众数,中位数,平均数
众数中位数平均数

16
5
10 1 23
2200 1出这个问题中周工资的众数、中 位数、平均数
(2)这个问题中,工资的平均数能客观 地反映该厂的工资水平吗?为什么?
分析:众数为200,中位数为
220,平均数为300。
因平均数为300,由表格中所 列出的数据可见,只有经理在平 均数以上,其余的人都在平均数 以下,故用平均数不能客观真实 地反映该工厂的工资水平。
(1) 1 ,2,3,3,3,4,6,8,8,8,9,9 中位数是:5
(2) 1 ,2,3,3,3,4,8,8,8,9,9 中位数是:4
如何在频率分布直方图中确定众数
频率 组距
众数在样本数据的频率分布直方图中, 就是最高矩形的中点的横坐标。
0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月平均用水量(t)
众数、中位数、平均数
一 众数、中位数、平均数的概念
众数:在一组数据中,出现次数最多的数据叫 做这组数据的众数.
中位数:将一组数据按大小依次排列,把处在 最中间位置的一个数据(或最中间两个数据的 平均数)叫做这组数据的中位数.
平均数: 一组数据的算术平均数,即
X
1 n
( x1
x2
xn )
问题1:众数、中位数、平均数这三个数 一般都会来自于同一个总体或样本,它们 能表明总体或样本的什么性质?
选择平均数更好:因为,此时的众数20万 比中位数25万还小,所以众数代表的是局 部的数。中位数代表的虽然是大多数公路 投资的数额,但由于其不受极端值的影响, 不能代表全体,因而此时成了它的缺点。 选择平均数较好,能比较好的代表整体水 平,但缺点是仍不能显示出具体的数字特 征
中位数 众数 平均数三者的区别

个人理解,说简单点:一组数据中如果有特别大的数或特别小的数时,一般用中位数一组数据比较多(20个以上),范围比较集中,一般用众数其余情况一般还是平均数比较精确一、联系与区别:1、平均数是通过计算得到的,因此它会因每一个数据的变化而变化。
2、中位数是通过排序得到的,它不受最大、最小两个极端数值的影响.中位数在一定程度上综合了平均数和中位数的优点,具有比较好的代表性。
部分数据的变动对中位数没有影响,当一组数据中的个别数据变动较大时,常用它来描述这组数据的集中趋势。
另外,因中位数在一组数据的数值排序中处中间的位置,3、众数也是数据的一种代表数,反映了一组数据的集中程度.日常生活中诸如“最佳”、“最受欢迎”、“最满意”等,都与众数有关系,它反映了一种最普遍的倾向.二、平均数、中位数和众数它们都有各自的的优缺点.平均数:(1)需要全组所有数据来计算;(2)易受数据中极端数值的影响.中位数:(1)仅需把数据按顺序排列后即可确定;(2)不易受数据中极端数值的影响.众数:(1)通过计数得到;(2)不易受数据中极端数值的影响关于“中位数、众数、平均数”这三个知识点的理解,我简单谈谈自己的认识和理解。
⒈众数。
一组数据中出现次数最多的那个数据,叫做这组数据的众数。
⒉众数的特点。
①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。
但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。
此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。
3.众数与平均数的区别。
众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
4.中位数的概念。
一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。
平均数中位数众数之间的区别与联系

平均数中位数众数之间的区别与联系一、相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,主要表现在以下方面。
1、意义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同平均数:用所有数据相加的总和除以数据的个数。
与每一个数的大小都有关系。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它只要找或简单的计算。
众数:一组数据中出现次数最多的那个数。
只要找,不必计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现形式不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据,它可能与原数据中的某一个相同,也可能与原数据中的任何一个都不同。
中位数:是一个不完全“虚拟”的数。
当一组数据是奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,只有当中间的两个数相同时,它才与这组数据中的两个或两个以上数据相同,是数据中的一个真实的数,如果正中间的两个数不同,此时的中位数就是一个“虚拟”的数。
众数:是一组数据中出现次数最多的原数据,它是真实存在的。
但当一组数据中的每一个数据都出现相同次数时,这组数据就没有众数了。
5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。
平均数、中位数、众数的区别与联系

平均数、中位数、众数的区别与联系之杨若古兰创作平均数、中位数、众数三者都可以用来暗示一组数据的整体水平.
1、当数据都比较均匀时,用平均数暗示比较合适.如:7、8、7、8.5、7.
2、6、9,这组数据用平均数暗示比较合适.平均数暗示普通水平,受每一个数据的影响,当一组数据出现个别偏大或偏小的数据时,用平均数暗示就分歧适.生活中常常去掉最高或最低的数据再进行求平均数.
2、当数据个别不均匀,出现偏大或偏小时,常常用中位数来代表这组数据的中等水平.如:30、8、7、8.5、7.2、6、9.求中位数时,将数据有序排列,奇数个取两头数,偶数个取两头两数的平均数.
3、当数据较多部分出现偏大或偏小时,就要用到众数来暗示多数水平.
如较多偏大:27、28、27、8.5、27、7.2、6、9,27.众数是27
较多偏小:2、3、2、35、2、34、2、3、2、20、2、众数是2
一组数据,众数可能有一个、两个、多个,或者没有众数.如1、2、3、4、5、便没有众数.2、3、2、15、6、3、2、3,众数是2和3。
什么是中位数,众数,平均数

什么是中位数,众数,平均数中位数,又称中点数,中值。
中数是按顺序排列的一组数据中居于中间位置的数;众数是统计学名词,在统计分布上具有明显集中趋势点的数值,代表数据的一般水平;平均数是指在一组制数据中所有数据之和再除以数据的个数。
什么是中位数,众数,平均数中位数:把一组数据从小到大排列,最中间的那个数就是中位数。
众数:一组数据中出现次数量多的那个数,众数可以是多个。
平均数:一组数据之和,除以这组数的个数,所得的结果就是平均数。
中位数,众数,平均数的作用中位数:表示数据的中等水平。
中位数与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。
众数:表示数据的普遍情况。
与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性。
平均数:表示数据的总体水平。
与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。
中位数,众数,平均数怎么求1.中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
2.众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3.平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
(在选手比赛成绩统计中通常会去掉一个最高分和一个最低分,以示公平)。
平均数、中位数和众数的概念的理解

平均数、中位数和众数的概念的理解一、相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,主要表现在以下方面。
1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据,它是真实存在的。
4、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有。
平均数、中位数和众数它们都有各自的的优缺点:平均数:(1)需要全组所有数据来计算;比较可靠和稳定,反映出来的信息最充分。
平均数、中位数、众数的联系和区别

一、相同点平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。
二、不同点它们之间的区别,主要表现在以下方面。
1、定义不同平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。
中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。
众数:在一组数据中出现次数最多的数叫做这组数据的众数。
2、求法不同平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。
中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。
它的求出不需或只需简单的计算。
众数:一组数据中出现次数最多的那个数,不必计算就可求出。
3、个数不同在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。
在一组数据中,可能不止一个众数,也可能没有众数。
4、呈现不同平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。
中位数:是一个不完全“虚拟”的数。
当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。
众数:是一组数据中的原数据,它是真实存在的。
5、代表不同平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。
中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。
众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。
这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。
6、特点不同平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。
高三数学众数、中位数和平均数

3、由于平均数与每一个样本的 数据有关,所以任何一个样本数据的 改变都会引起平均数的改变,这是众 数、中位数都不具有的性质。也正因 如此 ,与众数、中位数比较起来,平 均数可以反映出更多的关于样本数据 全体的信息,但平均数受数据中的极 端值的影响较大,使平均数在估计时 可靠性降低。
众数、中位数、平均数的 简单应用 例 某工厂人员及工资构成如下:
解:在17个数据中,1.75出现了4次,出现的 次数最多,即这组数据的众数是1.75. 上面表里的17个数据可看成是按从小到大 的顺序排列的,其中第9个数据1.70是最中间的 一个数据,即这组数据的中位数是1.70; 这组数据的平均数是
答:17名运动员成绩的众数、中位数、平均数 依次是1.75(米)、1.70(米)、1.69(米).
平均数: 一组数据的算术平均数,即
x= x= 练习: 在一次中学生田径运动会上, 参加男子跳高的17名运动员的成绩如下 表所示:
成绩(单 位: 米)
1 ( x1 x 2 x n ) n
1.50 1.60 1.65
1.70
1.75
1.80
1.85
1.90
人数
2
3
2
3
4
1
1
1
分别求这些运动员成绩的众数,中位数与 平均数
2.2.2 用样本的数字特征估计总 体的数字特征
1.
众数、中位数、平均数
一 众数、中位数、平均数的概念
众数、中位数、平均数都是描述一组 数据的集中趋势的特征数,只是描述的角 度不同,其中以平均数的应用最为广泛. 众数:在一组数据中,出现次数最多 的数据叫做这组数据的众数.
中数:将一组数据按大小依次排列, 把处在最中间位置的一个数据(或最中 间两个数据的平均数)叫做这组数据的 中位数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
众数(Mode)指在统计分布上具有明显集中趋势点的数值,代表数据的一般水平。
用M表示。
众数不用计算,在一组数据中出现次数最多的数值为众数。
中位数(Median)又称中值,统计学中的专有名词,是按顺序排列的一组数据中居于中间位置的数。
将数据按大小顺序排列,位于数据中间的数即为中位数。
平均数,统计学术语,是表示一组数据集中趋势的量数,指在一组数据中所有数据之和再除以这组数据的个数。
它是反映数据集中趋势的一项指标。
平均数=总数量÷总份数。