学而思寒假七年级尖子班讲义第5讲二元一次方程组进阶
学而思初一数学春季班第5讲-目标中考满分班-教师版

不等式1级 不等式的概念和性质 不等式2级 含参不等式 方程6级不等式3级 不等式的应用春季班 第七讲暑期班第七讲天平漫画释义满分晋级阶梯5含参不等式编写思路:题型一:让学生掌握解一元一次不等式及一元一次不等式组的解法,认识解集,理解解与解集的区别和联系;题型二:让学生掌握含参不等式(系数含参和不含参两种类型)的解法. 对系数含参的不等式,让学生理解和掌握参数系数的讨论方法,并与含参方程的讨论方法进行比较、认识. 题型三:对于绝对值不等式,通过两种方法让学生理解(1)代数方法:即讨论、去绝对值,变成一元一次不等式,求解集. (2)几何方法:利用绝对值的几何意义求解.定 义示例剖析一元一次不等式:类似于一元一次方程,含有一个未知数,未知数的最高次数是1的不等式,叫作一元一次不等式.25x >,340m -<,332307≥y y -+-一元一次不等式标准形式:经过去分母、去括号、移项、合并同类项等变形后,能化为ax b<或ax b >的形式(其中0a ≠).563x >,37≤x 等都是一元一次不等式的标准形式 不等式的解:使不等式成立的每一个未知数的值叫作不等式的解.4-,2-,0,1,2都是不等式2x ≤的解,当然它的解还有许多.不等式的解集:能使不等式成立的所有未知思路导航知识互联网题型一:不等式(组)的基本解法数的集合,叫作不等式的解集.一般不等式的解集是一个范围,在这个范围内的每一个值都是不等式的解.不等式的解集可以用数轴来表示.3≥x 是260≥x -的解集; 2x <是2x ->-的解集解一元一次不等式的步骤:去分母→去括号→移项→合并同类项(化成ax b <或ax b >形式)→系数化为1(化成b x a >或bx a<的形式).不等式的解与不等式解集的区别与联系:不等式的解与不等式的解集是两个不同的概念,不等式的解是指使这个不等式成立的未知数的某个值,而不等式的解集,是指使这个不等式成立的未知数的所有的值组成的集合;不等式的所有解组成了解集,解集包括了每一个解.定 义示例剖析一元一次不等式组:含有相同未知数的几个一元一次不等式所组成的不等式组,叫作一元一次不等式组.1302841x x x ⎧-⎪⎨⎪+<-⎩≥和26061503≥x x x ⎧⎪-⎪-<⎨⎪⎪->⎩ 都是一元一次不等式组; 24x y >⎧⎨<⎩不是一元一次不等式组 一元一次不等式组的解集:几个一元一次不等式解集的公共部分,叫作由它们所组成的一元一次不等式组的解集,当几个不等式的解集没有公共部分时,称这个不等式组无解(解集为空集).解一元一次不等式组的步骤:⑴ 求出这个不等式组中各个不等式的解集;⑵ 利用数轴求出这些不等式的解集的公共部分,即求出这个不等式组的解集.由两个一元一次不等式组成的不等式组,经过整理可以归结为下述四种基本类型:(表中a b >)不等式 图示解集 x ax b >⎧⎨>⎩ x a >(同大取大)x ax b <⎧⎨<⎩ x b <(同小取小)x ax b <⎧⎨>⎩ b x a <<(大小交叉中间找)x ax b >⎧⎨<⎩无解(大大小小无解了)【例1】 ⑴解不等式31423x x x +--+≤. 典题精练⑵解不等式组12(1)532122x x x --⎧⎪⎨-<+⎪⎩≤,并在数轴上表示出解集.⑶求不等式组2(2)43251x x x x --⎧⎨--⎩≤<的整数解.⑷解不等式组32215x x -<-<⑸解不等式组253473x x -<⎧⎪-⎨>⎪⎩(2012年朝阳一模)【解析】⑴135x -≥; ⑵由①得1x -≥由②得3x <∴原不等式组的解集是13x -<≤.⑶由①得 12x -≥;由②得 2x <.∴此不等式组的解集为122x -<≤.∴此不等式组的整数解为0,1.⑷原不等式组等价于不等式组3221215x x x -<-⎧⎨-<⎩解得:1x < ⑸无解【点评】通过此题告知学生不等式组无解的写法.思路导航题型二:含参数的不等式(组)对于含参不等式,未知数的系数含有字母需要分类讨论:如不等式ax b <,分类情况解集情况 0a >时解集为bx a <.0a <时 解集为bx a >.0a =时若0b >,则解集为任意数; 若0b ≤,则这个不等式无解.【引例】⑴关于x 的一次不等式组x ax b >⎧⎨<⎩无解集,则a ,b 的大小关系是 .⑵关于x 的一次不等式组x ax b <⎧⎨<⎩的解集是x b <,则a ,b 的大小关系是 .⑶关于x 的一次不等式组x ax b >⎧⎨<⎩的解集是a x b <<,则a ,b 的大小关系是 .⑷关于x 的一次不等式组x ax b ⎧⎨⎩≥≤的解集是a x b ≤≤,则a ,b 的大小关系是 .【解析】 ⑴a b ≥;⑵b a ≤;⑶a b <;⑷a b ≤.【点评】先根据不等式组解集的情况得到大小关系,再对“是否取等”情况单独分析.【例2】 解关于x 的不等式:⑴+2a x b > ⑵13kx +> ⑶132kx x +>- ⑷36mx nx +<--⑸()212m x +< ⑹()25n x --<典题精练例题精讲【解析】 ⑴ 2b ax ->⑵移项得:2kx >当0k >时,解集为2x k >当0k <时,解集为2x k<当0k =时,不等式变为02x ⋅>,故不等式无解 ⑶移项,合并同类项得:()33k x ->-当30k ->,即3k >时,不等式解集为33x k ->- 当30k -<,即3k <时,不等式解集为33x k -<-当30k -=时,即3k =时,不等式变为03x ⋅>-,故不等式解集为任意数. ⑷不等式变形得:()9m n x +<-,因不知()m n +的正负性,故分类讨论①当0m n +>,即m n >-时,解集为9x m n <-+ ②当0m n +<,即m n <-时,解集为9x m n>-+③当0m n +=,即m n =-时,不等式无解.⑸∵210m +>,∴不等式解集为221x m <+ ⑹20n --<,∴不等式解集52x n >--【点评】第1小题为系数不含参的,第2至第4为系数含参的需要分类讨论,第5,6题都是系数恒正(恒负)的问题不需要分类讨论.【总结】解决系数含参的一元一次不等式步骤:1. 移项合并同类项后得到最简式ax b >或ax b <;2.对系数a 进行分类讨论;(此时注意分析系数有可能是恒正或恒负) 3.对系数为0的情况单独分析,此时不等式解集为任意数或无解.【例3】 ⑴不等式()123x m m ->-的解集与2x >的解集相同,则m 的值是 .⑵关于x 的不等式2x a -≤-1的解集如图所示,则a 的值为 .⑶关于x 的不等式5ax >的解集为52x <-,则参数a 的值 .⑷ ①若不等式组3x x a >⎧⎨>⎩的解集是x a >,则a 的取值范围是 .②若不等式组3x x a >⎧⎨⎩≥的解集是x a ≥,则a 的取值范围是 .A .3a ≤B .3a =C .3a >D .3a ≥(北京二中期中考试)⑸已知关于x 的不等式组232x a x a +⎧⎨-⎩≥≤无解,则a 的取值范围是 .⑹已知关于x 的不等式组>053x a x -⎧⎨-⎩≥无解,则a 的取值范围是 .【解析】 ⑴由不等式解得62x m >-,即622m -=,则2m =; ⑵由不等式解得12a x -≤,可得112a -=-,1a =-;⑶2a =-⑷ ①D ;②C .⑸当232a a +>-时,不等式组无解,(大于大的,小于小的无解),∴2a <.⑹解不等式组得2x a x >⎧⎨⎩≤,当2a ≥时,不等式组无解(大于大的,小于小的无解),∴2a ≥.【例4】 ⑴ 已知关于x 的不等式组0521≥x a x -⎧⎨->⎩只有四个整数解,则实数a 的取值范围是 .⑵ 如果关于x 的不等式50x m -≤的正整数解只有4个,那么m 的取值范围是( ) A .2025m <≤ B .2025m <≤ C .25m < D .20m ≥(北京五中期中考试)【解析】 ⑴ 32≤a -<-;⑵A .【总结】(供教师参考)对于解决不等式组的整数解个数问题步骤:以例4(1)为例 1.写出不等式组的解集;例如2a x <≤2.根据整数解的个数在数轴上画出简图;可得32a -<<-;3.对于是否取等号单独讨论分析.当3a =-时,解集为32x -<≤此时有五个整数解,不合题意; 当2a =-时,解集为22x -<≤此时有四个整数解,合题意. 综上可得32a -<-≤.【探究对象】以下对于含有字母系数的一元一次不等式组的问题进行变式和拓展,主要针对整数根问题和解含参的不等式组,需要分类讨论.【变式】试确定实数a 的取值范围,使不等式组恰有两个整数解.544(1)331023a x x a x x +⎧+++⎪⎪⎨+⎪+>⎪⎩≥ 【解析】 不等式组的解为225x a -<≤恰有两个整数解,则这两个整数解必为0,1x =则122a <≤,解得112a <≤.【拓展1】如果关于x 不等式组9080.x a x b -⎧⎨-<⎩,≥的整数解仅为1,2,3,则a 的取值范围是 ,b 的取值范围是 . (2011年西城区期末考试) 【解析】 由原不等式组可得98a bx <≤.因不等式组的整数解仅为1,2,3,于是有019a <≤,348b<≤,由019a <≤得09a <≤,由348b<≤得2432b <≤.【拓展2】解关于x 的不等式组:23262(1)11x a x x x +⎧->⎪⎨⎪+>-⎩ 【解析】原不等式组可化为323x a x >+⎧⎨>⎩,当323a +>,即13a >时,不等式组的解集为32x a >+;当323a +≤,即13a ≤时,不等式组的解集为3x >.【拓展3】已知关于x 的不等式组214(1)3x ax x -<+⎧⎨+>⎩⑴若不等式组无正整数解,求a 的取值范围;⑵是否存在实数a ,使得不等式组的解集中恰含了3个正整数解. 若存在请求出a 的取值范围.【解析】 化简不等式组得()1314a x x ->-⎧⎪⎨>-⎪⎩当1a <时,解集为1341x a --<<-;当113a ≤≤时,解集为14x >-;当13a >时,解集为31x a >--⑴若不等式组无正整数解,显然1a ≥时,均不合题意; 当1a <时,应有311a --≤,得2a -≤, 所以原不等式组无正整数解时,a 的取值范围是2a -≤; ⑵当1a ≥时,不等式组的解集中均有无数个正整数解. 当1a <时,依题意得3341a -<-≤,解得104a <≤. 故当104a <≤时,不等式组的解集中恰含了3个正整数解.定义示例剖析绝对值不等式:不等式中未知数含有一个或几个绝对值的不等式.≤x a ,122≥x x -+-对于复杂的不等式可采用整体思想,例如()()22323x x +-+<,此时不必去括号可直接把2x +看成一个整体去解.【例5】 解下列不等式 :⑴ >2x . ⑵ 3x ≤. ⑶ 14≤x -【解析】 ⑴ (法一)零点分类讨论:①02x x ⎧⎨>⎩≥即2x >. ②02x x <⎧⎨->⎩即2x <-.综上得,2x >或2x <-.典题精练思路导航题型三:复杂的不等式(组)(法二 )应用绝对值的几何意义:2x >或2x <-. ⑵(法一)零点分类讨论:① 03x x ⎧⎨⎩≥≤ 即03x ≤≤.② 03x x <⎧⎨-⎩≤即30x -<≤.综上得,33x -≤≤.(法二)应用绝对值的几何意义:33x -≤≤. ⑶ (法一)零点分类讨论:① 1014≥≤x x -⎧⎨-⎩即51≤≤x .② 1014≤x x -<⎧⎨-⎩即31x -<≤综上得,35x -≤≤(法二)应用绝对值的几何意义:35x -≤≤【例6】 解不等式⑴ 123≤≤x + ⑵ 235≥x x -++【解析】 ⑴(法一)零点分类讨论:① 20123x x +⎧⎨+⎩≥≤≤ 即11x -≤≤.② 201(2)3x x +<⎧⎨-+⎩≤≤即53x --≤≤.综上得,11x -≤≤或53x --≤≤.(法二)应用绝对值的几何意义:11x -≤≤或53x --≤≤. ⑵ 应用绝对值的几何意义,易得x 为任意数.【总结】绝对值不等式的解法,通常根据绝对值的意义,用讨论的方法,去掉绝对值的符号,将绝对值不等式化为不等式组进行求解.也可根据数轴,利用绝对值的几何意义进行求解.【例7】 已知2310a x -+=,32160b x --=,且4a b <≤,求x 的取值范围.【解析】题型一 不等式(组)的基本解法 巩固练习【练习1】 不等式组331482x x x +>⎧⎨--⎩≤的最小整数解是( ) A .0 B .1 C .2 D .-1【解析】A题型二 含参数的一元一次不等式(组) 巩固练习【练习2】 、a b 为参数,解不等式153b ax x -<-+ 【解析】 不等式化简为63b a x ⎛⎫+< ⎪⎝⎭ 当03b a +>时,解集为183x a b<+ 当03b a +<时,解集为183x a b>+ 当03b a +=时,解集为任意数. 【练习3】 ⑴若不等式(2)2a x a -<-的解集在数轴上表示如图所示,则a 的取值范围是 .复习巩固真题赏析312310,216232160,3431421624323x a x a x b x b a b x x x --+=∴=+--=∴=<-⎧⎪⎪∴⎨+⎪>⎪⎩∴-<≤≤≤⑵若不等式组213x x a -<⎧⎨<⎩的解集是2x <,则a 的取值范围是 .⑶如果关于x 的不等式组230≥≤x x m -⎧⎨⎩无解,则m 的取值范围是 . 【解析】 ⑴2a <;⑵2a ≥; ⑶32m <.【练习4】 ⑴ 关于x 的不等式组1532223x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,则a 的取值范围是( ). A.1453a --≤≤ B.1453a -<-≤ C.145<3a --≤ D .1453a -<<-⑵已知关于x 的不等式组0321≥x a x -⎧⎨->-⎩的整数解有5个,则a 的取值范围是 . 【解析】 ⑴ C. 不等式组可化得2123x x a <⎧⎨>-⎩∴这四个整数只能是17,18,19,20, 故162317a -<≤,即1453a -<-≤. ⑵43≤a -<-.题型三 复杂的不等式(组) 巩固练习【练习5】 解下列不等式:135x <-<【解析】 22x -<<或48x <<第十四种品格:信念朋友的信任公元前4世纪,在意大利,有一个名叫皮斯阿司的年轻人触犯了国王。
第二节 二元一次方程组的解法(含答案)...七年级数学 学而思

第二节二元一次方程组的解法1.二元一次方程组的解法基本思路是消元,即通过运用代入法或加减法把二元一次方程组转化为一元一次方程,从而求出方程组的解. (1)代入消元法:通过等量代换,消去方程组中的一个未知数,使二元一次方程组转化为一元一次方程,从而求得一个未知数的值,然后再求出被消去未知数的值,从而确定原方程组的解的方法.代入消元法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数例如y,用含另一个未知数如x的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)加减消元法:加减法是消元法的一种,也是解二元一次方程组的基本方法之一.加减法不仅在解二元一次方程组中适用,也是今后解其它方程(组)经常用到的方法.加减消元法解二元一次方程组的一般步骤:①变换系数:方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数;②加减消元:把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求得未知数的值;④回代:将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值;⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,需要把求得的x,y的值用“{”联立起来.2.特殊方程组的解法对于具有某些特点的二元一次方程组,如果仍按常规方法不仅运算量大,而且容易出错,则可根据题目的特点,利用整体思想来采用特殊方法简化方程组,接着再采用代入或加减消元法解出相应x,y的值即可.(1)系数轮换法:适用方程组类型:如果把方程组中的每一个未知数依次轮换后,虽然每个方程都变了,但是整个方程组仍不变,步骤:解题时,把各方程相加,即可得到x+ y=常数的形式,把各方程相减,即可得到x- y=常数的形式,这两个新的方程组成的方程组就是原方程组化简后的结果,便可以采用加减或代入消元法求得未知数的值.(2)换元法:适用方程组类型:方程组项数较多、系数较为复杂,而且会有相同的部分或者是互为相反数的部分多次出现;步骤:解题时,把方程中相同的部分或者是互为相反数的部分看成是一个整体,用另一个字母来替换,从而简化原先项数多、系数复杂的方程组,再采用常规的加减或者代入消元法来求得未知数的值.(3)倒数法:适合方程组类型:方程中出现分母是和的形式,分子是积的形式⋅+yx xy步骤:解题时,采用倒数法变换成分子是和、分母是积的形式,xyyx +然后进行拆分,利用加减或者代入或者换元法来解出x ,y 的值.1.代入消元方法的选择①运用代入法时,将一个方程变形后,必须代入另一个 方程,否则就会 得出“0=0”的形式,求不出未知数的值;②当方程组中有一个方程的一个未知数的系数是1或一1时,用代入法较简便. 2.加减消元方法的选择①一般选择系数绝对值最小的未知数消元;②当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相 等时,用减法消元;③某一未知数系数成倍数关系时,直接使其系数互为相反数或相等,再用 加减消元求解;④当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同的方程,再用加减消元求解,例1.如果关于x ,y 的方程组⎩⎨⎧-=-=+223a y x y x 的解是负数,则a 的取值范围是( )54.<<-a A 5.>a B 4.-<a C D .无解检测1.(浙江绍兴期末)已知关于x ,y 的方程组⎩⎨⎧-=-=-,52253a y x ay x 若x ,y 的值互为相反数,则a 的值为( )5.-A 5.B 20.-C 20.D例2.(四川南江县期末)已知,0)112(|32|2=+++--y x y x 则( )⎩⎨⎧==12.y x A ⎩⎨⎧-==30.y x B ⎩⎨⎧-=-=51.y x C ⎩⎨⎧-=-=72.y x D检测2.(山东滨州期末)已知,0|72|)12(2=-++--y x y x 则=-y x 3( )3.A 1.B 6.-C 8.D例3.(湖北黄冈期末)若y x h y xb a ba -+--332243是同类项,则b a -的值是( )0.A 1.B 2.C 3.D检测3.若y x nm +243与n m y x -5是同类项,则m .n 的值分别是( ) 3,2.A 1,2.B 0,2.C 2,1.D例4.(湖南衡阳县一模)解方程组:⎩⎨⎧=+=+,604320122016604120162012y x y x 则yx yx -+值是3.A 3.-B 6.C 6.-D检测4.(1)(江苏海门市期末)如果实数x ,y 满足方程组⎩⎨⎧=+=+,4222y x y x 那么=+y x(2)(安徽泗县校级模拟)关于x ,y 的二元一次方程组⎩⎨⎧-=+-=+22132y x k y x 的解满足y x +,1=则k=例5.(河北古冶区一模)已知a ,b 满足方程组⎩⎨⎧=-=+,283b a b a 则=+b a2.A3.B4.C5.D检测5.(1)(河北模拟)已知e 、f 满足方程组⎩⎨⎧=-=--,6223e f f e 则f e +2的值为( )2.A 4.B 6.C 8.D(2)(广东广州中考)已知a .b 满足方程组⎩⎨⎧=-=+,43125b a b a 则b a +的值为第二节 二元一次方程组的解法(建议用时:35分钟)实战演练1.用加减法解方程组⎩⎨⎧-=-=+15y x y x 中,消x 用 法,消y 用 法( )A.加,加 B .加,减 C .减,加 D .减,减2.若用代入法解方程组⎩⎨⎧+==,12332y x yx 以下各式代入正确的是( )1)32(23.+=x x A 1)32(23.+=y x B1)23(23.+=x x C 1623.+⋅=x x x D3.若,0|52||12|=--+--y x y x 则x+y 的值为( )4.A5.B6.C7.D4.已知:|32|++y x 与2)2(y x +互为相反数,则=-y x ( )7.A 5.B 3.C 1.D5.(山东临清市期末)已知方程组⎩⎨⎧=+=-my x y x 24中x ,y 相加为0,则m 的值为( )2.A 2.-B 0.C 4.D6.(河北石家庄校级模拟)若方程组⎩⎨⎧=++=+my x m y x 32253的解x 与y 互为相反数,则m 的值为( )2.-A 0.B 2.C 4.D7.若方程组⎩⎨⎧=+=+16156653y x y x &的解也是方程103=+ky x 的解,则( )6.=k A 10.=k B 9.=k C 101.=k D 8.若3243y x b a +与ba y x -634的和是单项式,则=+b a ( ) 3.-A 0.B 3.C 6.D9.按如图8 -2—1所示的运算程序,能使输出结果为3的x ,y 的值是( )128--2,5.-==y x A ⋅-==3,3.y x B 2,.4.=-=y x C 9,3.-=-=y x D10.(山东临沂中考)已知x ,y 满足方程组⎩⎨⎧=+=+,4252y x y x 则y x -的值为( )⎩⎨⎧==12.11y x 是方程组⎩⎨⎧=-=+04by ax by ax 的解,那么=+-))((b a b a 12.已知方程组⎩⎨⎧-=+=-123225m y x my x 的解x ,y 互为相反数,则m=13.(江苏常州期末)若关于x ,y ,的二元一次方程组⎩⎨⎧=+-=+22132y x a y x 的解满足x+ y=l ,则a 的值为14.三个同学对问题“若方程组⎪⎩⎪⎨⎧=+=+222111c y b x a c y b x a 的解是⎩⎨⎧==,43y x 求方程组⎪⎩⎪⎨⎧=+=+222111523523c y b x a c y b x a 的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”,参考他们的讨论,你认为这个题目的解应该是 .15.(“信利杯”竞赛题)已知:a ,b ,c 三个数满足,31=+b a ab ,41=+c b bc ,51=+a c ca 则ca bc ab abc++的值为 16.(重庆校级自主招生)解方程组:⎩⎨⎧=+=+200320042005200620052004y x y x17.解方程组:⎪⎩⎪⎨⎧-=-=-+-421621y x y x18.已知方程组⎩⎨⎧+=---=+ay x ay x 317的解中,x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简.|2||3|++-a a19.(江苏张家港市期末)已知关于x ,y 的方程组⎩⎨⎧+=+=+12242m y x my x (实数m 是常数).(1)若x+y=1,求实数m 的值;(2)若,51≤-≤-y x 求m 的取值范围; (3)在(2)的条件下,化简:.|32||2|-++m m20.(黑龙江讷河市校级期末)已知二元一次方程组⎩⎨⎧+=-+=+1593a y x a y x 的解x ,y 均是正数.(1)求a 的取值范围; (2)化简.|4||54|--+a a拓展创新21.解方程组:⎩⎨⎧==+44y -3x 23y x 2拓展1.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+443232y x y x 拓展2.解方程组:⎪⎪⎩⎪⎪⎨⎧=-=+41432132x y xy x y xy极限挑战22.(全国初中数学竞赛)若,0634=--z y x ),0(072=/=-+xyz z y x 则式子222222103225z y x z y x ---+的值等于( )21.-A219.-B 15.-C 13.-D课堂答案培优答案。
(word完整版)学而思寒假七年级尖子班讲义第1讲平行线四大模型(1)

目录Contents第1讲平行线四大模型 (1)第2讲实数三大概念 (17)第3讲平面直角坐标系 (33)第4讲坐标系与面积初步 (51)第5讲二元一次方程组进阶 (67)第6讲含参不等式〔组〕 (79)1 平行线四大模型知识目标目标一熟练掌握平行线四大模型的证实目标二熟练掌握平行线四大模型的应用目标三掌握辅助线的构造方法,熟悉平行线四大模型的构造秋季回忆平行线的判定与性质1、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,假设/ 1 = 72,那么AB// CD 〔同位角相等,两直线平行〕;假设/ 1 = 7 3,那么AB// CD 〔内错角相等,两直线平行〕;假设/ 1+ /4= 180°,那么AB//CD 〔同旁内角互补,两直线平行〕.另有平行公理推论也能证实两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔〞模型点P在EF右侧,在AB、CD内部结论 1 :假设AB // CD,贝U/ P+Z AEP + ZPFC =3 60° ;结论2:假设/ P+/AEP+/PFC= 360°,贝U AB//CD.模型二“猪ET模型〔M模型〕点P在EF左侧,在AB、CD内部“猪蹄〞模型结论 1 :假设AB // CD,贝U/ P=/AEP + /CFP ;结论 1 :假设AB // CD ,贝U/ P=Z AEP-ZCFP 或/ P=/ CFP-/AEP; 结论2:假设/ P=/AEP- / CFP 或/ P=/CFP- / AEP,贝U AB // CD.模型四“骨折〞模型点P在EF左侧,在AB、CD外部“骨折〞模型结论 1 :假设AB // CD ,贝U/ P=Z CFP- / AEP 或/ P=Z AEP-/ CFP ; 结论2:假设/ P= ZCFP- / AEP 或/ P= ZAEP- / CFP,贝U AB // CD.稳固练习平行线四大模型证实(1) AE // CF ,求证/ P +/AEP +/ PFC = 360(2) / P=Z AEP+ZCFP,求证AE//CF.(3) AE//CF,求证/ P=/AEP-/CFP.(4) ZP= ZCFP -/AEP,求证AE //CF .模块一平行线四大模型应用例1(1)如图,a//b, M、N分别在a、b上,P为两平行线间一点,那么/ l + /2+/3= .(2)如图,AB//CD,且/ A=25° , / 0=45°,那么/ E 的度数是(3)如图, AB// DE, /ABC=80° , / 0DE =140°,那么/ B0D= .A* ---------------------- rB (4)如图,射线AC//BD, / A= 70° , / B= 40°,那么/ P=(1)如下图,AB//CD, /E=37° , / 0= 20 °,那么/ EAB 的度数为(2) (七一中学2021-2021七下3月月考)如图,AB // CD, / B=30° , / O=/ C.那么/ 0=例2如图, AB//DE, BF、DF分别平分/ ABC、/ CDE,求/ C、/ F的关系.练如图, AB//DE, /FBC = 1/ABF, /FDC = 1/FDE. n n⑴假设n=2,直接写出/ C、/ F的关系 ;(2)假设n=3,试探冗/ C、/F的关系;(3)直接写出/ C、/ F的关系 (用含n的等式表示)如图, AB//CD, BE 平分/ABC, DE 平分 / ADC .求证:/ E= 2 (/A+/C).如图,己知AB//DE, BF、DF分别平分/ ABC、/ CDE ,求/ C、/ F的关系.例4如图,/ 3==/1+/2,求证:/ A+/B+/C+/D=180〔武昌七校2021-2021七下期中〕如图, ABXBC, AE 平分/ BAD 交BC 于E, AEXDE , / 1+ / 2= 90° ,M、N分别是BA、CD的延长线上的点,/ EAM和/ EDN的平分线相交于点F那么/ F的度数为〔〕A. 120° B.135° C. 145°D,150°模块二平行线四大模型构造例5如图,直线AB//CD, / EFA= 30° , / FGH = 90 /GHM = . ,/ HMN =30° , / CNP= 50°,那么如图,直线AB//CD, / EFG =100° , / FGH =140°,那么/ AEF+ ZCHG =例6/ B =25° , / BCD=45° , / CDE =30 ° , Z E=l0°,求证:AB // EF .练AB // EF,求/ 1- / 2+/3+/4 的度数.⑴如图⑴, MA i//NA n,探索/ A i、/A2、…、/ A n, / B i、/ B2…/B n-1之间的关系.(2)如图(2),己知MA i// NA4,探索/ A i、/ A2、/ A3、/ A4, / B i、/ B2之间的关系.(3)如图(3),MA i// NA n,探索/ A i、/ A2、…、/ A n之间的关系.如下图,两直线AB//CD平行,求/ i+/2+/3+/4+/5+/6.挑战压轴题(粮道街2021—2021七下期中)如图1,直线AB//CD, P是截线MN上的一点,MN与CD、AB分别交于E、F.(1)假设/EFB=55° , / EDP= 30°,求/ MPD 的度数;(2)当点P在线段EF上运动时,/ CPD与/ ABP的平分线交于Q,问:一Q-是否为定值?假设是定值, 请DPB求出定值;假设不是,说明其范围;(3)当点P在线段EF的延长线上运动时,/ CDP与/ ABP的平分线交于Q,问——的值足否认值,请DPB在图2中将图形补充完整并说明理由.图1 图2第一讲平行线四大模型〔课后作业〕1.如图,AB // CD // EF , EH^CD 于 H ,贝U/ BAC+/ACE +/CEH 等于〔〕.3 .如图 3,己知 AE// BD, / 1=130° , / 2=30 ° ,贝U/ C=4 .如图,直线 AB//CD, /C =115° , / A= 25 ° ,那么/ E=5 .如阁所示,AB// CD, / l=l l0° , / 2=120° ,那么/ 后6 .如下图, AB// DF, /D =116° , / DCB=93° ,那么/ B=A.180°B.270°C.360°2.(武昌七校 2021-2021七下期中) D. 450假设 AB // CD , / CDF =-/ CDE, 3 / ABF = - Z ABE,3贝叱 E: / F=( ).A. 2: 1B. 3: 1C. 4: 3AE7.如图,将三角尺的直角顶点放在直线 a 上,a// b. Z 1=50° , Z 2 =60°,那么/ 3的度数为8.如图,AB//CD, EP± FP,/1=30° , / 2=20°.那么/F的度数为9 .如图,假设AB//CD, ZBEF=70°,求/ B+/F+/C 的度数.10 .,直线AB// CD.(1)如图l, / A、/C、/ AEC之间有什么关系?请说明理由;(2)如图2, / AEF、/ EFC、/ FCD之间有什么关系?请说明理由;(3)如图3, / A、/ E、/ F、/ G、/ H、/ O、/ C 之间的关是—FA第11页共11。
二元一次方程组经典讲义

金牌数学初二专题系列之一次函数1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
5、代入消元法解二元一次方程组:(1)基本思路:未知数又多变少。
(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
(4)代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。
3、解出这个一元一次方程,求出x的值,即“解”。
4、把求得的x值代入y=ax+b中求出y的值,即“回代”5、把x、y的值用{联立起来即“联”6、加减消元法解二元一次方程组(1)两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(2)用加减消元法解二元一次方程组的解1、方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即“乘”。
2、把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即“加减”。
学而思初一数学寒假班第5讲.基本乘法公式及应用.学生版

代数式6级 复杂乘法公式及整式除法代数式5级 基本乘法公式及应用代数式4级 整式乘法原来如此漫画释义满分晋级阶梯5基本乘法公式及应用题型切片(四个)对应题目题型目标平方差公式及几何意义例1;完全平方公式及几何意义例2;例3;简便计算例4;乘法公式的综合运用例5;例6;例7;例8公式示例剖析平方差公式:22()()a b a b a b+-=-两个数的和与这两个数的差的积等于这两个数的平方差,这个公式叫做(乘法的)平方差公式.bbbaa注意:⑴负数的奇数次幂与偶数次幂结果完全不同,运算中要格外注意.知识导航模块一平方差公式及几何意义知识互联网题型切片【例1】 ⑴ 在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )图乙图甲bbaaabbA .222()2a b a ab b +=++ B .222()2a b a ab b -=-+ C .22()()a b a b a b -=+- D .22(2)()2a b a b a ab b +-=+-⑵如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形()a b >,将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A .()2222a b a ab b -=-+B .()2222a b a ab b +=++ C .()()22a b a b a b -=+- D .()2a ab a a b +=+⑶计算① ()()x y x y +- ②()()x y x y +-+ ② ()()22x y x y +- ④(43)(43)x x +- ⑤()()x y x y -+-- ⑥2233n m m n ⎛⎫⎛⎫--- ⎪⎪⎝⎭⎝⎭⑵ 运算性质中,字母a ,b 可表示一个数一个单项式或一个多项式.⑶ 幂的运算法则的逆运用,可以解决很多相关问题,要求对运算法则熟练掌握才能做到准确地应用.⑷ 零指数计算中底数不能为零.夯实基础模块二 完全平方公式及几何意义【例2】 计算⑴()2x y + ⑵()2x y -+ ⑶()2x y --⑷2(3)x y + ⑸2(23)x y -- ⑹ 2324x ⎛⎫- ⎪⎝⎭.【例3】 ⑴ 有若干张面积分别为2a ,2b ,ab 的正方形和长方形纸片,阳阳从中抽取了1张面积为2a 的正方形纸片,4张面积为ab 的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为2b 的正方形纸片为( )A .2张B .4张C .6张D .8张 ⑵ 化简:()()()222m n m n m n m -+++-公 式示例剖析完全平方公式:222()2a b a ab b -=-+ 222()2a b a ab b +=++两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍,这两个公式叫做完全平方公式.()22121x x x +=++完全平方公式几何意义:bbaaba ba关于完全平方公式的重要变形: 222()2a b a b ab +=+- 222()2a b a b ab +=-+()22()4a b a b ab +=-+221()()4ab a b a b ⎡⎤=+--⎣⎦ 夯实基础知识导航⑶2(25)(52)(25)x x x ---- ⑷()()x y z x y z +++-⑸()()x y z x y z +--+ ⑹(59)(59)x y x y +--+对于在形式上符合平方差公式和完全平方公式的数字运算,可以运用两个公式进行简便计算,注意无论公式还是公式的逆用都要很熟悉,才能熟练应用.【例4】 ⑴ 2999 ⑵2299101+⑶ 22221111111123410⎛⎫⎛⎫⎛⎫⎛⎫---⋅⋅⋅- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭模块四 乘法公式的综合运用知识导航模块三 简便计算能力提升首先要熟悉每个公式的特点,从而灵活应用.【例5】 ⑴ 先化简,再求值:()()()2111x x x x +-+-,其中2x =-⑵ 已知21y x +=,求代数式()()2214y y x +--的值⑶()()()22322x y x y x y +-+-,其中1132x y ==-,⑷若22m m +=,求代数式()221(1)(2)(23)(32)m m m m m ++----+的值.【例6】 ⑴ 若()()22122163a b a b +++-=,求a b +的值.⑵ 已知2214x y y z x z -=-=+=,,,求22x z -的值.【例7】 ⑴已知()()212x x x y ---=-,求222x y xy +-的值.夯实基础知识导航能力提升⑵已知72a b ab +==,,求① 22a b +;② 22a ab b -+.【例8】 已知2410x x -+=,求 ① 1x x +;② 221x x+.知识模块一 平方差公式及几何意义 课后演练【练习1】 计算()()2112x x +-= .知识模块二 完全平方公式及几何意义 课后演练 【练习2】⑴ 计算 22(2)(2)x x +-;⑵ 计算 2222()()a ab b a ab b ++-+; ⑶ 化简:()()22121x x x ++--;⑷ 如果26x xy m ++是一个完全平方式,则m =( ) A .9y 2B .3y 2C .y 2D .6y 2知识模块三 简便运算 课后演练 【练习3】⑴ 2238.977.848.948.9-⨯+;⑵ 2222221009998979621-+-+-⋅⋅⋅+-.真题赏析实战演练知识模块四乘法公式的综合应用课后演练【练习4】⑴先化简,再求值:()()()222a a a a-+--,其中1a=-.⑵先化简,再求值:2(32)(32)5(1)(21)x x x x x+-----,其中13 x=-.【练习5】13aa-=,则221aa+= .【练习6】已知实数x、y、z满足259x y z xy y+==+-,,求23x y z++的值.第十四种品格:信念飞翔的信念信念就是一支火把,它能最大限度地燃烧一个人的潜能,指引他飞向梦想的天际。
【精品讲义】人教版 七年级下册寒假同步课程(培优版)6二元一次方程组的概念及解法.学生版

模块一 二元一次方程(组)的基本概念☞二元一次方程1.含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程. 判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”.2.二元一次方程的一般形式:0ax by c ++=(0a ≠,0b ≠)3.二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解. 一般情况下,一个二元一次方程有无数个解. 【例1】 下列各式是二元一次方程的是( )A.30x y z -+=B.30xy y x -+=C.12023x y -=D.210y x+-=【巩固】下列方程是二元一次方程的是( )A.31x xy -=B.2430x x +=C.23y +=D.3x y =【例2】 若32125m n x y ---=是二元一次方程,则求m 、n 的值.【巩固】已知方程11(2)2m n m x ym ---+=是关于x 、y 的二元一次方程,求m 、n 的值.【例3】 已知21x y =⎧⎨=⎩是方程3kx y -=的解,那么k 的值是( )A.2B.2-C.1D.1-【巩固】已知21x y =⎧⎨=⎩是方程25x a +=的解,则a =二元一次方程组的概念及解法【例4】 方程310x y +=的正整数解有几组?( )A.1组B.3组C.4组D.无数组【巩固】⑴设x 、y 为正整数,求524x y +=的所有解⑵设x 、y 为非负整数,求25x y +=的所有解 ⑶设x 为正数,y 为正整数,求36x y +=的所有解【例5】 若方程24341358m n m n x y --+--=是二元一次方程,则22()()m n m mn n -++的值为 .【巩固】若2211a b a b x y -+--=是二元一次方程,那么的a 、b 值分别是( )A 、1a =,0b =B 、0a =,1b =-C 、2a =,1b =D 、2a =,3b =-☞二元一次方程组:1.由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组.二元一次方程组不一定由两个二元一次方程合在一起:方程可以超过两个,有的方程可以只有一元(一元方程在这里也可看作另一未知数系数为0的二元方程). 如2631x x y =⎧⎨-=⎩也是二元一次方程组.2.二元一次方程组的解必须满足方程组中的每一个方程,同时它也必须是一个数对,而不能是一个数.【例6】 下列方程组中,是二元一次方程组的是( )(多选)A.3257x y xy -=⎧⎨=⎩B.54x y =⎧⎨=⎩C.1345y xx y ⎧=-⎪⎪⎨⎪=+⎪⎩ D.270453x y x z -=⎧⎨-=⎩E.3435x y x y -=⎧⎨+=⎩F.241241x y x y -=⎧⎨-=⎩G.4541x z x z -=⎧⎨-=⎩H.423531x y x x y -=⎧⎪=⎨⎪-=⎩【巩固】下列方程组中,①220x y x y -=⎧⎨+=⎩;②11x y y z -=⎧⎨-=⎩;③12xy x y =⎧⎨+=⎩;④120x y =⎧⎨-=⎩是二元一次方程组的序号是【例7】 如图,射线OC 的端点O 在直线AB 上,1∠的度数x ︒比2∠的度数y ︒的2倍多10︒,则可列正确的方程组为( )O21C BAA.18010x y x y +=⎧⎨=+⎩B.180210x y x y +=⎧⎨=+⎩C.180102x y x y +=⎧⎨=-⎩D.90210x y y x +=⎧⎨=-⎩【巩固】一副三角板如图方式摆放,且1∠的度数比2∠的度数大50︒,若设1x ∠=︒,2y ∠=︒,则可得到的方程组为( )21A.50180x y x y =-⎧⎨+=⎩B.50180x y x y =+⎧⎨+=⎩C.5090x y x y =-⎧⎨+=⎩D.5090x y x y =+⎧⎨+=⎩100元,捐款情况如下表:已看不清楚,若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意得,可列方程组( )A.273266x y x y +=⎧⎨+=⎩B.2732100x y x y +=⎧⎨+=⎩C.273266x y x y +=⎧⎨+=⎩D.2732100x y x y +=⎧⎨+=⎩【例8】 下列每个方程组后的一对数值是不是这个方程组的解?⑴1325x y x y +=⎧⎨+=⎩ 10x y =⎧⎨=⎩; ⑵264344x y y x =-⎧⎨=-⎩ 82x y =⎧⎨=⎩; ⑶2783108x y x y -=⎧⎨-=⎩ 6545x y ⎧=⎪⎪⎨⎪=-⎪⎩【巩固】下列四组数对中①11x y =-⎧⎨=⎩,②12x y =⎧⎨=⎩,③243x y =⎧⎪⎨=⎪⎩,④05x y =⎧⎨=⎩是方程组23835x y x y +=⎧⎨+=⎩的解的序号 是【巩固】在①23x y =⎧⎨=⎩,②21x y =⎧⎨=⎩,③02x y =⎧⎨=⎩,④40x y =⎧⎨=⎩,⑤11x y =⎧⎨=-⎩这五对数值中,是方程23x y -=的解是 ,24x y +=的解是 ,2324x y x y -=⎧⎨+=⎩的解是【例9】 请以12x y =⎧⎨=⎩为解,构造一个二元一次方程组【巩固】请以13x y =-⎧⎨=⎩为解,构造一个二元一次方程组【例10】 若x ay b =⎧⎨=⎩是方程31x y +=的一个解,则934_______a b ++=.模块二 二元一次方程组的解法☞代入消元法代入法是通过等量代换,消去方程组中的一个未知数,使二元一次方程组转化为一元一次方程,从而求得一个未知数的值,然后再求出被消去未知数的值,从而确定原方程组的解的方法.代入消元法是解二元一次方程组的基本方法之一.“消元”体现了数学研究中转化的重要思想,代入法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法.☞用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,例如y ,用另一个未知数如x 的代数式表示出来,即写成y ax b =+的形式;②y ax b =+代入另一个方程中,消去y ,得到一个关于x 的一元一次方程; ③解这个一元一次方程,求出x 的值;④回代求解:把求得的x 的值代入y ax b =+中求出y 的值,从而得出方程组的解.⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式.【例11】 把方程2()3()3x y y x +--=改写成用含x 的代数式表示y 的形式,则( )A.53y x =-B.3y x =--C.53y x =+D. 53y x =--【巩固】已知关于x 、y 的二元一次方程23x by a +=(a 、b 均为常数),将其改写为用含x 的代数式表示y的形式【例12】 用代入消元法求解下列二元一次方程组⑴25342x y x y -=⎧⎨+=⎩ ①②, ⑵52253415x y x y +=⎧⎨+=⎩ ①②【巩固】用代入法解下列方程组⑴2328y x y x =⎧⎨+=⎩ ⑵22314m n m n -=⎧⎨+=⎩ ⑶20328x y x y -=⎧⎨+=⎩ ⑷41216x y x y -=-⎧⎨+=⎩⑸23405x y x y +=⎧⎨-=-⎩ ⑹233511x y x y +=⎧⎨-=⎩ ⑺1232(1)11x y x y +⎧=⎪⎨⎪+-=⎩【例13】 已知0.5a b a b x y +-与1323a x y -是同类项,那么( )A.12a b =-⎧⎨=⎩B.12a b =⎧⎨=-⎩C.21a b =-⎧⎨=⎩D.21a b =⎧⎨=-⎩【巩固】单项式283m n x y +与2342m n x y +-是同类项,则________m n +=☞加减消元法加减法是消元法的一种,也是解二元一次方程组的基本方法之一.加减法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法.☞用加减法解二元一次方程组的一般步骤:①变换系数:把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;②加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求得一个未知数的值;④回代:将求出的未知数的值代入原方程组中,求出另一个未知数的值;⑤把这个方程组的解写成x ay b =⎧⎨=⎩的形式.☞加减消元方法的选择:①一般选择系数绝对值最小的未知数消元;②当某一未知数的系数互为相反数时,用加法消元;当某一未知数的系数相等时,用减法消元; ③某一未知数系数成倍数关系时,直接对一个方程变形,使其系数互为相反数或相等,再用加减消元求解; ④当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,转化为系数的绝对值相同,再用加减消元求解. 【例14】 用加减消元法、解下列方程⑴251x y x y -=⎧⎨+=⎩ ①② ⑵ 2422x y x y -=⎧⎨-=⎩ ①②【巩固】用加减消元法解下列方程⑴37528x y x y -=⎧⎨+=⎩ ⑵451413x y x y -=⎧⎨-=⎩ ⑶328237x y x y +=⎧⎨+=⎩ ⑷425645x y x y +=⎧⎨-=-⎩☞选用恰当的方法解下列方程组【例15】 选择合适方式解下列方程:892317674x y x y +=⎧⎨-=⎩【巩固】解下列方程组:(1)3(1)4(4)5(1)3(5)y x x y -=-⎧⎨-=+⎩;(2)21322453132045y x y x --⎧+=⎪⎪⎨++⎪-=⎪⎩;(3)2153224111466x y x y ⎧+=-⎪⎪⎨⎪-=-⎪⎩;(4)35724310()4(1)3x y y x x y x y -+⎧+=-⎪⎪⎨---⎪=⎪⎩【例16】 已知x 、y 满足方程组2100521004x y x y +=⎧⎨+=-⎩,则x y -的值为_________.【巩固】在方程组2122x y mx y +=-⎧⎨+=⎩中,若未知数x 、y 满足0x y +>,则m 的取值范围为( )A.3m >B.3m <C.3m ≥D.3m ≤【例17】 已知关于x 、y 的方程组227x y kx y k -=-⎧⎨+=⎩,则:________x y =【巩固】已知,,x y z 满足方程组207450x y z x y z -+=⎧⎨+-=⎩,且0x ≠,求:::x y z 的值.【例18】 二元一次方程组23323223x y x y ⎧+=⎪⎨-=⎪⎩的解为______x =,_____y =【例19】 解方程组:2164622372y x y x y x x y++⎧-=-⎪⎨⎪+=--⎩1. 已知方程2122317m nxy+-+=是二元一次方程,则______m =,_______n =2. 已知12x y =⎧⎨=-⎩,20x y =⎧⎨=⎩都是方程1ax by -=的解,则______a =,_____b =3. 用代入法解方程组372513x y x y -=⎧⎨+=⎩课堂检测1.已知23ky x-=是二元一次方程,那么k的值是()A. 2B.3C.1D.02.解下列方程组:⑴7232134yxyx⎧+=⎪⎪⎨⎪-=⎪⎩⑵2344133m n n mnm+-⎧+=⎪⎪⎨⎪+=⎪⎩⑶2320.40.7 2.8yxx y⎧+=⎪⎨⎪+=⎩⑷5120311120x yy x-=⎧⎨-=⎩3.已知方程组:230230x y zx y z-+=⎧⎨-+=⎩(0xyz≠),求:::x y z课后作业。
七年级数学二元一次方程组(学生讲义)
第一章 二元一次方程组【知识要点】1.二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程。
①二元一次方程左右两边的代数式必须是整式;(不是整式的化成整式) ②二元一次方程必须含有两个未知数;③二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数的次数。
2.二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解任何一个二元一次方程都有无数解。
3.二元一次方程组:①由两个或两个以上的整式方程组成,常用“ ”把这些方程联合在一起; ②整个方程组中含有两个不同的未知数,且方程组中同一未知数代表同一数量; ③方程组中每个方程经过整理后都是一次方程, 4.二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。
5.会检验一对数值是不是一个二元一次方程组的解6.二元一次方程组的解法:(1) 代入消元法 (2)加减消元法 三、理解解二元一次方程组的思想转化消元一元一次方程二元一次方程组四、解二元一次方程组的一般步骤(一)、代入法一般步骤:变形——代入——求解——回代——写解 (二)、加减法一般步骤:变形——加减——求解——代入——写解1.1 二元一次方程组的解法(1)用代入法解二元一次方程组例:解方程组 ⎩⎨⎧=+=+1523y x y x※解题方法:①编号:将方程组进行编号;②变形:从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成y=ax+b (或x=ay+b )的形式;③代入:将y=ax+b (或x=ay+b )代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;④求x (或y ):解这个一元一次方程,求出x (或y )的值;⑤求y (或x ):把x (或y )的值代入y=ax+b (或x=ay+b )中,求出y (或x )的值;⑥联立:用“{”联立两个未知数的值,就是方程组的解。
二元一次方程讲义
第七章二元一次方程1.二元一次方程:有两个未知数,并且未知项的次数是1,这样的整式方程叫做二元一次方程。
例题:下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-练习:(1)下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.4(2)二元一次方程x+y=5的正整数解有______________。
(3)若mxy+9x+3y n-1=3是关于x、y的二元一次方程,则m=______,n=______.作业:1.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?2.在下列所给的方程中,是二元一次方程的共有()①3x+y-2=0;②x+m=310;③x2-y2=1;④x=2y-1;⑤5x+3y=2z.A.4个 B.3个 C.2个 D.1个3.下列四个方程中,是二元一次方程的是()A.x-3 B.1x+y=12C.3x-z=5 D.4xy-1=34.方程3x-y=6的正整数解有()A.1个 B.2个 C.4个 D.无数个2.二元一次方程组:把两个二元一次方程合起来。
例题:下列方程组中,是二元一次方程组的是()A.228 423119 (23754624)x yx y a b xB C Dx y b c y x x y+= +=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩练习:根据下列语句,分别适当的设未知数,列出二元一次方程组(1)摩托车的速度是货车的1.5倍,它们的速度和是200千米/小时:(2)某种时装的价格是某种皮革的1.4倍,5件皮革比3件时装贵700元:(3).若81axbxy ay=⎧⎨+=⎩是关于x、y的二元一次方程组,则b=_____,2b+(-b)=______.3.二元一次方程组的解:使二元一次方程组中的两个方程的左右两边的值都相等的两个未知数的值。
二元一次方程组--辅导讲义(学)
二元一次方程组一、知识梳理知识点1. 二元一次方程组的有关概念二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 例1.方程41ax yx -=-是二元一次方程,则a 的取值为( )A 、0a ≠B 、1a ≠-C 1a ≠D 、2a ≠ 例2.若二元一次方程321x y-=有正整数解,则x 的取值应为( )A 正奇数B 、正偶数C 、正奇数或正偶数D 、0例3.已知二元一次方程组45ax by bx ay +=⎧⎨+=⎩ 的解是21x y =⎧⎨=⎩,则_____.a b +=练习1.已知,x y 满足方程组⎩⎨⎧=+=+4252y x y x ,则x y -的值为 。
2.请写出一个以,x y 为未知数的二元一次方程组,且同时满足下列两个条件:①由两个二元一次方程组成;②方程的解为⎩⎨⎧==32y x ,这样的方程组可以是___________.知识点2.二元一次方程组的解法代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法.例1:解方程组:(1)32528x yx y+=⎧⎨-=⎩(2)2931x yy x+=⎧⎨-=⎩例2解方程组:4143314312 x yx y+=⎧⎪⎨---=⎪⎩练习:已知关于、的二元一次方程组的解满足二元一次方程,求的值。
学而思七年级数学培优讲义word版(全年级章节培优-绝对经典)[精品文档]
学⽽思七年级数学培优讲义word版(全年级章节培优-绝对经典)[精品⽂档]第1讲与有理数有关的概念考点·⽅法·破译1.了解负数的产⽣过程,能够⽤正、负数表⽰具有相反意义的量.2.会进⾏有理的分类,体会并运⽤数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会⽤数轴⽐较两个有理数的⼤⼩,会求⼀个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7⽶⑵收⼈-50元⑶体重增加-3千克【解法指导】⽤正、负数表⽰实际问题中具有相反意义的量.⽽相反意义的量包合两个要素:⼀是它们的意义相反.⼆是它们具有数量.⽽且必须是同类两,如“向前与⾃后、收⼊与⽀出、增加与减少等等”解:⑴向前-7⽶表⽰向后7⽶⑵收⼊-50元表⽰⽀出50元⑶体重增加-3千克表⽰体重减⼩3千克.【变式题组】01.如果+10%表⽰增加10%,那么减少8%可以记作()A .-18%B .-8%C .+2%D .+8%02.(⾦华)如果+3吨表⽰运⼊仓库的⼤⽶吨数,那么运出5吨⼤⽶表⽰为( )A .-5吨B .+5吨C .-3吨D .+3吨03.(⼭西)北京与纽约的时差-13(负号表⽰同⼀时刻纽约时间⽐北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( ) A . 1个 B . 2个 C . 3个 D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数正整数整数0负整数正分数分数负分数;其中分数包括有限⼩数和⽆限循环⼩数,因为π=3.1415926…是⽆限不循环⼩数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是⽆限循环⼩数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为,整数为,正整数 .02.(河北秦皇岛)请把下列各数填⼊图中适当位置15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有⼀列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 . 【解法指导】从⼀系列的数中发现规律,⾸先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进⾏验证.解本题会有这样的规律:⑴各数的分⼦部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分⼦也是1.分母是2007,并且是⼀个负数,故答案为-12007. 【变式题组】01.(湖北宜宾)数学解密:第⼀个数是3=2 +1,第⼆个数是5=3 +2,第三个数是9=5+4,第四⼗数是17=9+8…观察并精想第六个数是 .02.(毕节)毕选哥拉斯学派发明了⼀种“馨折形”填数法,如图则?填____.03.(茂名)有⼀组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家⼝)若l +m 2的相反数是-3,则m 的相反数是____. 【解法指导】理解相反数的代数意义和⼏何意义,代数意义只有符号不同的两个数叫互为相反数.⼏何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表⽰的数叫互为相反数,本题m 2=-4,m =-8 【变式题组】01.(四川宜宾)-5的相反数是( )A .5B . 15C .-5D .-1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为⼀个正⽅体纸盒的展开图,若在其中的三个正⽅形A 、B 、C 内分别填⼈适当的数,使得它们折成正⽅体.若相对的⾯上的两个数互为相反数,则填⼈正⽅形A 、B 、C 内的三个数依次为( )A .- 1 ,2,0B . 0,-2,1C .-2,0,1D . 2,1,0【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的⼤⼩顺序是( )A . b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b【解法指导】理解绝对值的⼏何意义:⼀个数的绝对值就是数轴上表⽰a 的点到原点的距离,即|a|,⽤式⼦表⽰为|a|=0)0(0)(0)a a a a a >??=??-标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a |≠|b|;④若|a |≠|b|,则a ≠b ,其中正确的个数为()A . 4个B . 3个C . 2个D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c= .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c |c|的值可能是____. 【例6】(江西课改)已知|a -4|+|b -8|=0,则a+b ab的值. 【解法指导】本题主要考查绝对值概念的运⽤,因为任何有理数a 的绝对值都是⾮负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.⽽两个⾮负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,⼜|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C .02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A .-4B .-1C . 0D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从⽽把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径.解:∵(m +n )2≥0,|m |≥O∴(m +n)2+|m |≥0,⽽(m +n)2+|m|=m∴ m ≥0,∴(m +n)2+m =m ,即(m +n)2=0∴m +n =O ①⼜∵|2m -n -2|=0∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B .02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最⼤值.演练巩固·反馈提⾼01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( ) A . 156 B . 172 C . 190 D . 111002.(芜湖)-6的绝对值是( )A . 6B .-6C . 16D .-1603.在-227,π,8..0.3四个数中,有理数的个数为( ) A . 1个 B . 2个 C . 3个 D . 4个04.若⼀个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表⽰互为相反数的两点之间距离是6,这两个数是( )A . 0和6B . 0和-6C . 3和-3D . 0和306.若-a 不是负数,则a( )A .是正数B .不是负数C .是负数D .不是正数07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b|③若|a|=|b|,则a =-b ④若|a|=|b|,则a =bA .①②B .③④C .①④D .②③08.有理数a 、b 在数轴上的对应点的位置如图所⽰,则a 、b ,-a ,|b|的⼤⼩关系正确的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.⼀个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表⽰为1、a 、a +b 也可以表⽰成0、b 、b a的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有⾮负性,也有最⼩值为0,试讨论:当x 为有理数时,|x -l|+|x -3|有没有最⼩值,如果有,求出最⼩值;如果没有,说明理由.15.点A、B在数轴上分别表⽰实数a、b,A、B两点之间的距离表⽰为|AB|.当A、B两点中有⼀点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表⽰2和5的两点之间的距离是, 数轴上表⽰-2和-5的两点之间的距离是, 3,数轴上表⽰1和-3的两点之间的距离是 4;⑵数轴上表⽰x和-1的两点分别是点A和B,则A、B之间的距离是|x+1|,如果|AB|=2,那么x=1或3;⑶当代数式|x+1|+|x-2|取最⼩值时,相应的x的取值范围是7.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、二元一次方程组进阶
知识目标:
1、掌握三元一次方程组、轮换对称形的方程组的解法
2、掌握同解问题、错解问题、整数解问题的解法
3、灵活运用分类讨论思想、还原思想
1、二元一次方程的定义
含有两个未知数,并且含未知数的项的次数都是1的整式方程叫二元一次方程。
例如.,x +2y =5,u -2v =0,3m =
2
1
n 等,都是二元一次方程。
2、二元一次方程组的定义
含有两个未知数,每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组,例如.⎩⎨
⎧=-=+5322y x y x ,⎩⎨⎧==+1
23
x y x 等都是二元一次方程组。
3、二元一次方程组的基本解法
方法1:代入消元法: 方法2:加减消元法:
巩固练习:解基本二元一次方程组 解下列二元一次方程组: (1)⎩⎨⎧=+=7212y -x y x (2)⎩⎨⎧=--=+8
941
3t 2s t s
(3)⎪⎪⎩⎪⎪⎨⎧
-+=-+=-120944
151)2(3.0-1x y x y (4)⎪⎩⎪⎨⎧=-+=+1323241y x x y
例1:
解方程组:
(1)⎪⎩⎪⎨⎧=+=+=-35232123z x z y y x (2)⎪⎩
⎪
⎨⎧=-+=++=++123272y x 13z 2y x 3z y x z
练习: 解方程组:
(1)⎪⎩⎪⎨⎧==++=+1z -y -57x z y x y x (2)⎪⎩
⎪
⎨⎧=++=+-=++13398245c b a c b a c b a
例2:
解方程组:
(1)⎩⎨⎧=+-=+102361463102463361y x y x (2)⎪⎩
⎪⎨⎧=++=++=++6
236326
32z y x z y x z y x
练习: 解方程组:
(1)⎩⎨⎧=+=+673317831733y x y x (2)⎪⎩
⎪⎨⎧=+=+=+9
2827
y x 2x z z y
例3
(1)(硚口区2015-2016七下期末)
已知关于x 、y 的二元一次方程组⎩⎨⎧=+=+87ay bx by ax 的解是⎩
⎨⎧==32
y x ,那么关于m 、n 的二元一次
方程组⎩
⎨⎧=-++=-++8)()(7
)()(n m a n m b n m b n m a 的解是 。
(2)解方程组:⎪⎪⎩⎪
⎪⎨⎧=---=-+-16
311152111y x y x
练习:(江汉区2015——2016七下期中)
方程组⎪⎩⎪
⎨⎧=-++-=--+162
9)(4)(3y x y x y x y x
的解是 .
例4
(1)关于x 、y 的方程组⎩⎨⎧=-=+13y x y x 与关于x 、y 的方程组⎩
⎨⎧-=+=-100
ay bx by ax 的解相同,
求ab 的值
(2)关于x 、y 的方程组⎩⎨
⎧=-=+4a 6-52by x y x 与关于x 、y 的方程组⎩⎨⎧-=+=-8
16
53ay bx y x 的解相同,
求2017
)2(b a +
的值
(3)若关于x 、y 的二元一次方程组⎩⎨⎧-=+=+1
532m y x m
y x 的解也是方程x -y =7的解,求m .
练习:
(汉阳区2015——2016七下期中) (4)若关于x 、y 的二元一次方程组⎩⎨⎧-=+=+1
232y x k
y x 的解互为相反数,则k 的值是 .
例5
(2013二中七下期中)在解关于x 、y 的二元一次方程组⎩⎨⎧-=-=+247
y cx by ax 时,小强正确解得
⎩⎨⎧==32y x ,而小刚看错了c 解得⎩⎨
⎧==2
1-y x ,则当x =-1时,求代数式ax 2
+bx +c 的值。
练习
在解关于x 、
y 的二元一次方程组⎩
⎨⎧-=+=+2b 415
5y x y ax 时,甲看错了第一个方程中的a ,得到的解为
⎩⎨⎧==1-3-y x ,乙看错了第二个方程中的b ,得到的解为⎩
⎨⎧==45
y x ,那么按正确的a 、b 计算,求x -y 的值。
例6
(1)(二中2015——2016七下期中)
已知m 为正整数,x 、y 均为正数,且关于x 、y 的二元一次方程组⎩
⎨⎧==+0y -210x y mx 有整数解,
则m 的值为 。
(2)(东湖高新2015-2016七下期中)
若a 为自然数,m 、n 是方程组⎩
⎨⎧-=--=+a m n a
m n 2023310023的解,且m 、n 均为正整数,则该方程
组的所有解的组数是 . 练:
(2012外校七下期中)若关于x 、y 的二元一次方程组⎩⎨⎧=+=+p
y x y x 23
35的解是一组正整数解,
求整数p 的值.
例7
(1)关于x 、y 的方程组⎩
⎨⎧+-=+=4)12(x k y m
kx y ,当m 、k 满足什么条件时,方程组有无数组解?
(2)已知x 、y 的方程组⎩⎨
⎧=+=-6
3y mx n
y x ,当m 、n 为何值时,方程组:
①有唯一一组解; ②无解 ;③有无穷多组解。
练习:
已知x 、y 的方程组⎩
⎨⎧+-=+=2)13(b
y x k y kx ,当k 、b 为何值时,方程组:
①有唯一一组解; ②无解 ;③有无穷多组解。
第五讲:课后作业-----二元一次方程组进阶
解方程组:
(1)⎪⎪⎩⎪⎪⎨⎧-=---=--+1)(41)(3
11)(3
1)(21
y x y x y x y x (2)⎩⎨⎧=+=+598719951997598919971995y x y x
(3)⎪⎩⎪⎨⎧=+=+=+8106x z z y y x (4)⎪⎩
⎪
⎨⎧=-+-=-+=-+54321412865z y x z y x z y x
2、已知x 、y 的方程组⎩⎨⎧=+=+824y x 13ny mx 与⎩⎨⎧=--=-6
32
5y x n ny x 有相同的解,则m -n = .
3、已知x 、y 的方程组⎩⎨⎧-=+=-18
72253a y x a
y x 的解互为相反数,则此方程组的解为 .
4、方程组⎩⎨
⎧=+=+18526y cx by ax 的解应为⎩⎨⎧-==24y x ,一个同学把c 看错了,因此解得⎩⎨⎧==3
7
y x ,求a
+b +c 的值.
5、若m 为正整数,且关于x 、y 的方程组⎩⎨⎧=-=+0
2310
2y x y mx 的解为一组整数,求m 2的值。
6、当m 、n 为何值时,关于x 、y 的方程组()⎩
⎨⎧-=---=-412y x m n
y mx
(1)无解 ; (2)唯一解; (3)有无穷多解.
实用文档文案大全。