统计意识。
学习重点
通过本章的学习,培养学生的统计意识和统计推理
问题2统计调查有哪两种方式?这两种方式的优、缺点各是什么?
问题3你能举例说明什么叫总体、个体、样本和样本的容量吗?
问题4如何画扇形统计图?
问题5扇形统计图、条形统计图、折线统计图和频数分布直方图各有什么特点?
二、例题分析:
1.以下三个统计图系据某报反映世界人口情况的数据所绘:
试回答下列问题:
⑴从哪幅统计图中能看出世界人口的变化情况?
三、展示交流:
下图是李庄煤矿2000~2003年产量统计图
问:⑴哪一年的产量最高?是多少万吨?比前一年增产了百分之几?
⑵哪一年的产量比前一年有所下降?降低了多少万吨?
⑶这4年的平均产量是多少万吨?哪一年的产量低于4年的平均产量,少多少万吨?
⑷将4年产量制作成扇形统计图;
⑸请适当提出几个有价值的问题.
学习难点
通过本章的学习,培养学生的统计意识和统计推理
教学流程
预
习
导
航
为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数).为了解本次竞赛成绩情况,从中随机抽取了部分学生的竞赛成绩,进行统计,整理见下表:
组别
分组
频数
频率
1
49.5~59.5
苏科版八年级下册数学第7章 数据的收集、整理、描述 含答案

苏科版八年级下册数学第7章数据的收集、整理、描述含答案一、单选题(共15题,共计45分)1、为了解参加运动会的2000名运动员的年龄情况,从中抽查了100•名运动员的年龄.就这个问题来说,下面说法中正确的是()A.2000名运动员是总体B.每个运动员是个体C.100名运动员是抽取的一个样本D.抽取的100名运动员的年龄是样本2、如图是某年参加国际教育评估的15个国家学生的数学平均成绩的扇形统计图,由图可知,学生的数学平均成绩在之间的国家占()A. B. C. D.3、已知数据:,,,π,-2,其中无理数出现的频率为( )A.0.2B.0.4C.0.6D.0.84、为了了解某市七年级8万名学生的数学学习情况,抽查了10%的学生进行一次测试成绩分析.下面四个说法中,正确的是()A.8000名学生是总体B.8000名学生的测试成绩是总体的一个样本 C.每名学生是总体的一个样本 D.样本容量是800005、下列调查中,调查方式选择合理的是()A.新冠肺炎疫情期间,为了解某小区的居民体温,选择抽样调查B.为了解曲江南湖公园全年的游客流量,选择全面调查C.为了解某品牌木地板的甲醛含量,选择全面调查D.为了解北斗三号卫星零件的质量,选择全面调查6、某学校为了了解九年级体能情况,随机选取20名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为()A.0.1B.0.17C.0.33D.0.47、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表:尺码(厘米)25 25.5 26 26.5 27购买量(双)1 2 3 2 2则这10双运动鞋尺码的众数和中位数分别为()A.25.5厘米,26厘米B.26厘米,25.5厘米C.25.5厘米,25.5厘米D.26厘米,26厘米8、下列调查方式适合用全面调查的是()A.了解我校学生每天完成回家作业的时间.B.了解台州市的空气污染指数.C.日光灯管厂要检测一批灯管的使用寿命.D.飞机起飞前的检查.9、九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是()A.80%B.70%C.92%D.86%10、下列说法正确的是()A.为了解一批电池的使用寿命,应采用全面调查的方式B.数据,,...,的平均数是,方差是,则数据,,...,的平均数是,方差是 C.通过对甲、乙两组学生数学成绩的跟踪调查,整理计算得到甲、乙两组数据的方差为,,则乙数据较为稳定 D.为了解官渡区九年级多名学生的视力情况,从中随机选取名学生的视力情况进行分析,则选取的样本容量为11、下列调查适合用普查的是()A.夏季冷饮市场上冰淇淋的质量B.某本书中的印刷错误C.公民安全意识D.一批灯泡的使用寿命12、如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A.九(3)班外出的学生共有42人B.九(3)班外出步行的学生有8人 C.在扇形图中,步行的学生人数所占的圆心角为82 D.如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人13、某射击运动员在训练中射击了10次,成绩如图所示:下列结论错误的是()A.众数是8B.中位数是8C.平均数是8.2D.方差是1.814、下列调查中,其中适合采用抽样调查的是()①检测深圳的空气质量;②为了解某中东呼吸综合征(MERS)确诊病人同一架飞机乘客的健康情况;③为保证“神舟9号”成功发射,对其零部件进行检查;④调查某班50名同学的视力情况.A.①B.②C.③D.④15、如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是()A.平均数是6B.中位数是6.5C.众数是7D.平均每周锻炼超过6小时的人数占该班人数的一半二、填空题(共10题,共计30分)16、要从小华、小明两名射击运动员中选择一名运动员参加射击比赛,在赛前对他们进行了一次选拔赛,下图为小华、小明两人在选拔赛中各射击10次成绩的折线图和表示平均数的水平线.你认为应该选择________(填“小华”或“小明”)参加射击比赛;理由是________.17、某初一年级有500名同学,将他们的身高(单位:cm)数据绘制成频率分布直方图(如图),若要从身高在,,三组内的学生中,用分层抽样的方法选取30人参加一项活动,则从身高在内的学生中选取的人数为________.18、某实验室对150款不同型号的保温杯进行质量检测,其中一个品牌的30款保温杯的保温性、便携性与综合质量在此检测中的排名情况如图所示,可以看出其中A型保温杯的优势是________.19、在整理数据5、5、3、█、2、4时,█处的数据看不清,但从扇形统计图的答案上发现数据5的圆心角是180度,则█处的数据是________.20、某校“环保小组”的学生到某居民小区随机调查了户居民一天丢弃废塑料袋的情况,统计结果如下表:请根据表中提供的信息回答:每户居民丢弃废塑料袋的个数户数这户居民一天丢弃废塑料袋的众数是________个;若该小区共有居民户,你估计该小区居民一个月(按天计算)共丢弃废塑料袋________个.21、已知数据为100个,最大值为89,最小值为40,组距为8,则可分成组数为________组.22、某地区有36所中学,其中九年级学生共7000名.为了了解该地区九年级学生的体重情况,请你运用所学的统计知识,将解决上述问题所要经历的几个主要步骤进行排序.①抽样调查;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.排序:________ (只写序号)23、某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如下面的条形图所示.这15名同学进球数的众数是________.24、江涛同学统计了他家10月份的长途电话明细清单,按通话时间画出频数分布直方图.①他家这个月一共打了________次长途电话;②通话时间不足10分钟的________次;③通话时间在________分钟范围最多,通话时间在________分钟范围最少.25、下表是某批足球质量检验获得的数据,请根据此表回答,当抽取的足球数很大时,这批足球优等品的频率会在常数________ 附近摆动.抽取的足球数50 100 200 500 1000 2000优等品数47 95 194 472 953 1902三、解答题(共6题,共计25分)26、苏州市某校对九年级学生进行“综合素质”评价,评价的结果为A (优)、B(良好)、C(合格)、D(不合格)四个等级,现从中抽测了若干名学生的“综合素质”等级作为样本进行数据处理,并作出如图所示的统计图,已知图中从左到右的四个长方形的高的比为:14:9:6:1,评价结果为D等级的有2人,请你回答以下问题:(1)共抽测了多少人?(2)样本中B等级的频率是多少?C等级的频率是多少?(3)如果要绘制扇形统计图,A、D两个等级在扇形统计图中所占的圆心角分别是多少度?(4)该校九年级的毕业生共300人,假如“综合素质”等级为A或B的学生才能报考示范性高中,请你计算该校大约有多少名学生可以报考示范性高中?27、“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:类别组别PM2.5日平均浓度值m(微g/立方米)频数频率A1 15m<302 0.082 30m<453 0.12B 3 45m<60 a b4 60m<75 5 0.20C 5 75m<90 6 cD 6 90m<105 4 0.16合计以上分组均含最小值,不含最大值25 1.00根据图表中提供的信息解答下列问题:(1)统计表中的a,b,c分别是多少?(2)在扇形统计图中,A类所对应的圆心角是多少度?(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微g/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?28、春季以来,我国西南地区遭受了严重的旱情,某校学生会自发组织了“保护水资源从我做起”的活动.同学们采取问卷调查的方式,随机调查了本校150名同学家庭月人均用水量和节水措施情况.以下是根据调查结果作出的统计图的一部分.请根据以上信息解答问题:(1)补全图1和图2;(2)如果全校学生家庭总人数约为3000人,根据这150名同学家庭月人均用水量,估计全校学生家庭月用水总量.29、红星小学对全校同学进行最喜欢的运动项目调查,调查情况具体如图,其中150名同学喜欢羽毛球,喜欢跳绳的同学有多少名?30、请你设计一个调查方案,了解自己班的同学每位家庭的月用水量情况.参考答案一、单选题(共15题,共计45分)1、D3、C4、B5、D6、D7、D8、D9、C10、D11、B12、B13、D14、A15、A二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)27、28、30、。
八年级数学下册第7章数据的收集、整理、描述小结与思考教案(新版)苏科版

第7章数据的收集、整理、描述教学目标:1、能正确说出数据收集及整理描述的方法及知识要点。
2、能应用相关的方法和知识解决相关问题。
3、能根据数据的整理描述进行决策和获取信息。
重点、难点:应用学习的方法和知识解决相关问题,根据数据的整理描述决策。
教学过程:一.【预学指导】1、统计调查的方式(收集数据的方式):和 .2、抽样调查的要求:要有随机性,性和性.3、总体与个体、样本与样本容量总体:要考查的对象称为总体.个体:组成总体的考察对象称为个体.样本:从中抽取调查的那些个体构成总体的一个样本.样本容量:样本中包含的称为样本容量(不带单位).4、我们常用________图、_______图、________图来描述数据.5、四种统计图在表示数据方面各有什么特点:条形图能够显示每组中的;扇形图能够显示部分在总体中所占的;折线图能够显示数据的;5、画频数分布直方图的一般步骤6、频数分布直方图与条形统计图一样吗?若不同,有何区别与联系?二.【问题探究】问题1.下列调查中,哪些用的是普查方式,哪些用的是抽样调查方式?(1)了解一批空调的使用寿命;(2)出版社审查书稿的错别字的个数;(3)调查全省全民健身情况.问题2.请指出下列抽样调查的总体、个体、样本、样本容量分别是什么?(1)为了了解某种家用空调工作1小时的用电量,调查10台该种空调每台工作1小时的用电量;(2)为了了解某校八年级名学生的视力情况,从中抽取名学生进行视力检查.问题3.(1)天籁音乐行出售三种音乐CD,即古典音乐、流行音乐、民族音乐,为了表示这三种唱片的销售量占总销售的百分比,应该用()A.扇形统计图 B.折线统计图 C.条形统计图 D.以上都可以(2)要清楚地表明一病人的体温变化情况,应选择的统计图是( ) A.扇形统计图 B.条形统计图 C.折线统计图 D.以上都不是问题4.有若干个数据,最大值是124,最小值是103.•用频数分布表描述这组数据时,若取组距为3,则应分为组问题5.学校团委会为了举办“庆祝五·四”活动,调查了本校所有学生,调查结果如图所示,根据图中给出的信息,这次学校赞成举办郊游活动的学生有人.三.【拓展提升】1.为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况.并将所得数据进行了统计,结果如图所示.(1)求在这次调查中,一共抽查了多少名学生;(2)求出扇形统计图中参加“音乐”活动项目所对扇形的圆心角的度数;(3)若该校有名学生,请估计该校参加“美术”活动项目的人数.2、2.某中学学生会为了解该校学生喜欢球类活动的情况,采取抽样调查的方法,让若干名学生从足球、乒乓球、篮球、排球四种球类运动中选择自己最喜欢的一种,并将调查的结果绘制成如下的两幅不完整的统计图(如图1,图2,要求每位同学只能选择一种自己喜欢的球类运动;图中用乒乓球、足球、排球、篮球代表喜欢该项目的学生人数).请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)喜欢排球的人数在扇形统计图中所占的扇形圆心角是多少度?(3)补全折线统计图.四.【课堂小结】通过这节课的学习,你有什么收获呢?【板书设计】【教学反思】中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
苏科版八年级下册数学第7章 数据的收集、整理、描述 含答案

苏科版八年级下册数学第7章数据的收集、整理、描述含答案一、单选题(共15题,共计45分)1、我校为了解七年级男同学参加课外体育运动的情况,随机调查了50名七年级男同学,其中,参加篮球运动的有14人,乒乓球运动的有11人,足球运动的有13人,其余参加羽毛球运动.则参加羽毛球运动的频率是()A.0.28B.0.27C.0.26D.0.242、在一个不透明的箱子中,共装有白球、红球、黄球共60个,这些球的形状、大小、质地等完全相同。
小华通过多次试验后发现,从盒子中摸出黄球的频率是40%,那么盒子中黄球的个数很可能是( )A.9B.27C.24D.183、下列调查:①调查一批灯泡的使用寿命;②调查全班同学的身高;③调查市场上某种食品的色素含量是否符合国家标准;④企业招聘,对应聘人员进行面试.其中符合用抽样调查的是()A.①②B.①③C.②④D.②③4、在下列调查中,适合采用全面调查的是()A.了解市民对北京世园会的关注度B.了解七年级(3)班的学生期末成绩 C.调查全国中小学生课外阅读情况 D.环境部门调查6月长江某水域的水质情况5、以下问题,不适合采用全面调查方式的是()A.调查全班同学对商丘“京雄商”高铁的了解程度B.“冠状病毒”疫情期间,对所有疑似病例病人进行病毒检测C.为准备开学,对全班同学进行每日温度测量统计D.了解梁园区全体中小学生对“冠状病毒”的知晓程度6、下列事件中,最适合采用普查的是()A.了解一批灯泡的使用寿命B.了解中央电视台《最强大脑》栏目的收视率C.了解全国中学生体重情况D.了解某班学生对“七步洗手法”的知晓率7、为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中,下列说法正确的是 ( )A.300名学生是总体B.300是众数C.30名学生是抽取的一个样本 D.30是样本的容量8、今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计解析,以下说法正确的是()A.这1000名考生是总体的一个样本B.近4万名考生是总体C.每位考生的数学成绩是个体D.1000名学生是样本容量9、某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的的中位数大于乙运动员得分的的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定10、下列调查中,适合用普查方式的是( )A.夏季冷饮市场上某种冰淇淋的质量B.某品牌灯泡的使用寿命C.某校八年级2班学生的身高D.公民保护环境的意识11、下列调查中,最适合采用全面调查的是( )A.端午节期间市场上粽子质量B.了解CCTV1电视剧《麦香》的收视率 C.调查我校某班学生喜欢上数学课的情况 D.菜品牌手机的防水性能12、某初中一个学期的数学总平均分是按扇形图信息要求进行计算的,该校胡军同学这个学期的数学成绩如下:则胡军这个学期数学总平均分为()胡军平时作业期中考试期末考试90 85 88A.87.5B.87.6C.87.7D.87.813、下列说法正确的是()A.“购买1张彩票就中奖”是不可能事件B.“掷一次骰子,向上一面的点数是6”是随机事件C.了解我国青年人喜欢的电视节目应作全面调查 D.甲、乙两组数据,若S甲2>S乙2,则乙组数据波动大14、为了了解某产品促销广告中所称中奖率的真实性,某人买了100件该商品,调查其中奖率,在这个调查中,总体是()A.某产品B.某人买的100件商品C.某产品促销广告中所称的中奖率D.100件商品的中奖率15、如图,1﹣4月份,甲、乙两工厂月生产增长量的变化情况,则甲工厂和乙工厂生产增长量差值最大的月份是()A.1月份B.2月份C.3月份D.4月份二、填空题(共10题,共计30分)16、某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D等级这一组人数较多的班是________17、如图是小浩同学8月1日〜7日毎天的自主学习时间统计图,则小浩同学一天中自主学习时间最长是________小时,这七天平均每天的自主学习时间是________小时.18、在学校舞蹈比赛中,10名学生参赛成绩统计如图,极差和中位数分别是________,________.19、阳光体育运动,要求学生每一天锻炼一小时,如图是依据某班40名同学一周的体育锻炼时间绘制的条形统计图,那么关于该班50名同学一周参加体育锻炼时间的中位数为________小时.20、来自某综合市场财务部的报告表明,商场1﹣4月份的投资总额一共是2017万元,商场第一季度每月利润统计图和1﹣4月份利润率统计图如下(利润率=利润÷投资金额).则商场4月份利润是________ 万元.21、小红第1至6周每周零花钱收支情况如图所示,6周后小红的零花钱一共还剩________ 元.22、改革开放以来,由于各阶段发展重心不同,北京的需求结构经历了消费投资交替主导、投资消费双轮驱动到消费主导的变化.到,北京消费率超过投资率,标志着北京经济增长由投资消费双轮驱动向消费趋于主导过渡.如图是北京1978﹣投资率与消费率统计图.根据统计图回答:________年,北京消费率与投资率相同;从以后,北京消费率逐年上升的时间段是________.23、在2020020002的各个数位中,数字“2”出现的频率是________ .24、城镇人口占总人口比例的大小表示城镇化水平的高低,由统计图可知,我国城镇化水平提高最快的时期是________。
八级数学下册7数据的收集整理描述小结与思考导学案无答案新版苏科版_

通过本章的学习,培养学生的统计意识和统计推理
教学流程
预
习
导
航
为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数).为了解本次竞赛成绩情况,从中随机抽取了部分学生的竞赛成绩,进行统计,整理见下表:
组别
分组
频数
频率
1
49.5~59.5
60
问题2统计调查有哪两种方式?这两种方式的优、缺点各是什么?
问题3你能举例说明什么叫总体、个体、样本和样本的容量吗?
问题4如何画扇形统计图?
问题5扇形统计图、条形统计图、折线统计图和频数分布直方图各有什么特点?
二、例题分析:
1.以下三个统计图系据某报反映世界人口情况的数据所绘:
试回答下列问题:
⑴从哪幅统计图中能看出世界人口的变化情况?
⑵2050年非洲人口将达到几亿?这一数据是怎
样得到的?
⑶2050年亚洲人口比其他各洲的人口总和还多,
从哪幅统计图中可以明显地得到这个结论?
2.为了参加学校年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛.为此收集到这63名同学的身高(单位:cm)数据如下:
158
158
三、展示交流:
下图是李庄煤矿2000~2003年产量统计图
问:⑴哪一年的产量最高?是多少万吨?比前一年增产了百分之几?
⑵哪一年的产量比前一年有所下降?降低了多少万吨?
⑶这4年的平均产量是多少万吨?哪一年的产量低于4年的平均产量,少多少万吨?
⑷将4年产量制作成扇形统计图;
⑸请适当提出几个有价值的问题.
数据的收集、整理、描述
课题
苏科版数学八年级下册第7章《数据的收集、整理、描述小结与思考》教学设计
苏科版数学八年级下册第7章《数据的收集、整理、描述小结与思考》教学设计一. 教材分析《数据的收集、整理、描述》是苏科版数学八年级下册第7章的内容,本章主要让学生掌握数据的收集、整理、描述的方法,培养学生运用数学知识解决实际问题的能力。
本章内容包括数据的收集、整理、描述的意义和作用,数据的收集方法,数据的整理方法,以及利用图表描述数据等。
二. 学情分析学生在学习本章内容前,已经掌握了实数、代数式、方程等基础知识,具备了一定的逻辑思维和解决问题的能力。
但部分学生对实际问题的理解不够深入,对于如何将实际问题转化为数学问题,以及如何运用图表描述数据等方面存在一定的困难。
三. 教学目标1.理解数据的收集、整理、描述的意义和作用,掌握数据的收集方法和整理方法。
2.学会利用图表描述数据,培养学生的数据分析和处理能力。
3.培养学生运用数学知识解决实际问题的能力,提高学生的数学素养。
四. 教学重难点1.教学重点:数据的收集方法,数据的整理方法,以及利用图表描述数据。
2.教学难点:如何将实际问题转化为数学问题,以及如何运用图表描述数据。
五. 教学方法1.采用问题驱动法,引导学生从实际问题中发现问题,提出问题,进而解决问题。
2.利用案例教学法,通过具体的案例让学生理解和掌握数据的收集、整理、描述的方法。
3.采用合作学习法,鼓励学生分组讨论,共同解决问题,培养学生的团队协作能力。
4.利用多媒体教学,直观展示数据的收集、整理、描述的过程,提高学生的学习兴趣。
六. 教学准备1.准备相关的教学案例,用于引导学生从实际问题中学习数据的收集、整理、描述的方法。
2.准备多媒体教学材料,包括图片、图表等,用于直观展示数据的收集、整理、描述的过程。
3.准备练习题和作业,用于巩固所学知识,提高学生的实际应用能力。
七. 教学过程1.导入(5分钟)利用一个实际问题,如调查学校学生的身高情况,引导学生思考如何收集、整理和描述数据。
2.呈现(10分钟)展示调查学校学生身高情况的实际数据,让学生观察数据的特点,引导学生思考如何对数据进行整理和描述。
八年级数学下册7数据的收集整理描述7.2统计表统计图的选用1 精品导学案 苏科版
统计图的选用课题7.2 统计表、统计图的选用(1) 自主空间学习目标知识与技能:能从统计图中读出相关信息,会根据收集到的数据绘制统计图。
过程与方法:经历扇形统计图的制作过程,理解各项目之间的内在联系。
.情感、态度与价值观:通过学生讨论、小组合作交流以及动手操作等过程,培养学生分析问题、动手实践、归纳推理等能力,渗透小组合作意识,发展学生思维能力.学习重点使学生明确扇形统计图的制作步骤,掌握绘制扇形统计图的技能.学习难点扇形统计图的制作.教学流程预习导航1、以整个圆代表统计项目的,每一统计项目分别表示,扇形面积占这样的统计图称为扇形统计图。
2、在扇形统计图中,扇形的圆心角的度数=3、常用的统计图有种,分别是4、如下图所示,表示某地甲、乙两村土地安排情况,通过图形你能得到哪些信息?甲村的粮食亩数比乙村粮食亩数多吗?45%粮食55%合作探究新知探究:以整个圆代表统计项目的总体,每一统计项目分别用圆中不同的扇形表示,扇形面积占圆面积的百分之几就代表该统计项目占总体的百分之几。
这样的统计图称为扇形统计图。
议一议:扇形统计图中,各项目的百分比与相应扇形的圆心角有什么关系?你能算出各个扇形的圆心角度数吗?在扇形统计图中,扇形圆心角度数=该项目的百分比×360°如何画扇形统计图?1.算出各项目占总体项目的百分比,并换算出该项目占整个圆的圆心角的度数.2.根据各项目占整个圆的圆心角度数,用量角器在圆中画出各个扇形;3.在各个扇形上,标明相应名称和百分比;4.写出扇形统计图简洁的标题,并注明数据来源.例题分析:希望中学在“最喜欢的球类活动”的调查中,共有100位师生参与,现将收集到的数据用统计表和扇形统计图表示如下.问题:(1)哪种球类运动最受欢迎?(2)哪种球类运动受欢迎的程度最低?它的百分比是多少?(3)图中的各个扇形分别代表了什么?(4)你认为图中的各个百分比是如何得到的?所有的百分比之和是多少?(5)如果你是班级的体育委员,准备组织全班同学去观看球类比赛,为了吸引尽可能多的师生参与,那么你会组织观看什么比赛?(6)你认为扇形统计图必须有哪些内容?三、展示交流:1、预测2050年,世界人口将达到90亿人,各大洲人口扇形统计图如下:图中各个扇形分别代表了什么?各大洲人口在总人口中所占的百分比分别是多少?图中各个百分比是如何得到的?所有百分比之和是多少?四、提炼总结:扇形统计图具有什么特点?怎样制作扇形统计图?3、扇形统计图各部分所占百分比之和应等于 .当堂达标1、为了丰富学生的校园生活,学校准备举办“篮球比赛”,预先征求了部分学生的意见,调查结果如下表:结合图表解决下列问题(1)每种意见的学生占全部调查学生的百分比是多少?标在上面的扇形统计图中.(2)你能算出各扇形的圆心角度数吗?填写下表.项目意见占总体的百分比(精确到1%)扇形的圆心角(精确到度)学生赞成84反对24无所谓12学习反思:教学反思在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
八年级数学下第7章数据的收集、整理、描述全章集体备课教案(苏科版)【DOC范文整理】
八年级数学下第7章数据的收集、整理、描述全章集体备课教案(苏科版)和桥二中初二数学组集体备课资料主备:钱玉英审稿:初二数学备课组课题:§7.1普查与抽样调查第1课时共1课时一、教学目标教学目标:1、通过分析实例使学生了解调查的两种方式:普查与抽样调查,理解总体、个体、样本、样本的容量的概念,了解它们与调查之间的关系,面对比较简单的问题,能合理选择使用哪种调查方式。
通过对一些问题的分析,让学生掌握统计中相关概念,并在实际问题的思考中,认识到抽样调查的必要性,感受数学在生活中的应用。
重点:总体、个体、样本、样本的容量的概念以及与调查之间的关系,调查的两种方式。
难点:对总体、个体、样本的容量概念的理解。
三、教学模式探索、合作、交流四、教学过程教师活动学生活动个人修改意见一、预习检测为一特定目的而对所有考察对象所作的全面调查叫做为一特定目的而对部分考察对象所作的调查叫做我们将所考察的对象的叫做总体,把组成总体的叫做个体,从总体中所抽取的叫做总体的一个样本,样本中叫做样本的容量。
在下列调查中,分别采用哪种调查方法。
)我国每五年对全国1%的人口进行一次调查。
)为了了解七班同学的视力情况,对全班同学进行视力检测。
)调查一批炮弹的杀伤半径。
某省有7万名学生参加初中毕业考试,要想了解这7万名学生的数学成绩,从中抽取了1000名学生的数学成绩进行统计分析,这个问题中总体是样本是个体是样本容量是二、典例分析例1在下列问题中为了得到数据是采用普查还是抽样调查)某校为了买校服,了解每个学生衣服的尺寸。
)全班学生家庭一周内看新闻联播的次数。
)长江中现有鱼的种类.)江苏省八年级学生的视力情况。
你认为普查和抽查各有什么优,缺点?练习:书本第8页例2说明在下列问题中,总体、个体、样本、样本容量各是什么?)为了了解一批灯泡的使用寿命,从中抽取10只试验。
)为了考察某公园一年中每天进园的人数,在其中的30天里对进园人数进行统计。
新苏科版八年级数学下册《7章数据的收集、整理、描述小结与思考》教案_3
C. 80
D. 200
5、某校对学生上学方式进行了一次抽样调查,并根据此次调查结果绘制了一个不完整的扇
形统计图,其中 “其他 ”部分所对应的圆心角是 36°,则 “步行 ”部分所占百分比是
.
第 4 题图
第 5 题图
6、如图是某乡镇企业 2002 ─2004 年创造的利润折线统计图。 ( 1)回答下列问题:①这 3 年平均每年创造利润多少万元?
;( 2)请补全频数分布直方图;
(3)若成绩在 90 分以上(包括 90 分)的为 “优 ”等,则该校参加这次比赛的 3000 名学生中
成绩 “优 ”等约有多少人?
【归纳小结】 谈谈你的收获,你还有什么困惑?
【课后作业】 课本: P32-33 复习巩固 1-7.
※苏科版八年级下册※
第七章
小结与思考
知识与技能: 1、回顾、交流本章所学的知识,并能用自己喜欢的方式进行梳理,使知识系统化; 2、熟练运用本章知识解决实际问题; 3、回顾本章所渗透的数学思想方法,初步培养学生的统计意识和统计推理能力;
过程与方法:启发、自主、合作、发现 情感态度与价值观:
1、培养学生归纳总结、反思回顾的意识; 2、引导学生进一步形成合作探究学习意识,渗透正确的价值观。
【知识点二】总体、个体、样本、样本容量
所有考察的对象的全体叫做
,把组成总体的每一个考察对象叫做
从总体中所抽取的一部分个体叫做总体的一个
,样本中
样本的容量.
典型例题
, 叫做
1、为了了解 2013 年某市九年级学生学业水平考试的数学成绩,从中随机抽取
的数学成绩,下列说法正确的是 (
)
1000 名学生
A . 2013 年昆明市九年级学生是总体
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
样得到的?
⑶2050年亚洲人口比其他各洲的人口总和还多,
从哪幅统计图中可以明显地得到这个结论?
2.为了参加学校年级之间的广播体操比赛,七年级准备从63名同学中挑出身高相差不多的40名同学参加比赛.为此收集到这63名同学的身高(单位:cm)数据如下:
158
158
三、展示交流:
下图是李庄煤矿2000~2003年产量统计图
问:⑴哪一年的产量最高?是多少万吨?比前一年增产了百分之几?
⑵哪一年的产量比前一年有所下降?降低了多少万吨?
⑶这4年的平均产量是多少万吨?哪一年的产量低于4年的平均产量,少多少万吨?
⑷将4年产量制作成扇形统计图;
⑸请适当提出几个有价值的问题.
160
168
159
159
151
158
159
168
158
154
158
154
169
158
158
158
159
167
170
153
160
160
159
159
160
149
163
163
162
172
161
153
156
162
162
163
157
162
162
161
157
157
164
155
156
165
166
156
154
166
164
165
156
157
153
165
159
157
155
164
156
选择身高在哪个范围的学生参加呢?
说明:此例题应把握Байду номын сангаас下几点:
(1).让学生体会将数据分组的必要性,做到合理分组,即当数据在100个以内时,根据数据的多少通常分成5~12个组;
(2).注意识图的重要性,从图表中获取重要的信息;
(3).根据数据处理的结果,做出合理的判断和预测,体会统计对决策的作用.
数学老师按10分的组距分段,算出每个分数段学生成绩出现的频数,填入频数分布表:
⑴请把频数分布表及频数分布直方图补充完整;
⑵请说明哪个分数段的学生最多?哪个分数段的学生最少?
⑶请你帮老师统计一下这次数学考试的及格率(60分以上含60分为及格)及优秀率(90分以上含90分为优秀).
学习反思:
0.12
2
59.5~69.5
120
0.24
3
69.5~79.5
180
0.36
4
79.5~89.5
130
5
89.5~99.5
0.02
合计
1.00
解答下列问题:
⑴在这个问题中,样本容量a=;
⑵第五小组的频数b=,第四小组的频率c=.
合
作
探
究
一、新知探究:
问题1数据可以帮助我们了解周围的世界,做出合理的决策.利用数据解决简单问题的过程是怎样的?
四、提炼总结:扇形统计图能清楚地表示出各部分在总体中所占的百分比;折线统计图能清楚地反映事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.
当
堂
达
标
七年级1班40个学生某次数学测验成绩如下:
63,84,91,53,69,81,61,69,91,78,75,81,80,67,76,81,79,94,61,69,89,70,70,87,81,86,90,88,85,67,71,82,87,75,87,95,53,65,74,77
问题2统计调查有哪两种方式?这两种方式的优、缺点各是什么?
问题3你能举例说明什么叫总体、个体、样本和样本的容量吗?
问题4如何画扇形统计图?
问题5扇形统计图、条形统计图、折线统计图和频数分布直方图各有什么特点?
二、例题分析:
1.以下三个统计图系据某报反映世界人口情况的数据所绘:
试回答下列问题:
⑴从哪幅统计图中能看出世界人口的变化情况?
学习难点
通过本章的学习,培养学生的统计意识和统计推理
教学流程
预
习
导
航
为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数).为了解本次竞赛成绩情况,从中随机抽取了部分学生的竞赛成绩,进行统计,整理见下表:
组别
分组
频数
频率
1
49.5~59.5
60
数据的收集、整理、描述
课题
小结与思考
自主空间
学习目标
知识与技能:掌握扇形统计图,条形统计图,折线统计图,频数分布直方图和频数分布折线图.
过程与方法:从事收集、整理、描述和分析数据的活动,回顾、交流、梳理本章的学习内容,构建知识框架,体会并初步培养统计意识.
学习重点
通过本章的学习,培养学生的统计意识和统计推理