桩基础及钢管砼柱计算书
钢管桩计算书(仅供参考)

边跨现浇直线段支架设计计算一、计算何载(单幅)1、直线段梁重:15#、16#、17#混凝土方量分别为22.26、25.18、48m3。
端部1.0范围内的重量,直接作用在墩帽上,混凝土方量为:V=1×[6.25×2.5+2×3×0.15+2×2×0.25/2+2×225 .065.0 ×1-1.2×1.5]=16.125 m3作用在支架的荷载:G1=(22.26+25.18+48-16.125)×22800×10=1957.78 KN2、底模及侧模重(含翼缘板脚手架):估算G2=130KN3、内模重:估算G3=58KN4、施工活载:估算G4=80KN5、合计重量:G5=1957.78+130+58+80=2226KN二、支架形式支架采用Φ800mm(壁厚为10mm)作为竖向支承杆件。
纵桥向布置2排,横桥向每排2根,其中靠近10#(13#)墩侧的钢管桩支承在承台上,与墩身中心相距235cm,第二排钢管桩与第一排中心距为550cm,每排2根排的中心距离为585cm。
钢管桩顶设置砂筒,砂筒上设纵横向工字钢作为分配梁,再在纵梁上敷设底模方木及模板。
钢管桩之间及钢管桩与墩身之间设置较强的钢桁架梁联系,在平面上形成框架结构,以满足钢管桩受载后的稳定性要求,具体详见“直线段支架结构图”。
根据支架的具体结构,现将其简化成力学计算模型,如下图所示:327.5585327.510×1202020780550115115纵桥向横桥向三、支架内力及变形验算1、 横梁应力验算:横梁有长度为12.4m ,采用2I56a 工字钢,其上承托12根I45a 工字钢。
为简化计算横梁荷载采用均布荷载。
(1)纵梁上面荷载所生的均布荷载:Q 1=2226÷2÷12.25=90.86KN/m (2)纵梁的自重所生的均布荷载:Q 2=0.8038×(1.15+5.5/2)×11÷12.25=2.815N/m (3)横梁自身的重量所生的均布荷载:Q 3=2×1.0627=2.125N/m (4)横梁上的总均布荷载:Q=90.86+2.815+2.125=95.8N/mq=95.8KN/mQ图(KN)320585320M 图(KN.m)(5)力学简图:由力学简图可求得: 支座反力R=95.8×12.25/2 =586.78 KN由Q 图可得Qmax=306.56 KNM 图可得Mmax=490.5 KN.mq320320585横梁为简支双悬臂梁(6)应力验算σmax =W M max =22342105.4905⨯⨯=104.7MPa <[σ]=145Mpaτmax =Ib S Q max =225.1655762136921005.306⨯⨯⨯⨯⨯⨯==255.96Kg/cm 2τmax =25.6 MPa <[τ]=120 Mp Δ复合强度 σ=223τσ+=226.2537.104⨯+=113.7Mpa <[σ] 2、横梁的刚度验算λ=m /L=3.2/5.85=0.54f C = f D =EIqml 243(-1+6λ2+3λ3)=655762101.2245853208.9563⨯⨯⨯⨯⨯⨯ (-1+6×547.02+3×547.03) =0.9285×1.286 =1.194cmf E =3844ql (5-24λ2)=655762101.23841085.58.95684⨯⨯⨯⨯⨯⨯(5-24×547.02)=0.1061×(-2.18)=-0.393cm(向上)通过以上计算可知,横梁在均布荷载作用下,跨中将出现向上的拱度。
钢管桩支架计算书

钢管桩支架计算书一.工程概况1.1 工程简介A匝道2号大桥是陕西神木至府谷高速公路永兴镇立交互通的匝道桥,全桥长221.5m,跨径组合为:3×35m+46.5m+2×35m,,主梁横截面设计为单箱四室结构,箱梁高2.4m,顶板宽19.5m,底板宽14.5,箱梁自重每延米45.9吨,全桥采用现浇连续施工,其中主跨下面通过主干桥西尔沟2号大桥构成立交体系。
1.2 建设条件该地区属于山谷地区且常年少雨,气候干燥。
高程变化有时较剧烈,施工条件较困难。
1.2.1地形地貌典型的黄土高原沟壑地形,气候干燥,地下水位较深,地形沿高程方向变化较剧烈。
1.2.2地质情况地质情况主要为Q,多属于分化砂岩和分化泥岩,岩土层大部或全部受到4分化。
承载力从中密碎石土的250KPa到风化砂岩的1200KPa不等,摩阻力相应的大体变化为80KPa到100KPa。
1.2.3气候气候干燥少雨,年均降雨量很小,早晚温差变化较大。
二.施工方案总体布置和荷载设计值2.1 支架搭设情况说明A匝道2号大桥上部结构采用现浇式预应力钢筋混凝土变截面箱梁。
根据工程实际情况采用钢管桩支架方案进行现浇施工,砼浇筑分两次浇筑,即第一次浇筑箱梁底板和腹板,第二次浇筑箱梁顶板和翼缘板。
根据大桥结构设计情况及现场施工条件的特点,综合考虑安全性、经济性和适用性,拟采用钢管桩支架作为该现浇体系的临时支承结构。
钢管桩采用Φ800mm×8mm-Q235的无缝焊接钢管。
方木布置情况:横桥向放置截面尺寸为15cm×15cm的方木,间距0.3m。
15cm×15cm方木放置在工10型钢上,工10型钢放置在贝雷梁上,贝雷梁放置在钢管桩顶端的沙桶上。
2.2 设计荷载取值混凝土自重取:26.5kN/m3箱梁重:24.1kN/m2模板自重: 2.5kN/m2施工人员和运输工具重量: 2.5kN/m2振捣混凝土时产生的荷载: 2.5kN/m2考虑分项系数后的每平米荷载总重:31.6kN/m2三.贝雷梁设计验算大桥第四跨跨径为46.5m,其他跨径为35m,在计算中需要对不同的跨径进行验算。
(完整版)桩基础设计计算书

目录1设计任务 (2)1.1设计资料 (2)1.2设计要求 (3)2 桩基持力层,桩型,桩长的确定 (3)3 单桩承载力确定 (3)3.1单桩竖向承载力的确定 (3)4 桩数布置及承台设计 (4)5 复合桩基荷载验算 (6)6 桩身和承台设计 (9)7 沉降计算 (14)8 构造要求及施工要求 (20)8.1预制桩的施工 (20)8.2混凝土预制桩的接桩 (21)8.3凝土预制桩的沉桩 (22)8.4预制桩沉桩对环境的影响分析及防治措施 (23)8.5结论与建议 (25)9 参考文献 (25)一、设计任务书(一)、设计资料1、某地方建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为5层,物理力学指标见下表。
勘查期间测得地下水混合水位深为2.1m,本场地下水无腐蚀性。
建筑安全等级为2级,已知上部框架结构由柱子传来的荷载。
承台底面埋深:D =2.1m。
(二)、设计要求:1、桩基持力层、桩型、承台埋深选择2、确定单桩承载力3、桩数布置及承台设计4、群桩承载力验算5、桩身结构设计和计算6、承台设计计算7、群桩沉降计算8、绘制桩承台施工图二、桩基持力层,桩型,桩长的确定根据设计任务书所提供的资料,分析表明,在柱下荷载作用下,天然地基基础难以满足设计要求,故考虑选用桩基础。
由地基勘查资料,确定选用第四土层黄褐色粉质粘土为桩端持力层。
根据工程请况承台埋深 2.1m,预选钢筋混凝土预制桩断面尺寸为450㎜×450㎜。
桩长21.1m。
三、单桩承载力确定(一)、单桩竖向承载力的确定:1、根据地质条件选择持力层,确定桩的断面尺寸和长度。
根据地质条件以第四层黄褐色粉土夹粉质粘土为持力层,采用截面为450×450mm的预置钢筋混凝土方桩,桩尖进入持力层1.0m;镶入承台0.1m,桩长21.1 m。
承台底部埋深2.1 m。
2、确定单桩竖向承载力标准值Quk可根据经验公式估算:Quk= Qsk+ Qpk=µ∑qsikli+qpkApQ——单桩极限摩阻力标准值(kN)skQ——单桩极限端阻力标准值(kN)pku——桩的横断面周长(m)A——桩的横断面底面积(2m)pL——桩周各层土的厚度(m)iq——桩周第i层土的单位极限摩阻力标准值(a kP)sikq——桩底土的单位极限端阻力标准值(a kP)pk桩周长:µ=450×4=1800mm=1.8m桩横截面积:Ap=0.45²=0.2025㎡桩侧土极限摩擦力标准值qsik:查表得:用经验参数法:粉质粘土层:L I=0.95,取qsk=35kPa淤泥质粉质粘土:qsk=29kPa粉质粘土:L I=0.70,取qsk=55kPa桩端土极限承载力标准值qpk,查表得:qpk=2200 kPa用经验参数法求得Quk1=1.8×(35×8.0+29×12.0+1.0×55) +2200×0.2025=1674.9KN用静力触探法求得Quk2=1.8×(36×8.0+43×12.0+1.0×111) +1784.5×0.2025=2008.4KN3、确定单桩竖向承载力设计值R,并且确定桩数n和桩的布置先不考虑群桩效应,估算单桩竖向承载力设计值R为:R=Qsk/rs+Qpk/rpR——单桩竖向极限承载力设计值,kNQ——单桩总极限侧阻力力标准值,kNskQ——单桩总极限端阻力力标准值,kNpkγ——桩侧阻力分项抗力系数sγ——桩端阻力分项抗力系数p用经验参数法时:查表rs=rp=1.65R1=Qsk/rs+Qpk/rp=1229.4/1.65+445.5/1.65=1015.09KN 用静力触探法时:查表rs=rp=1.60R2=Qsk/rs+Qpk/rp=1647/1.60+361.4/1.60=1255.25KNRz=min(R1,R2)= 1015.09 KN四、桩数布置及承台设计根据设计资料,以轴线⑦为例。
(完整版)第一部分钢管撑、钢围檩、工法桩型钢计算书

围护结构计算书一、钢支撑承载能力验算根据围护结构计算,5号通道与1号风亭中斜支撑长度22.2米, 支撑间距3.5米,斜撑与围护角度为45°,计算结果中第二道支撑轴力标准值341kN/m支撑轴力设计值为:341 X 1.25 x 3.5/sin(45 0)=2110kN/m二、工法桩H 型钢内力验算围护结构采用SMV工法桩,桩径850mm间距600mm工法桩内插H型钢,截面尺寸b x h x t i X t2为:300X 700X 13X 24mm 截面惯性矩:I = 1/12 x 300 x 7003-1/12 x (300-13) x (700-2 x24) 3=1946069925mm4根据围护结构计算书附件,7号通道与2号风亭弯矩标准值491kN xm/m,设计值M= 491 x 1.25 x 1.2 = 736.5kN x m/m(r = M/I x y o=736.5 x 106/1946069925 x 700/2=132.5N/mm i <215N/mrm 满足安全要求。
三、钢围檩内力验算围护结构钢围檩采用双榀I40b 工字钢,材质为Q345。
33截面系数:W x=2x 1140x 103mm3S x=2x671.2x 103mm3I x=2x22781x 104mm4t w=2x 12.5mm根据计算书附件,钢围檩所承受最大均布荷载为4号通道第二道支撑处,q k=397.4(N/mm), 设计值:q=397.4x1.25=497(N/mm)。
则围檩最大弯矩设计值为支座处,2M= 1 /12 x 497x 3500=507100000(NX mm/mm) 则围檩翼缘处最大拉、压应力为:(r = M/W=50710000/(2 x 1140000)=222 N/mn i< f=295N/mm2围檩抗拉设计强度满足要求围檩抗剪计算:T= V X S/( I x X t w)=497 x (3500/2) x 2X 671.2 x 103/(2 x 227810000X 2X 12.5)=102.5 N/mm2v f v=170N/mrii 围檩抗剪设计强度满足要求。
2.2桩基础工程量计算及举例

桩基础工程预算编制
2.2
桩基础工程工程量计算规则
2.2.1 桩基础工程定额说明 2.2.2 桩基础工程工程量计算规则
桩基础工程预算编制 13. 各种灌注桩材料用量中均已包括一定的充盈系数和材料损 耗。 14. 凿桩头指凿桩长度在500mm以内。预制桩截桩长度在500凿桩头指凿桩长度在 以内。预制桩截桩长度在 以内 1000mm时, 按截桩头计算 ;预制桩截桩长度在 时 按截桩头计算;预制桩截桩长度在1000mm 以上按截桩计算。灌注桩凿桩头、 以上按截桩计算。灌注桩凿桩头、截桩不分长短均按凿桩 头相应项目计算。 头相应项目计算。 15. 人工挖孔灌注柱成孔,如桩的设计长度超过 人工挖孔灌注柱成孔,如桩的设计长度超过20m时,桩长 时 每增加5m(包括5m以内 基价增加20%。 以内) 每增加 (包括 以内)基价增加 。 16. 人工挖孔灌注桩成孔,如遇地下水时,其处理费用按实计 人工挖孔灌注桩成孔,如遇地下水时, 取。 17. 人工挖孔灌注桩成孔,设计要求增设的安全防护措施所用 人工挖孔灌注桩成孔, 材料、设备另行计算。若桩径小于1200mm(包括 材料、设备另行计算。若桩径小于 ( 1200mm)时人工、机械各增加 )时人工、机械各增加20%。 。 18. 在桩间补桩或强夯后的地基打桩时,项目人工、机械乘以 在桩间补桩或强夯后的地基打桩时,项目人工、 系数1.15。 系数 。
桩基础工程预算编制 10. 本章以打预制垂直桩为准,如打斜桩,斜度在 :6 以内 本章以打预制垂直桩为准,如打斜桩,斜度在1: 项目人工、机械乘以系数1.2,如斜度大于1: 者,项目人工、机械乘以系数 ,如斜度大于 :6 者, 项目人工、机械乘以系数1.3。 项目人工、机械乘以系数 。 11. 本章以平地 ( 坡度小于 ° ) 打桩为准 , 如在堤坡上 本章以平地( 坡度小于15° 打桩为准, 坡度大于15° 打桩时, 项目人工、 ( 坡度大于 ° ) 打桩时 , 项目人工 、 机械乘以系数 1.15。如在基坑内(基坑深度大于 m)打桩,或在地 。如在基坑内(基坑深度大于1.5m 打桩, 坪上打坑槽内桩时( 坑槽深度大于1m 项目人工, 坪上打坑槽内桩时 ( 坑槽深度大于 m ) , 项目人工 , 机械乘以系数1.11。如铺设坡道其费用另行计算。 机械乘以系数 。如铺设坡道其费用另行计算。
xxx大桥锁口钢管桩桩计算书

(1)作用于钢管桩上的土压力强度及压力 ka=tg2(45°-φ/2)= tg2(45°-20°/2)=0.49 Kp= tg2(45°+Ф/2)= tg2(45°+40°/2)=2.0
桩顶以下土压力强度Pa2: Pa2=[(r-rw)*(58.2-53.428)]*Ka =[ (18-10) *4.772]*0.49 =18.706KN/m2
xxx大桥
主墩承台锁口钢管桩围堰
设
计
计
算
书
计算: 复核: 审核:
2012年11月 目录
一、 工程概况 二 设计依据及主要参考资料 三 主要施工参数 四、 钢管桩入土深度计算 五、 内支撑布置计算 六、 基坑底部隆起验算 七、基坑底管涌验算 八、封底砼强度验算 九、支承杆(按φ600×10的钢管检算) 十、抗浮稳定验算 十一、 嵌岩深度计算
六、 基坑底部隆起验算
考虑地基土质均匀,依据地质勘察资料,其土体力学指标如下: r=18KN/m3,粘聚力取c=63.5Kpa
q=10*(64-53.428)=10.572KN/m2 由抗隆起安全系数K=2πC/(q+rh)≥1.2 则:
K=2*3.142*63.5/((10*10.572+(27-10)*(58.253.428))=2.13≥1.2
934.2*27*20+63.5*122.76*20=660373.2 934.2*10*5.8=54183.6 660373.2>54183.6
故可采取干封底。
2、如岩层由于裂隙、溶洞等不良地质情况,可在围堰内回灌水 后,进行水封底砼施工。封底砼采用水下C30砼。
将封底砼近似简化为周边简支支承板的双向板计算,承受均布荷载 时跨中弯矩M1、M2可按下式计算(《简明施工计算手册》):
桩基础工程量计算图解讲义(预制桩-灌注桩)

3.预制钢筋混凝土方桩—工程量计算
①打、压预制钢筋混凝土方桩:计量单位:m3
V=桩截面积*设计桩长(包括桩尖长度)
②送桩: 计量单位:m3
V=桩截面积*(送桩长度+0.5m) 送桩长度=设计桩顶标高至自然地坪 ③接桩: 电焊接桩 计量单位: t 按包角钢或包钢板重量计算。 ④凿桩头 计量单位:个 定额P75 ⑤桩机进退场费
7.钻(冲)孔灌注桩—工程量计算
1.成孔体积:
1)钻孔桩:计量单位:m3 V=桩径截面积*成孔长度 V入岩增加=桩径截面积*入岩长度 成孔长度----自然地坪至设计桩底标高 入岩长度----实际进入岩石层的长度
2)冲孔桩:计量单位:m3 V砂粘土层=桩径截面积*砂粘土层长度 V碎卵石层=桩径截面积*碎卵石层长度 V岩石层=桩径截面积*岩石层长度 其中:砂粘土层长度+碎卵石层+岩石层长度=成孔长度
承承台台
桩顶标高
加灌长度
设 计 桩 长(
H
)
持力层
灌注混凝土:计量单位M3 单桩体积=钢管外径×(设计桩长+加灌长度)
参数解读: •设计桩长不包括预 制桩尖 •加灌长度设计有规 定按规定,无规定 时按0.5m计
设计桩顶标高达到 自然地坪时不计加灌长度
凿桩头:按个计算
3.沉管灌注混凝土桩—工程量计算
预制桩的施工包括制桩(或购成品桩)、运桩、 沉桩三个过程;当单节桩不能满足设计要求时, 应接桩;当桩顶标高要求在自然地坪以下时,应 送桩。
2.预制钢筋混凝土方桩—定额解读
预制钢筋砼方桩按购入成品桩考虑(打、压不含桩主 材),已包括就位供桩和场内吊运桩,不再另行计算。如
采用现场制桩时,桩制作费用按第四章相应定额计算,场内 供运装不论采取何种运输工具均按第四章规定的混凝土构件 汽车运输定额执行,运距在500m以内时,定额乘以系数0.5.
桩基工程量的计算

个 220
(3)工程量清单报价表的编制:
A)钢桩尖工程量: 35×220=7700kg=7.7t
B)桩芯填C30砼工程量计算
1/4×3.14×(0.400-0.090×2) 2×1.2×220
=10.03m3
C)预埋钢板工程量计算
查金属结构工程量计算规则,金属构件制作安装工程量,按 设计图示尺寸以质量计算,不扣除孔眼(0.04㎡内)、切边、 切肢的质量,焊条、铆钉、螺栓等不另增加质量,不规则或 多边形钢板以其外接矩形面积乘以厚度乘以单位理论质量计 算。(钢材密度7850Kg/m3)
案例分析2
某工程有钻孔桩100条,设计桩径为60cm, 设计桩长平均为25m,按设计要求需入岩 0.5m,桩顶标高为-2.5m,施工场地标高为 -0.5m。泥浆运输距离为3km。混凝土为 C20。本工程土为二级土,管理费按一类地 区收取。
要求:编制工程量清单及报价。
某工程有钻孔桩100条,设计桩径为60cm,设计桩长平均为25m, 按设计要求需入岩0.5m,桩顶标高为-2.5m,施工场地标高为-0.5m。 泥浆运输距离为3km。混凝土为C20。本工程土为二级土,管理费费 按一类地区收取。编制工程量清单及报价。
工程数量: 20.00×220=4400(m)
(2)接桩工程量:管桩出 厂长度一般为8-12m,则 本工程的接桩工程量按个 数算为220个。
2)编制工程量清单如下:工程Biblioteka 称:序 号项目编 码
项目名 称
分部分项工程量清单与计价表
标段:
第 页共 页
项目特征 描述
金 额(元)
计量 工程
单位
量
综合 单价
模块二 土建部分工程 量清单及报价
情境 2.2 桩与地基基础工程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温州大厦工程桩基础及格构柱计算书一、工程概况温州大厦工程位于天津市塘沽区响螺湾中心商务区横福路与众安路交叉口,东临并滨海路。
占地面积约16000m2。
地块南北向长约87m,东西向长约202m。
本工程地下三层,埋深15.2m;地上三十层,分为两个塔楼,其中20#地块为30层酒店,总建筑高度120m;21#地块为24层写字楼,总建筑高度为100m。
总建筑面积:地上约105000m2,地下约43500m2,基本柱网为8.8m、×8.8m、9m×9m,主体为框剪结构。
本工程选用一台QTZ80D和一台QTZ63E两台塔吊。
塔吊基础的计算按QTZ80D 进行验算。
二、塔吊的基本参数信息塔吊型号:QTZ80D,塔吊起升高度H=140.000m,塔吊倾覆力矩M=1617kN.m,混凝土强度等级:C35,塔身宽度B=1.6m,自重F1=744.8kN,格构柱自重F2=356.1KN 最大起重荷载F3=80kN桩钢筋级别:II级钢,桩直径=0.850m,桩间距a=1.6m,三、塔吊基础承台顶面的竖向力和弯矩计算塔吊自重(包括压重)F1=744.80kN,格构柱自重F2=356.1KN塔吊最大起重荷载F3=80.00kN,作用于桩基承台顶面的竖向力F=1.2×(F1+F2+F3)=1417.08kN,塔吊的倾覆力矩M=1.4×1617.00=2263.8kN。
四、单桩桩顶竖向力的计算依据《建筑桩技术规范》JGJ94-2008的第5.1.1条。
其中 n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=1417.08kN;G──桩基承台的自重G=1.2×(25×Bc×Bc×Hc)=1.2×(25×5.50×5.50×0.50)=453.75kN;Mx,My──承台底面的弯矩设计值,取1120.00kN.m;xi,yi──单桩相对承台中心轴的XY方向距离a/2×21/2=1.13m;N──单桩桩顶竖向力设计值(kN);经计算得到单桩桩顶竖向力设计值,最大压力:N=(1417.08+453.75)/4+2263.8×1.13/(2×1.132)=1469.39kN。
最小压力:N=(1417.08+453.75)/4-1120.00×1.13/(2×1.132)=-533.97kN。
需验算桩的抗拔五、桩承载力验算桩承载力计算依据《建筑桩技术规范》(JGJ94-2008)的第4.1.1条。
根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=1469.39kN;桩顶轴向压力设计值应满足下面的公式:其中,γo──建筑桩基重要性系数,取1.00;──混凝土轴心抗压强度设计值,fc=16.70N/mm2;fcA──桩的截面面积,A=5.67×105mm2。
则,1.00×1469390=1.47×106N≤16.70×5.67×105=9.48×106N;经过计算得到桩顶轴向压力设计值满足要求,只需构造配筋!六、桩竖向极限承载力验算桩承载力计算依据《建筑桩基础技术规范》(JGJ94-2008)的第5.2.2-3条;根据第二步的计算方案可以得到桩的轴向压力设计值,取其中最大值N=1469.39kN;桩竖向极限承载力验算应满足下面的公式:最大压力:其中 R──最大极限承载力;Qsk──单桩总极限侧阻力标准值:Qpk──单桩总极限端阻力标准值:ηs, ηp──分别为桩侧阻群桩效应系数,桩端阻群桩效应系数,γs, νp──分别为桩侧阻力分项系数,桩端阻抗力分项系数,qsk──桩侧第i层土的极限侧阻力标准值,按下表取值;qpk──极限端阻力标准值,按下表取值;u──桩身的周长,u=2.670m;Ap ──桩端面积,取Ap=0.567m2;li──第i层土层的厚度,取值如下表;厚度及侧阻力标准值表如下:序号土厚度(m) 土侧阻力标准值(kPa) 土端阻力标准值(kPa) 土名称1 2.13 16.00 0.00 粘性土2 3.60 38.00 0.00 粘性土3 4.90 40.00 0.00 粘性土4 2.60 46.00 0.00 粘性土5 3.10 54.00 0.00 粉土和砂土6 3.10 62.00 0.00 粉土和砂土7 2.57 64.00 0.00 粉土和砂土8 1.50 55.00 0.00 粉土和砂土9 2.90 64.00 900.00 粉土和砂土由于桩的入土深度为25.00m,所以桩端是在第9层土层。
最大压力验算:R=2.67×(2.13×16.00×0.80+3.60×38.00×0.80+4.90×40.00×0.80+2.60×46.00×0.80+3.10×54.00×1.20+3.10×62.00×1.20+2.57×64.00×1.20+1.50×55.00×1.20+1.50×64.00×1.20)/1.65+1.27×900.00×0.567/1.65=2.39×103kN上式计算的R的值大于最大压力1469.39kN,所以满足要求!七、桩基础抗拔验算单桩破坏时,桩基的抗拔极限承载力标准值:其中:U k──桩基抗拔极限承载力标准值;u i──破坏表面周长,取u i=πd=3.142 ×0.85=2.67m;q ski──桩侧表面第i层土的抗压极限侧阻力标准值;λi──抗拔系数,砂土取0.50~0.70,粘性土、粉土取0.70~0.80,桩长l与桩径d之比小于20时,λ取小值;l i──第i层土层的厚度。
经过计算得到U k=π×0.85×(2.13×16+3.6×38+4.9×40+2.6×46+3.1×54+3.1×62+2.57×64+1.5×55+1.5×64)×0.8=2540.17kN>N min=533.97kN 桩抗拔满足要求。
八、钢管混凝土格构柱验算1、已知条件:劲性钢结构塔身采用Ф630×12钢管;水平及垂直支撑采用Ф133×6钢管;柱中心距为1.6m;总高H=9850mm;采用Q235b钢。
一根圆钢管混凝土柱肢的横截面面积 ASC=πD2/4=π6302/4=3.117×105mm2一根圆钢管混凝土柱肢的截面惯性矩 ISC=πD4/64=7.733×109mm4格构柱y-y方向的截面惯性矩mIy=Σ(I SC+a2A SC)=4(7.733×109+8002×3.117×105)=8.298×1011 mm4i=1格构式柱截面总面积ΣASC =4ASC=1.247×106 mm2构件长细比λy =lOy/(Iy/ΣASC)1/2 =9850/(8.298×1011/1.247×106)1/2=12.12、按规程DBJ13-51-2003验算:(1)、单肢验算:对称四肢柱,只需验算轴力最大的柱肢,D=630mm;t=12mm;C30混凝土;Q235钢。
λ1=4L/D=4×2000/630=12.7 A C=π(630-24)2/4=288426mm2A S =ASC-AC=23274 mm2α=AS/AC=0.081由《钢结构设计规范》GB50017-2003和《混凝土结构设计规范》GB50010-2002,可得f=215N/ mm2 fc=14.3N/ mm2则:ξ0=αf/ fc=1.218f SC =(1.14+1.02ξ) fc=34.07N/ mm2由规程DBJ13-51-2003中表A-1,可得稳定系数φ=0.9925R=φfSC ASC=0.9925×34.07×3.117×105×10-3=10540KN轴力和弯矩按各柱肢的面积分配,则可得外肢压力Sd=1870.83/4+2263.8/1.6×2=1175.1KNS 0=γSd=1×1175.1=1175.1KN<R=10540KN 满足要求!(2)、腹杆验算:V=ΣASC ×fSC/85=1.247×106×34.07×10-3=499.8KNVmax=1469.39-453.75/4=1355.95KN腹杆轴力 N=(1355.95/4)×(1.87/1.6)=396.19KN 腹杆:D=133mm t=6mm Q235b钢则:AS =π×127×6=2393.9 mm2 IS=πD4/64=15359478 mm4i=(IS /AS)1/2=80.1mm λ=l/i=1870/80.1=23.3由《钢结构设计规范》GB50017-2003中附录C,可得稳定系数φ=0.9754 则:N/φAS=396.19×103/0.9754×2393.9=169.67N/ mm2 <215N/ mm2满足要求!(3)、验算格构柱平面内的整体稳定承载力:格构柱整体含钢率α=0.081由规程DBJ13-51-2003中表4.0.6-1,可得组合轴压弹性模量ESC=37660.2N/ mm2ξ0=αf/ f c=1.218 f SC=34.07N/ mm2 A W=π(133-6)×6=2394 mm2格构柱换算长细比:λ0y=(λy+135A S/A W)1/2=(12.12+135×23274/2394)1/2=38.2验算公式:(N/φASC fSC)+[βmM/WSC(1-ΦN/NE)]≤1由规程DBJ13-51-2003中表A-1,可得稳定系数φ=0.8904N E =π2ESCASC/λ2=(π2×37660.2×3.117×105/412)×10-3=68921KN取N=1870.83KN M=2263.8KNm βm=1.0格构柱近似截面抵抗矩WSC=(17334-14694)/6×1733=41.96×107mm3则:(1870.83×103/0.8904×34.07×1.247×106)+[1×2263.8×106/(1-0.8904×1870.83/68921) ×34.07×41.96×107]=0.167<1。