§1.2.1. 排列(2)

合集下载

排列第二课时导学案

排列第二课时导学案

§1.2.1 排列(第二课时)学习目标1.利用排列和排列数公式解决简单的计数问题.2.经历把简单的计数问题化为排列问题解决的过程,从中体会“化归”的数学思想.学习重点:利用排列和排列数公式解决简单的计数问题.学习难点:利用排列和排列数公式解决简单的计数问题.【学习过程】课堂探究:类型一:直接抽象为排列问题的计数问题例1:某年全国足球甲级(A组)联赛共有14个队参加,每队要与其余各队在主、客场分别比赛一次,共进行多少场比赛?点评:要学会把具体问题抽象为从n个不同的元素中任取m(m≤n)个不同元素,按一定顺序排成一列的问题.【巩固练习】某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?.类型二:有约束条件的排列问题(特殊位置分析法、特殊元素分析法)例2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?思路分析:在本问题的0到9这10个数字中,因为0不能排在百位上,而其他数可以排在任意位置上,因此0是一个特殊的元素.一般的,我们可以从特殊元素的排列位置入手来考虑问题.【巩固练习】由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有多少个?类型三:捆绑法(对于相邻问题,常用“捆绑法”(先捆后松))例1:元旦文娱会演要安排5个舞蹈节目,6个歌唱节目,5个舞蹈节目必须在一起,有多少种排法?练习:在7名运动员中选4名运动员组成接力队,参加4x100接力赛,那么甲、乙两人都不跑中间两棒的安排方法共有多少种?类型四:插空法(不相邻问题)例2:七个家庭一起外出旅游,若其中四家是男孩,三家是女孩,现将这七个小孩站成一排照相留念。

若三个女孩互不相邻,有多少种不同的排法?变式:七个家庭一起外出旅游,若其中四家是男孩,三家是女孩,现将这七个小孩站成一排照相留念。

若三个女孩互不相邻,四个男孩也互不相邻,有多少种不同的排法?课堂练习:1.四位男生、三位女生排队照相,根据下列要求,各有多少不同的排法①七个人排一列,三个女生任何两个都不能相邻排在一起②七个人排一列,四个男生必须连排在一起③男女生相间排列2. 7人排成一排,(1)甲、乙和丙三个同学都相邻的排法共有多少种?(2)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?3:三名女生和五名男生排成一排,⑴如果女生全排在一起,有多少种不同排法?⑵如果女生全分开,有多少种不同排法?⑶如果两端都不能排女生,有多少种不同排法?⑷如果两端不能都排女生,有多少种不同排法?课后强化练习:1.6个人站成前后两排照相,要求前排2人,后排4人,那么不同的排法共有…() A.30种B.360种C.720种D.1 440种2.将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有————种不同的分配方案?3、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是()A、2160 B、120 C、240 D、7204、要排一张有5个独唱和3个合唱的节目表,如果合唱节目不能排在第一个,并且合唱节目不能相邻,则不同排法的种数是()A、 B、 C、 D、5、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()A、 B、 C、 D、6、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是()A、 B、C、 D、7、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是()A、2160B、120C、240D、7208、7个人排成一排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、乙、丙三人必须在一起(4)甲、乙之间有且只有两人(5)甲、乙、丙三人两两不相邻(6)甲在乙的左边(不一定相邻)(7)甲、乙、丙三人按从高到矮,自左向右的顺序(8)甲不排头,乙不排中间9、用0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,在下列情况,各有多少个?①奇数②能被5整除③能被15整除④比35142小⑤比50000小且不是5的倍数。

排列与排列数课件(最新)PPT

排列与排列数课件(最新)PPT

复习
1.排列的定义 2.排列数公式
Anm n(n 1)( n 2) (n m 1) 共有 m个整数相乘。( m n)
n! Ann n(n 1)(n 2) 21
A
m n
n! ( 0 ( n m )!
m
n)
规定0! 1,An0 1
珠海市斗门区第一中学
复习
思考 : Ax4 840, x ?
A22 A33 A44 288(种)
A44 A53 1440
A33 A44 144
练习3。由1,2,3,4组成的四位数,小于4123的 有多少个?
千位是3选1,其他任排。 A31 A33 18
珠海市斗门区第一中学
A93
二类:0被选中放在十位或个位 A21 A92
A93 A21 A92 648
A3 10
A2 9
A A3 10
2 9

10
9
8
9
8
648.
珠海市斗门区第一中学
思考:对于(4)用全排列减去(4)得:
(3)情形:甲————————乙 和乙————————甲
(4)甲乙不能在两端,包括不能: 甲——————————乙 乙——————————甲 甲——————————X 乙——————————X X-------------------------------甲 X--------------------------------乙
§ 1.2.1 排列与排列数
§
李森
珠海市斗门区第一中学
学习目标
重点难点
珠海市斗门区第一中学
1.熟练运用排列数计算 公式求解排列数问题。
2.掌握常见的带限制条 重点:用适合的方法解决排列问 件的排列数计算方法: 。

第一章 2排列(二)

第一章  2排列(二)

§2排列(二)[学习目标]1.进一步加深对排列概念的理解.2.掌握几种有限制条件的排列问题的处理方法,能应用排列数公式解决简单的实际问题.[知识链接]有限制条件的排列问题的解题思路有哪些?答所谓有限制条件的排列问题是指某些元素或位置有特殊要求.解决此类问题常从特殊元素或特殊位置入手进行解决,常用的方法有直接法和间接法,直接法又有分步法和分类法两种.(1)直接法①分步法按特殊元素或特殊位置优先安排,再安排一般元素(位置)依次分步解决,特别地:(ⅰ)当某些特殊元素要求必须相邻时可以先将这些元素看作一个整体,与其他元素排列后,再考虑相邻元素的内部排序,这种分步法称为“捆绑法”,即“相邻元素捆绑法”.(ⅱ)当某些特殊元素要求不相邻时,可以先安排其他元素,再将这些不相邻元素插入空档,这种方法称为“插空法”,即“不相邻元素插空法”.②分类法直接按特殊元素当选情况或特殊位置安排进行分类解决,即直接分类法.特别地当某些元素按一定顺序排列时可用“等机率法”,即n个不同元素参加排列,其中m个元素的顺序是确定的,这类问题的解法采用分类法:n个不同元素的全排列有A n n种排法,m个元素的全排列有A m m种排法,因此A n n种排法中关于m个元素的不同分法有A m m类,而且每一分类的排法数是一样的,当这m个元素顺序确定时,共有A n nA m m种排法.(2)间接法符合条件数等于无限制条件数与不符合条件数的差.故求符合条件的种数时,可先求与其对应的不符合条件的种数,进而求解,即“间接法”.[预习导引]1.排列数公式A m n=n(n-1)(n-2)…(n-m+1)(n,m∈N*,m≤n)=n!(n-m)!.A n n=n(n-1)(n-2)…2·1=n!(叫作n的阶乘).另外,我们规定0!=1.2.应用排列与排列数公式求解实际问题中的计数问题的基本步骤:要点一数字排列的问题例1用0,1,2,3,4,5这六个数字(1)可以组成多少个数字不重复的三位数?(2)可以组成多少个数字允许重复的三位数?(3)可以组成多少个数字不允许重复的三位奇数?(4)可以组成多少个数字不重复的小于1 000的自然数?(5)可以组成多少个大于3 000,小于5 421的不重复的四位数?解(1)分三步:①先选百位数字,由于0不能作百位数字,因此有5种选法;②十位数字有5种选法;③个位数字有4种选法.由分步乘法计数原理知所求三位数共有5×5×4=100(个).(2)分三步:①百位数字有5种选法;②十位数字有6种选法;③个位数字有6种选法.故所求三位数共有5×6×6=180(个).(3)分三步:①先选个位数字,有3种选法;②再选百位数字,有4种选法;③选十位数字也有4种选法,所以所求三位奇数共有3×4×4=48(个).(4)分三类:①一位数共有6个;②两位数共有5×5=25(个);③三位数共有5×5×4=100(个).因此,比1 000小的自然数共有6+25+100=131(个).(5)分四类:①千位数字为3,4之一时,共有2×5×4×3=120(个);②千位数字为5,百位数字为0,1,2,3之一时,共有4×4×3=48(个);③千位数字为5,百位数字为4,十位数字为0,1之一时,共有2×3=6(个);④还有5 420也是满足条件的1个.故所求四位数共120+48+6+1=175(个).规律方法排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子上不排某个元素.解决此类问题的方法主要按“优先”原则,即优先排特殊元素或优先考虑特殊位子,若一个位子安排的元素影响另一个位子的元素个数时,应分类讨论.跟踪演练1用0,1,2,…,9十个数字可组成多少个满足以下条件的且没有重复数字的数:(1)五位奇数;(2)大于30 000的五位偶数.解(1)要得到五位奇数,末位应从1,3,5,7,9五个数字中取,有5种取法;取定末位数字后,首位就有除这个数字和0之外的8种不同取法;首末两位取定后,十个数字还有八个数字可供中间的十位、百位与千位三个数位选取,共有A38种不同的排列方法.因此由分步乘法计数原理共有5×8×A38=13 440个没有重复数字的五位奇数.(2)要得偶数,末位应从0,2,4,6,8中选取,而要得比30 000大的五位偶数,可分两类:①末位数字从0,2中选取,则首位可取3,4,5,6,7,8,9中任一个,共有7种选取方法,其余三个数位可从除首末两个数位上的数字之外的八个数字中选取,共A38种取法.所以共有2×7×A38种不同情况.②末位数字从4,6,8中选取,则首位应从3,4,5,6,7,8,9中除去末位数字的六个数字中选取,其余三个数位仍有A38种选法,所以共有3×6×A38种不同情况.由分类加法计数原理,比30 000大的无重复数字的五位偶数共有2×7×A38+3×6×A38=10 752(个).要点二排队问题例23名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数:(1)选5名同学排成一行;(2)全体站成一排,其中甲只能在中间或两端;(3)全体站成一排,其中甲、乙必须在两端;(4)全体站成一排,其中甲不在最左端,乙不在最右端;(5)全体站成一排,男、女各站在一起;(6)全体站成一排,男生必须排在一起;(7)全体站成一排,男生不能排在一起;(8)全体站成一排,男、女生各不相邻;(9)全体站成一排,甲、乙中间必须有2人;(10)全体站成一排,甲必须在乙的右边;(11)全体站成一排,甲、乙、丙三人自左向右顺序不变;(12)排成前后两排,前排3人,后排4人.解(1)无限制条件的排列问题,只要从7名同学中任选5名排列,即可得共有N=A57=7×6×5×4×3=2 520(种).(2)(直接分步法)先考虑甲有A13种方案,再考虑其余6人全排A66,故N=A13A66=2 160(种).(3)(直接分步法)先安排甲、乙有A22种方案,再安排其余5人全排A55,故N=A22·A55=240(种).(4)法一(直接分类法)按甲是否在最右端分两类:第一类:甲在最右端有N1=A66(种);第二类:甲不在最右端时,甲有A15个位置可选,而乙也有A15个位置,而其余全排A55,N2=A15A15A55.故N=N1+N2=A66+A15A15A55=3 720(种).法二(间接法)无限制条件的排列数共有A77,而甲或乙在左端(右端)的排法有A66,且甲在左端且乙在右端的排法有A55,故N=A77-2A66+A55=3 720(种).法三(直接分步法)按最左端优先安排分步对于左端除甲外有A16种排法,余下六个位置全排有A66,但减去乙在最右端的排法A15A55种,故N=A16A66-A15A55=3 720(种).(5)相邻问题(捆绑法)男生必须站在一起,是男生的全排列,有A33种排法,女生必须站在一起,是女生的全排列,有A44种排法,全体男生、女生各视为一个元素,有A22种排法,由分步乘法计数原理知,共有A33·A44·A22=288(种).(6)(捆绑法)即把所有男生视为一个元素,与4名女生组成5个元素全排,故N=A33·A55=720(种).(7)即不相邻问题(插空法):先排女生共A44种排法,男生在4个女生隔成的5个空中安排有A35种排法,故N=A44·A35=1 440(种).(8)对比(7)让女生插空:N=A33·A44=144(种).(9)(捆绑法)任取2人与甲、乙组成一个整体,与余下3个元素全排,故N=(A25·A22)·A44=960(种).(10)甲与乙之间的左右关系各占一半,故N=A77A22=2 520(种).(11)甲、乙、丙自左向右顺序保持不变,即为所有甲、乙、丙排列的1A33,∴N=A77A33=840(种).(12)直接分步完成共有A37·A44=5 040(种).规律方法排队问题的解题策略排队问题除涉及特殊元素、特殊位置外,还往往涉及相邻、不相邻、定序等问题.(1)对于相邻问题,可采用“捆绑法”解决.即将相邻的元素视为一个整体进行排列.(2)对于不相邻问题,可采用“插空法”解决.即先排其余的元素,再将不相邻的元素插入空中.(3)对于定序问题,可采用“除阶乘法”解决.即用不限制的排列数除以顺序一定元素的全排列数.跟踪演练2分别求出符合下列要求的不同排法的种数:(1)6名学生排3排,前排1人,中排2人,后排3人;(2)6名学生排成一排,甲不在排头也不在排尾;(3)6人排成一排,甲、乙不相邻.解(1)分排与直排一一对应,故排法种数为A66=720.(2)甲不能排头尾,让受特殊限制的甲先选位置,有A14种选法,然后其他5人排,有A55种排法,故排法种数为A14A55=480.(3)甲、乙不相邻,第一步除甲、乙外的其余4人先排好;第二步,甲、乙在已排好的4人的左、右及之间的空位中排,共有A44A25=480(种)排法.要点三排列的综合应用例3从数字0,1,3,5,7中取出不同的三个数作系数,可以组成多少个不同的一元二次方程ax2+bx+c=0?其中有实根的方程有多少个?解先考虑组成一元二次方程的问题.首先确定a,只能从1,3,5,7中选一个,有A14种,然后从余下的4个数中任选两个作b,c,有A24种.由分步乘法计数原理知,共组成一元二次方程A14·A24=48(个)方程要有实根,必须满足Δ=b2-4ac≥0.分类讨论如下:当c=0时,a,b可以从1,3,5,7中任取两个,有A24种;当c≠0时,分析判别式知b只能取5,7中的一个.当b取5时,a,c只能取1,3这两个数,有A22种;当b取7时,a,c可取1,3或1,5这两组数,有2A22种.此时共有(A22+2A22)个.由分类加法计数原理知,有实根的一元二次方程共有:A24+A22+2A22=18(个).规律方法该例的限制条件较隐蔽,需仔细分析,一元二次方程中a≠0需要考虑到,而对有实根的一元二次方程需有Δ≥0.这里有两层意思:一是a不能为0;二是要保证b2-4ac≥0,所以需先对c能否取0进行分类讨论.实际问题中,既要能观察出是排列问题,又要能搞清哪些是特殊元素,还要根据问题进行合理分类、分步,选择合适的解法.因此需做一定量的排列应用题,逐渐掌握解决问题的基本思想.跟踪演练3从集合{1,2,3,…,20}中任选出3个不同的数,使这3个数成等差数列,这样的等差数列可以有多少个?解设a,b,c∈N*,且a,b,c成等差数列,则a+c=2b,即a+c应是偶数.因此从1到20这20个数字中任选出三个数成等差数列,则第一个数与第三个数必同为偶数或同为奇数,而1到20这20个数字中有10个偶数和10个奇数.当第一个和第三个数选定后,中间数被唯一确定.因此,选法只有两类.(1)第一、三个数都是偶数,有A210种;(2)第一、三个数都是奇数,有A210种.于是,选出3个数成等差数列的个数为A210+A210=180(个).1.用1,2,3,4,5这5个数字,组成无重复数字的三位数,其中奇数共有()A.30个B.36个C.40个D.60个答案 B解析分2步完成:个位必为奇数,有A13种选法;从余下的4个数中任选2个排在三位数的百位、十位上,有A24种选法.由分步乘法计数原理,共有A13×A24=36(个)无重复数字的三位奇数.2.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为() A.720 B.144 C.576 D.684答案 C解析(间接法)甲、乙、丙三人在一起的排法种数为A44×A33;不考虑任何限制,6人的全排列有A66.∴符合题意的排法种数为A66-A44×A33=576.3.(2013·北京理)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是________.答案96解析5张参观券全部分给4人,分给同一人的2张参观券连号,方法数为:1和2,2和3,3和4,4和5,四种连号,其他号码各为一组,分给4人,共有4×A44=96种.4.将红、黄、蓝、白、黑5种颜色的小球,放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允许有空袋,且红口袋中不能装入红球,则有________种不同的放法.答案96解析∵红口袋不能装入红球,∴红球只能放在黄、蓝、白、黑4种颜色的口袋中,∴红球有A14种放法,其余的四个球在四个位置全排列有A44种放法,由分步计数原理得到共有A14·A44=96(种).1.对有特殊限制的排列问题,优先安排特殊元素或特殊位置.2.对从正面分类繁杂的排列问题,可考虑使用间接法.3.对要求某些元素相邻或不相邻的排列问题,可使用“捆绑法”或“插空法”.一、基础达标1.把4个不同的黑球,4个不同的红球排成一排,要求黑球、红球分别在一起,不同的排法种数是() A.A88B.A44A44C.A44A44A22D.以上都不对答案 C2.6个停车位置,有3辆汽车需要停放,若要使3个空位连在一起,则停放的方法总数为() A.A33B.A36C.A46D.A44答案 D解析3个空位连在一起作为1个元素与3辆汽车看成4个不同元素的全排列,故有A44种停放方法.3.某省有关部门从6人中选4人分别到A,B,C,D四个地区调研十二五规划的开局形势,要求每个地区只有1人,每人只去一个地区,且这6人中甲、乙两人不去A地区,则不同的安排方案有() A.300种B.240种C.144种D.96种答案 B解析A地区有A14种方法,其余地区有A35种方法,共有A14A35=240(种).4.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为() A.A88A29B.A88A210C.A88A27D.A88A26答案 A解析运用插空法,8名学生间共有9个空隙(包括边上空隙),先把老师排在9个空隙中,有A29种排法,再把8名学生排列,有A88种排法,共有A88A29种排法.5.从0,1,2,3这四个数中选三个不同的数作为函数f(x)=ax2+bx+c中的参数a,b,c,可组成不同的二次函数共有________个.答案18解析若得到二次函数,则a≠0,a有A13种选择,故二次函数有A13A23=3×3×2=18(个).6.从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生,则选派方案共有________种.答案186解析没有女生的选法有A34种,一共有A37种选法,则至少有1名女生的选派方案共有A37-A34=186(种).7.(1)某信号兵用红、黄、蓝3面旗从上到下挂在竖直的旗杆上表示信号,每次可以任意挂1面、2面或3面,并且不同的顺序表示不同的信号,一共可以表示多少种不同的信号?(2)将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?解(1)分3类:第一类用1面旗表示的信号有A13种;第二类用2面旗表示的信号有A23种;第三类用3面旗表示的信号有A33种.由分类加法计数原理,所求的信号种数是A13+A23+A33=3+3×2+3×2×1=15,即一共可以表示15种不同的信号.(2)由分步乘法计数原理,分配方案种数共有N=A44·A44=576.即共有576种不同的分配方案.二、能力提升8.五名男生与两名女生排成一排照相,如果男生甲必须站在中间,两名女生必须相邻,符合条件的排法共有() A.48种B.192种C.240种D.288种答案 B解析(间接法)将两名女生看作1人,与四名男生一起排队,有A55种排法,而女生可互换位置,所以共有A55×A22种排法,男生甲插入中间位置,只有一种插法;而4男2女排列中2名女生恰在中间的排法共有A22×A44(种),这时男生甲若插入中间位置不符合题意,故符合题意的排列总数为A55×A22-A44×A22=192.9.5名大人要带两个小孩排队上山,小孩不排在一起也不排在头、尾,则共有________种排法(用数字作答).答案 1 440解析先让5名大人全排列有A55种排法,两个小孩再依条件插空有A24种方法,故共有A55A24=1 440(种)排法.10.(2013·浙江卷)将A,B,C,D,E,F六个字母排成一排,且A,B均在C 的同侧,则不同的排法共有________种(用数字作答).答案480解析按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,所以只看左的情况最后乘以2即可.当C在左边第1个位置时,有A55,当C在左边第2个位置时A24·A34,当C在左边第3个位置时,有A23·A33+A22·A33.这三种情况的和为240种,乘以2得480.则不同的排法共有480种.11.某天课程表要排入政治、语文、数学、物理、化学、体育共6门课程,如果第一节不排体育,最后一节不排数学,一共有多少种不同的排法?解不考虑任何条件限制共有A66种排法,其中包括不符合条件的有:(1)数学排在最后一节,有A55种;(2)体育排在第一节,有A55种.但这两种情况都包含着数学排在最后一节,且体育排在第一节的情况有A44种(即重复),故共有A66-2A55+A44=504种.12.7名班委中有A,B,C三人,有7种不同的职务,现对7名班委进行职务具体分工.(1)若正、副班长两职务只能从A,B,C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职务至少要选A,B,C三人中的一人担任,有多少种分工方案?解(1)先排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步乘法计数原理,知共有A23A55=720(种)分工方案.(2)7人中任意分工方案有A77种,A,B,C三人中无一人任正、副班长的分工方案有A24A55种,因此A,B,C三人中至少有一人任正、副班长的方案有A77-A24A55=3 600(种).三、探究与创新13.三个女生和五个男生排成一排.(1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,可有多少种不同的排法?解(1)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有六个元素,排成一排有A66种排法,而其中每一种排法中,三个女生间又有A33种排法,因此共有A66·A33=4 320(种)不同排法.(2)先排5个男生,有A55种排法,这5个男生之间和两端有6个位置,从中选取3个位置排女生,有A36种排法,因此共有A55·A36=14 400(种)不同排法.(3)因为两端不排女生,只能从5个男生中选2人排列,有A25种排法,剩余的位置没有特殊要求,有A66种排法,因此共有A25·A66=14 400(种)不同排法.。

选修2-3第一章计数原理导学案

选修2-3第一章计数原理导学案

学习过程
一、课前准备 (预习教材 P2~ P5,找出疑惑之处) 复习 1 从高二(1)班的 50 名学生中挑选 1 名同学 担任学校元旦晚会主持人,有多少种不同挑选结 果?
复习 2:一次会议共 3 人参加,结束时,大家两两 握手,互相道别,请你统计一下,大家握手次数共 有多少?

二、新课导学 ※ 学习探究
4. 要从甲、乙、丙 3 名工人中选出 2 名分别上日班 和晚班,有 种不同的选法. 变式 :要从甲,乙,丙 3 副不同的画中选出 2 副, 分别挂在左,右两边墙上的指定位置,问共有多少 种不同的选法? 5. 一种号码拨号锁有 4 个拨号盘, 每个拨号盘上有 从 0 到 9 共 10 个数字, 这 4 个拨号盘可以组成 个 四位数号码.
§ 1.1 分类加法计数原理与 分步乘法计数原理(1)
学习目标
1.通过实例,总结出分类计数原理、分步计数原理; 2. 了解分类、分步的特征,合理分类、分步; 3. 体会计数的基本原则:不重复,不遗漏.
伯数字,以 A1 , A2 , , B1 , B2 , „的方式给教室的座 位编号,总共能编出多少种不同的号码? 分析:每一个编号都是由 个部分组成,第一部 分是 ,有____种编法,第二部分是 , 有 种编法;要完成一个编号,必须完成上面两 部分,每一部分就是一个步骤,所以,不同的号码 一共有 个. 新知 :分步计数原理-乘法原理: 完成一件工作需要两个步骤, 完成第 1 步有 m 种 不同的方法, 完成第 2 步有 n 种不同的方法, 那么, 完成这件工作共有 m n 种不同方法。 试试:从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条, 从 A 村经 B 村去 C 村, 不同的路 线有 条. 反思 :使用乘法原理的条件是什么?分步乘法原理 可以推广到两部以上的问题吗?

1.2.1排列

1.2.1排列

A31 A32 A33 15
变式:将题中的“3面旗”改为“3色旗”,
结论如何?
3 32 33 38
课堂练习:
1、20位同学互通一封信,那么通信次数是多
少?
A220 380(次)
2、由数字1、2、3、4、5、6可以组成多少个
没有重复数字的正整数?
A61 A62 A63 A64 A65 A66 1956(个)
2、有序性(所选元素有先后位置等顺序之分) 【排列数】所有排列总数
Anm n(n 1)(n 2)...(n m 1)
Anm
=
n! (n- m)!
例题与练习 例1 计算:
(1)A136 161514 3360
(2)A66 =6!=6×5×4×3×2×1=720
(3) 8!7! 7 5!
1.2.1 排列
分类加法计数原理:
完成一件事,有n类不同方案,在第1类方案
中有m1种不同的方法,在第2类方案中有m2种不同 的方法 ……在第n类方案中有mn种不同的方法.那
么完成这件事共有 N m1 m2 mn 种
不同的方法. 分步乘法计数原理:
完成一件事,需要分成n个步骤,做第1步有
m1种不同的方法,做第2步有m2种不同的方法……, 做第n步有mn种不同的方法.那么完成这件事共
变:1、用0到9这十个数字,可以组成多少 个没有重复数字的且能被5整除的三位数?
A92 A81 A81
一 个个数,字有中任A91选种2选个法,,有再A92排种十选位法和,个根位据上分的步数计字数,原可理以,从所余求下三的位9
数的个数是: A91 A92 648
(特殊位置预置法)
分析2:所求的三位数可分为:不含数字0的,有 A93 个;含有数字

1.1排列1.2组合

1.1排列1.2组合

1.2.1. 排列(1)学习目标1. 理解排列、排列数的概念;2. 了解排列数公式的推导.学习过程一、课前准备(预习教材P 14~ P 18,找出疑惑之处)复习1:交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有2个不重复的英文字母和4个不重复的阿拉伯数字,并且2个字母必须合成一组出现,4个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?复习2:从甲,乙,丙3名同学中选出2名参加一项活动,其中1名同学参加上午的活动,另一名参加下午的活动,有多少种不同的选法?二、新课导学1.排列数的定义从 个 元素中取出 (n m ≤)个元素的 的个数,叫做从n 个不同元素取出m 元素的排列数,用符合 表示.试试: 从4个不同元素a ,b, c ,d 中任取2个,然后按照一定的顺序排成一列,共有多少种不同的排列方法?2 排列数公式从n 个不同元素中取出m (n m ≤)个元素的排列数=m n A3 全排列从n 个不同元素中 取出的一个排列,叫做n 个元素的一个全排列,用公式表示为=n n A典型例题例1计算:⑴410A ; ⑵ 218A ; ⑶ 441010A A ÷.变式:计算下列各式:⑴215A ; ⑵ 66A⑶ 28382AA -; ⑷ 6688A A .例2若17161554m n A =⨯⨯⨯⨯⨯,则n = ,m = .变式:乘积(55)(56)(68)(69)n n n n ----用排列数符号表示 .(,n N ∈)当堂检测(时量:5分钟 满分:10分)计分:1. 计算:=+243545A A ;.2.. 计算:=+++44342414A A A A ;3. 某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行 场比赛;4. 5人站成一排照相,共有 种不同的站法;5. 从1,2,3,4这4个数字中,每次取出3个排成一个3位数,共可得到 个不同的三位数.课后作业1. 求证:11211--++=-n n n n n n A n A A2. 一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假设每股道只能停放1列火车)?3.一部记录片在4个单位轮映,每一单位放映1场,有多少种轮映次序?§1.2.1. 排列(2)学习目标1熟练掌握排列数公式;2. 能运用排列数公式解决一些简单的应用问题.学习过程一、课前准备(预习教材P 5~ P 10,找出疑惑之处)复习1:.什么叫排列?排列的定义包括两个方面分别是 和 ;两个排列相同的条件是 相同, 也相同复习2:排列数公式:m n A = (,,m n N m n *∈≤)全排列数:nn A = = .复习3 从5个不同元素中任取2个元素的排列数是 ,全部取出的排列数是二、新课导学学习探究:问题1:⑴ 从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法? ⑵ 从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?典型例题例1 (1)6男2女排成一排,2女相邻,有多少种不同的站法?(2)6男2女排成一排,2女不能相邻,有多少种不同的站法?(3)4男4女排成一排,同性者相邻,有多少种不同的站法?(4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?变式::某小组6个人排队照相留念.(1) 若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(2) 若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(3) 若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(4) 若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?(5) 若分成两排照相,前排2人,后排4人,有多少种不同的排法?例2 用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.(1)没有重复数字的四位偶数?(2)比1325大的没有重复数字四位数?变式:用0,1,2,3,4,5,6七个数字,⑴能组成多少个没有重复数字的四位奇数?⑵能被5整除的没有重复数字四位数共有多少个?练1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行实验,有多少种不同的种植方法?练2.在3000至8000之间有多少个无重复数字的奇数?当堂检测(时量:5分钟满分:10分)计分:1. 某农场为了考察3个水稻品种和5个小麦品种的质量,要在土质相同的土地上进行试验,应该安排的试验区共有块.2. 某人要将4封不同的信投入3个信箱中,不同的投寄方法有种.3. 用1,2,3,4,5,6可组成比500000大、且没有重复数字的自然数的个数是.4. 现有4个男生和2个女生排成一排,两端不能排女生,共有种不同的方法.5. 在5天内安排3次不同的考试,若每天至多安排一次考试,则不同的排法有种. 课后作业1..一个学生有20本不同的书.所有这些书能够以多少种不同的方式排在一个单层的书架上?2.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?§1.2.2.组合(1)学习目标1.正确理解组合与组合数的概念;2.弄清组合与排列之间的关系;3. 会做组合数的简单运算;.学习过程一、课前准备(预习教材P 21~ P 23,找出疑惑之处)复习1:什么叫排列?排列的定义包括两个方面,分别是和.复习2:排列数的定义:从个不同元素中,任取个元素的排列的个数叫做从n 个元素中取出m 元素的排列数,用符号表示复习3:排列数公式:m n A =(,,m n N m n *∈≤) 二、新课导学学习探究探究任务一:组合的概念问题:从甲,乙,丙3名同学中选出2名去参加一项活动,有多少种不同的选法?新知:一般地,从个元素中取出()m n ≤个元素一组,叫做从n 个不同元素中取出m 个元素的一个组合.试试:试写出集合{}a,b,c,d,e 的所有含有2个元素的子集.探究任务二.组合数的概念:从n 个元素中取出m ()m n ≤个元素的组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号表示. 探究任务三组合数公式m n C ==我们规定:=0nC 典型例题例1甲、乙、丙、丁4个人,(1)从中选3个人组成一组,有多少种不同的方法?列出所有可能情况;(2)从中选3个人排成一排,有多少种不同的方法?变式:甲、乙、丙、丁4个足球队举行单循环赛:(1)列出所有各场比赛的双方;(2)列出所有冠亚军的可能情况.例2 计算:(1)47C ; (2)710C变式:求证:11+⋅-+=m n mn C mn m C动手试试练1.计算:⑴26C ; ⑵ 38C ;⑶ 2637C C -; ⑷ 253823C C -.练2.已知平面内A ,B ,C ,D 这4个点中任何3个点都不在一条直线上,写出由其中每3点为顶点的所有三角形.练3. 学校开设了6门任意选修课,要求每个学生从中选学3门,共有多少种选法?当堂检测(时量:5分钟满分:10分)计分:1. 若8名学生每2人互通一次电话,共通次电话.2. 设集合{}A a,b,c,d,e ,B A =⊂,已知a B ∈,且B 中含有3个元素,则集合B 有个.3. 计算:310C =.4. 从2,3,5,7四个数字中任取两个不同的数相乘,有m 个不同的积;任取两个不同的数相除,有n 个不同的商,则m :n =.5. 写出从a,b,c,d,e 中每次取3个元素且包含字母a ,不包含字母b 的所有组合§1.2.2组合(2)学习目标 1. 掌握组合数的两个性质;2. 进一步熟练组合数的计算公式,能够运用公式解决一些简单的应用问题;学习过程一、课前准备(预习教材P 24~ P 25,找出疑惑之处)复习1:从个元素中取出()m n ≤个元素一组,叫做从n 个不同元素中取出m 个元素的一个组合;从个元素中取出()m n ≤个元素的组合的个数,叫做从n 个不同元素中取出m 个元素的组合数....用符号表示. 复习2:组合数公式:m n C ==二、新课导学学习探究探究任务一:组合数的性质问题1:高二(6)班有42个同学⑴ 从中选出1名同学参加学校篮球队有多少种选法?⑵从中选出41名同学不参加学校篮球队有多少种选法?⑶上面两个问题有何关系?新知1:组合数的性质1:m n n m n C C -=.新知2 组合数性质2 m n C 1+=m n C +1-m nC典型例题例1(1)计算:69584737C C C C +++;变式1:计算2222345100C C C C ++++动手试试练1.若542216444x x C -C C C -=+,求x 的值知识拓展⑴ 计算 383321n n n n C C -++⑵计算0121734520C C C C ++++当堂检测(时量:5分钟满分:10分)计分:1. 908910099C -C =2.若231212n n-C C =,则n =3.有3张参观券,要在5人中确定3人去参观,不同方法的种数是;4.若7781n n n C C C +=+,则n =;5. 化简:9981m m m C -C C ++= .§1.2.2组合(3)学习目标1.进一步理解组合的意义,区分排列与组合;2. 进一步巩固组合、组合数的概念及其性质;3. 熟练运用排列与组合,解较简单的应用问题.学习过程一、课前准备(预习教材P 27~ P 28,找出疑惑之处)复习1:⑴从个元素中取出()m n ≤个元素的组合的个数,叫做从n 个不同元素中取出m 个元素的组合数...,用符号表示;从个元素中取出(n m ≤)个元素的的个数,叫做从n 个不同元素取出m 元素的排列数,用符合表示.⑵m n A =m n C ==m n A 与m n C 关系公式是复习2:组合数的性质1:.组合数的性质2:.二、新课导学学习探究探究任务一:排列组合的应用问题:一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:⑴这位教练从17位学员中可以形成多少种学员上场方案?⑵如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事?试试:⑴平面内有10个点,以其中每2个点为端点的线段共有多少条?⑵ 面内有10个点,以其中每2个点为端点的有向线段多少条?典型例题例1 在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件. ⑴有多少种不同的抽法?⑵抽出的3件中恰好有1件是次品的抽法有多少种?⑶抽出的3件中至少有1件是次品的抽法有多少种?变式:在200件产品中有2件次品,从中任取5件:⑴其中恰有2件次品的抽法有多少种?⑵其中恰有1件次品的抽法有多少种?⑶其中没有次品的抽法有多少种?⑷其中至少有1件次品的抽法有多少种?例2 现有6本不同书,分别求下列分法种数:⑴分成三堆,一堆3本,一堆2本,一堆1本;⑵分给3个人,一人3本,一人2本,一人1本;⑶平均分成三堆.变式:6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法?变式:某同学邀请10位同学中的6位参加一项活动,其中两位同学要么都请,要么都不请,共有多少种邀请方法?※动手试试练1. 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表?练2.高二(1)班共有35名同学,其中男生20名,女生15名,今从中取出3名同学参加活动, (1)其中某一女生必须在内,不同的取法有多少种?(2)其中某一女生不能在内, 不同的取法有多少种?(3)恰有2名女生在内,不同的取法有多少种?(4)至少有2名女生在内,不同的取法有多少种?(5)至多有2名女生在内,不同的取法有多少种?当堂检测(时量:5分钟满分:10分)计分:1. 凸五边形对角线有条;2.以正方体的顶点为顶点作三棱锥,可得不同的三棱锥有个;3.要从5件不同的礼物中选出3件送给3个同学,不同方法的种数是;4.有5名工人要在3天中各自选择1天休息,不同方法的种数是;5. 从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成没有重复数字的五位数?。

1.2.排列(2)


选做题:P15练习5
作业:P18习题2、3、7
探究 从n个不同元素中取出 个元素的排列 2
2 到.因此, 所有不同填法的种数就 是排列数A n .
现在我们计算有多少种 填法.完成填空这件 事可分为两个步骤: 第1步, 填第1个位置的元素可以从这n个元 , 素中任选 个,有n种方法; 1 第2步, 填第2个位置的元素可以从剩下的 , n 1个元素中任选 个,有n 1种方法. 1
(3)第三位从剩下的2个字母中任意取出一个
选取3个字母的所有排列的个数为4 3 2 24
1.排列数的定义
从n个不同元素中取出 m n 个元素的所有 m 不同排列的个数叫做从 个不同元素中取出 n m
m 个元素的排列数, 用符号An 表示.
பைடு நூலகம்
A是英文字arrangemen t排列的第一个字母 .
m n
你能概括一下排列数公 式的特点吗 ?
n 个不同元素全部取出的 一个排列 , 叫做 n个元素的一个全排列 .这时公式中m n, 即有A nn 1n 2 3 2 1,
m n
就是说 , n 个不同元素全部取出的 排列数, 等于正整数 1 到n的连乘积.正整数1到n的 连乘积,叫做 n的 阶乘 , 用 n! 表示.所以 n 个 不同元素的全排列数公 式可以写成
根据分步乘法计数原理 个空位的填法种 ,2 数为A nn 1.
2 n 3 n 3 同理,求排列数A n可依次填3个空位来考虑 ,
有 A nn 1n 2.
一般地, 求排列数A 可以按依次填 个空位 m 来考虑 : 假定有排好顺序的 个空位 图1.2 4 , 从 n m 个元素a1, a 2 , , an 中任意取m个去填空 一个 , 空位填一个元素, 每一种填法就对应一个 排 列.因此, 所有不同填法的种数就 是排列数A m . n

2019-2020年人教A版高中数学选修2-3:1.2排列与组合1.2.1排列课件 (共29张PPT)

课时作业
[自主梳理] 1.排列的有关概念 (1)定义:一般地,从 n 个 不同 元素中取出 m(m≤n)个元素,按照一定的顺序 排成一列,叫作从 n 个 不同 元素中取出 m 个元素的一个排列. (2)相同排列:两个排列相同,当且仅当两个排列的元素 完全相同 ,且元素的 排列顺序 也相同.
2.排列数与排列数公式
后面,则他可选的密码个数共有( )
A.A66
B.A68
C.A35+A33
D.A35·A33
解析:分两步.第一步选 3 个数字安排在后三位,有 A35种方法,第二步把 3 个字母
安排在前三位,有 A33种方法,故共有 A35·A33个密码.
答案:D
探究三 “在”与“不在”的问题 [典例 3] 7 位同学站成一排. (1)若甲站在中间的位置,则共有多少种不同的排法? (2)甲、乙只能站在两端的排法共有多少种? (3)甲、乙不能站在排头和排尾的排法共有多少种? (4)甲不能站排头、乙不能站排尾的排法共有多少种? [解析] (1)先考虑甲站在中间,有 1 种排法,再在余下的 6 个位置排另外 6 位同学, 共 A66=720 种排法. (2)先考虑甲、乙站在两端,有 A22种排法,再在余下的 5 个位置排另外 5 位同学,有 A55种排法,共 A22A55=240 种排法.
1.2 排列与组合 1.2.1 排 列重点:排列的概念;排列数公
2.了解排列数的概念.
式;用排列知识解决简单的实
3.掌握排列数公式的推导方法.
际问题.
4.能用排列知识解决简单的实际问题. 难点:排列数公式的推导方法.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要 表现在某元素不排在某个位子上或某个位子不排某些元素,解决该类排列问题的方法 主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子.

课件1:1.2.1 排列

位数,共可得多少个不同的三位数?
4× 3×2=24种
4种 3种
2种
问题探究
问题3 从n个不同元素中取出2个元素,排成一列,共有多少种
排列方法?
问题4 从n个不同元素中取出3个元素,排成一列,共有多少种 排列方法?
n种 (n-1)种 (n-2)种
n种 (n-1)种 n (n-1) 种
n (n-1)(n-2) 种
算.
n Am
理论迁移
例2 某年全国足球甲级(A组)联赛共有14个队参加, 每队要与其余各队在主、客场分别比赛一次,求总共要进
行多少场比赛.
A 14 13 182
2 14
理论迁移
例3(1)从5本不同的书中选3本送给3名同学,每人各1本,共有
பைடு நூலகம்
多少种不同的送法?
3 ( 种 ) 5 (2)从5种不同的书中选3本送给3名同学,每人各1本,共有多少
A
= 60
种不同的送法?
5 = 125 (种)
3
典型例题
题型一 数字排列的问题 例1.用0,1,2,…,9十个数字可组成多少个满足以下条 件的且没有重复数字的数: (1)五位奇数; (2)大于30 000的五位偶数.
解 (1)要得到五位奇数,末位应从1,3,5,7,9五个数字中取,有5种取
法;取定末位数字后,首位就有除这个数字和0之外的8种不同取法;首末 两位取定后,十个数字还有八个数字可供中间的十位、百位与千位三个数
用的方法有直接法和间接法,直接法又有分步法和分类法两
种.
课堂小结
1.判断一件事是否为排列关键有两个要素,一是取出的元素要考 虑顺序,二是事件中没有重复元素,否则就不能按排列原理求方 法数. n Am 2.排列与排列数是两个不同的概念,前者是指按照一定顺序排成的

高中数学 1.2.2《排列》教案 新人教版A选修23

课题:选修2-3§1.2排列(2)教学目标理解排列的意义,并能用树形图正确写出一些简单排列问题的所有排列;了解排列数的意思,掌握排列数公式及其推导方法,从中体会“化归”的数学思想,并能用排列数公式进行运算;能用所学的排列知识正确解决简单的实际问题。

w.w.w.k.s.5.u.c.o.m教学重点排列数公式的理解与运用;排列应用题常用的方法有直接法(包括特殊元素处理法、特殊位置处理法、捆绑法、插空法),间接法教学难点排列数公式的理解与运用教具准备作图工具教学过程设计思路情境设计P18:3(1)(3)从1~9这九个数字中选出三个组成一个三位数,则这样的三位数的个数是多少?复习排列数公式新知教学排列数公式的应用:例1、(1)某足球联赛共有12支队伍参加,每队都要与其他队在主、客场分别比赛一场,共要进行多少场比赛?解:见书本16页例6变式:(1)放假了,某宿舍的四名同学相约互发一封电子邮件,则他们共发了多少封电子邮件?(2) 放假了,某宿舍的四名同学相约互通一次电话,共打了多少次电话?例2、(1)从5本不同的书中选3本送给3名同学,每人1本,共有多少种不同的送法?(2)从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?解:见书本16页例6例3、用0到9这10个数字,可以组成多少个没有重复数字的三位数?解:见书本16页例7选讲:如图,某个城市在中心广场建造一个花圃,花圃地区分为6个区域,现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样的花,求不同的栽种方法。

(1)在学中教,在学中悟(2)通过例1的分析让学生进一步理解排列数公式的应用。

(3)例2的分析中可以让学生进行,让其明确排列和两个原理的相互关系(4)例3的讲解和分析遵循螺旋上升的原则,让学生进一步明确数字问题的处理方法选讲例题供A层次班级选用,仅供参考,或选讲课时训练的有关练习465132。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2.1. 排列(2)
1熟练掌握排列数公式;
.
510
复习1:.什么叫排列?排列的定义包括两个方面分别是 和 ;两个排列相同的条件是 相同, 也相同
复习2:排列数公式:
m n
A = (,,m n N m n *∈≤) 全排列数:n n A = = .
复习3 从5个不同元素中任取2个元素的排列数是 ,全部取出的排列数是
二、新课导学
※ 学习探究:
探究任务一:排列数公式应用的条件
问题1:
⑴ 从5本不同的书中选3本送给3名同学,每人各1本,共有多少种不同的送法?
⑵ 从5种不同的书中买3本送给3名同学,每人各1本,共有多少种不同的送法?
新知:排列数公式只能用在从n 个不同元素中取出m 个元素的的排列数,对元素可
能相同的情况不能使用.
探究任务二:解决排列问题的基本方法
问题2:用0到9这10个数字,可以组成多少个没有重复数字的三位数?
新知:解排列问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考
虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面
简单明了时,可通过求差采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;
“分离”问题可能用“插空法”等.
※典型例题
例1(1)6男2女排成一排,2女相邻,有多少种不同的站法?
(2)6男2女排成一排,2女不能相邻,有多少种不同的站法?
(3)4男4女排成一排,同性者相邻,有多少种不同的站法?
(4)4男4女排成一排,同性者不能相邻,有多少种不同的站法?
变式::某小组6个人排队照相留念.
(1) 若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?
(2)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?
(3) 若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?
(4)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?
(5) 若分成两排照相,前排2人,后排4人,有多少种不同的排法?
小结:对比较复杂的排列问题,应该仔细分析,选择正确的方法.
例2 用0,1,2,3,4,5六个数字,能排成多少个满足条件的四位数.
(1)没有重复数字的四位偶数?
(2)比1325大的没有重复数字四位数?
变式:用0,1,2,3,4,5,6七个数字,
⑴能组成多少个没有重复数字的四位奇数?
⑵能被5整除的没有重复数字四位数共有多少个?
※动手试试
练1.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上进行实验,有多少种不同的种植方法?
练2.在3000至8000之间有多少个无重复数字的奇数?
三、总结提升
※学习小结
1. 正确选择是分类还是分步的方法,分类要做到“不重不漏”,分步要做到“步骤完整.
2..正确分清是否为排列问题满足两个条件:从不同元素中取出元素,然后排顺序.
※知识拓展
有4位男学生3位女学生排队拍照,根据下列要求,各有多少种不同的排列结果?(1)7个人排成一排,4个男学生必须连在一起;
(2)7个人排成一排,其中甲、乙两人之间必须间隔2人.
※当堂检测(时量:5分钟满分:10分)计分:
1. 某农场为了考察3个水稻品种和5个小麦品种的质量,要在土质相同的土地上进行试验,应该安排的试验区共有块.
2. 某人要将4封不同的信投入3个信箱中,不同的投寄方法有种.
3. 用1,2,3,4,5,6可组成比500000大、且没有重复数字的自然数的个数是.
4. 现有4个男生和2个女生排成一排,两端不能排女生,共有种不同的方法.
5. 在5天内安排3次不同的考试,若每天至多安排一次考试,则不同的排法有
种.
1..一个学生有20本不同的书.所有这些书能够以多少种不同的方式排在一个单层的书架
上?
2.学校要安排一场文艺晚会的11个节目的演出顺序.除第一个节目和最后一个节目已确
定外,4个音乐节目要求排在第2,5,7,10的位置,3个舞蹈节目要求排在第3,6,9的位置,2个曲艺节目要求排在第4,8的位置,求共有多少种不同的排法?。

相关文档
最新文档