求极限的常用方法典型例题

合集下载

极限计算的13种方法示例

极限计算的13种方法示例

极限计算的13种方法示例极限是微积分中的重要概念,它描述了函数在某一点附近的行为。

在计算极限时,我们可以利用一些常见的方法来求解。

下面将介绍13种常见的极限计算方法。

一、代入法代入法是极限计算中最简单的方法之一。

当我们需要计算一个函数在某一点的极限时,只需要将该点的横坐标代入函数中,求得纵坐标即可。

二、夹逼定理夹逼定理是一种常用的极限计算方法,它适用于那些难以直接计算的函数。

夹逼定理的核心思想是通过找到两个函数,它们在极限点附近夹住我们要求的函数,从而求得该函数的极限值。

三、无穷小量法无穷小量法是极限计算中常用的方法之一。

它利用了无穷小量的性质,将函数中的高阶无穷小量忽略不计,只考虑最高阶的无穷小量来计算极限。

四、洛必达法则洛必达法则是一种常用的极限计算方法,它适用于求解0/0型和∞/∞型的极限。

该法则的核心思想是将函数的极限转化为两个函数的导数的极限,然后通过求导计算得到极限值。

五、泰勒展开法泰勒展开法是一种常用的近似计算极限的方法。

它利用了泰勒级数展开的性质,将函数在某一点附近进行泰勒展开,然后通过截断级数来计算函数的极限。

六、换元法换元法是一种常用的极限计算方法,它适用于那些存在复杂变量关系的函数。

通过引入新的变量来替代原来的变量,可以简化函数的形式,从而更容易计算极限。

七、分子有理化分子有理化是一种常用的极限计算方法,它适用于那些含有根式的函数。

通过将根式的分子有理化,可以将原函数转化为一个分式,从而更容易计算极限。

八、分部积分法分部积分法是一种常用的极限计算方法,它适用于那些含有积分的函数。

通过将原函数进行分部积分,可以将原函数转化为一个更简单的函数,从而更容易计算极限。

九、换元积分法换元积分法是一种常用的极限计算方法,它适用于那些含有复杂变量关系的函数。

通过引入新的变量来替代原来的变量,可以简化函数的形式,从而更容易计算极限。

十、二重极限法二重极限法是一种常用的极限计算方法,它适用于那些含有多个变量的函数。

大学数学经典求极限方法(最全)

大学数学经典求极限方法(最全)

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 0110113.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limx xx x +-+→【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享

16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。

为了求出一个函数在某一点的极限,需要使用合适的方法。

下面介绍16种常用的求极限方法,以及一般题型解题思路。

一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。

例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。

二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。

例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。

三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。

如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。

例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。

四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。

例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。

五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。

根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。

大一高数极限计算例题及答案

大一高数极限计算例题及答案

大一高数极限计算例题及答案一、极限的定义极限是数学上的一个基本概念,它可以用来描述一个数列、函数或者一个数列的极限。

一般情况下,我们可以用以下方式来定义一个函数f(x)在x趋近a的时候的极限:若对于任何的正数ε,都存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε,则称lim_(x→a) f(x)=L其中,L表示函数f(x)在x趋近a的时候的极限。

二、求极限的方法1. 代数法代数法就是直接将极限中的变量代入函数中去,并进行简化式子。

这种方法适用于这些特别简单的极限例题:lim_(x→0) [(sinx)/x]解答:将x代入函数中得lim_(x→0) [(sinx)/x]=12. 函数法函数法就是将复杂的极限转化成某个反三角函数或者指数函数的函数极限,然后用函数极限的技巧来解决问题。

这种方法适用于一些较难的极限例题:lim_(x→∞) [x/(x^2 + 1)]解答:将分子分母同时除以x^2 ,得:lim_(x→∞) [x/(x^2 + 1)]=[1/ (x +(1/x)]令t=1/x,则t趋向于0,原式变为:lim_(t→0)[1/(t+1/t)]令y=t+1/t,则y>=2,原式变为:lim_(y→∞)[1/y]因为当y趋向于正无穷时,1/y趋向于0,所以原式的极限等于0。

3. 夹逼法夹逼定理也被称为靠近定理,是求解极限的一种非常重要的技巧。

这种方法主要是通过找到两个函数,一个可以逐渐逼近待求极限;一个可以比待求极限更小,并逐渐逼近等于待求极限的极限,然后两边一起夹逼待求极限,找到唯一解。

这种方法适用于一些难以求解的复杂的极限例题:lim_(x→0) [xsin(1/x)]解答:对于 |sin(1/x)|<=1,所以-lim_(x→0) |x|<=lim_(x→0) [xsin(1/x)]<=lim_(x→0) |x|因此,lim_(x→0) [xsin(1/x)]=0以上便是求解极限的三种常用方法,当然还有其他的方法,但是在求解极限的时候应根据实际情况来选择适合的方法。

最新求极限常用方法及常见题型攻略

最新求极限常用方法及常见题型攻略

求极限常用方法及常见题型攻略以心同学整理求极限原则:(1)先判断类型,再用相应的方法;(2)能用等价无穷小代换的先用等价无穷小代换;(3)有些极限可能需要几种方法才能求出。

1.分子分母的极限均为0,含有根号方法:含有根号的零因子有理化例1求极限xx x x 1lim 21。

分析:1 x 时,分子02 x x ,且含根号,故有理化时分子分母需同时乘2x x 同理1 x 时,分母01x ,且含根号,故有理化时分子分母需同时乘x 1。

解:x x x x 1lim 21))(1)(1()1)()((lim2221x x x x x x x x x x ))(1()1)((lim241x x x x x x x ))(1()1)(1(lim231x x x x x x x ))(1()1)(1)(1(lim 221x x x x x x x x x 221)1)(1(lim xx x x x x x 3 。

2.无穷小乘以有界量还是无穷小例101sinlim 0xx x 。

3.无穷的过程( x x x ,,),分子分母均为x 的多项式。

方法:看分子分母最高次幂,套公式00 b an m n m nm b a a x a x b x b a x a x a x a n n n n m m m mx ,,0,/lim 0011101110 。

注:上面公式对数列极限同样成立。

例1求极限1495)85()37()32(lim x x x x 。

分析:分子分母用二项式定理打开,再乘开后均为多项式,且是无穷的过程。

分子分母最高次幂均为14。

解:1495)85()37()32(lim x x x x 14955)3(2 1495532 。

★另外,有些题分子分母不一定都是多项式,但也可以化为这一类来求,如nn n n 2lim 2 224lim n n n n 224lim n nn n 2141 。

4.1未定式极限的求法方法:利用第二个重要极限:e1)1(lim ,其中0lim 。

关于极限的经典题型

关于极限的经典题型

关于极限的经典题型
1. 计算极限:例如计算 lim(x->0) (sinx/x), lim(x->∞) (1/x),
lim(x->∞) (e^x / x^k)等等。

2. 证明极限存在:例如证明 lim(x->0) (sinx/x) 存在。

3. 求极限和:例如求 lim(x->∞) (1/x + 2/x^2 + 3/x^3 + ... +
n/x^n)。

4. 证明极限不存在:例如证明 lim(x->∞) (sinx) 不存在。

5. 利用夹逼定理求极限:例如利用夹逼定理证明 lim(x->0)
(x^2sin(1/x)) = 0。

6. 利用泰勒级数求极限:例如利用泰勒级数展开sinx 和cosx,然后计算 lim(x->0) (sinx / x)。

7. 利用洛必达法则求极限:例如计算 lim(x->0) (sinx / x),可
以利用洛必达法则将该极限转化为对两个函数导数的极限计算。

8. 利用极限的性质求极限:例如利用极限的性质证明 lim(x-
>∞) (x^n / e^x) = 0,其中 n为大于0的常数。

9. 利用换元法求极限:例如计算 lim(x->0) ((1-cosx) / x^2),可
以进行换元 u = x^2,然后计算 lim(u->0) ((1-cos(sqrt(u))) / u)。

10. 利用特殊极限求极限:例如计算 lim(x->∞) ((x+1)^2 / x) - x - 1,可以进行因式分解并利用特殊极限 lim(x->∞) (1/x) = 0 来
计算。

大学数学经典求极限方法(最全)

大学数学经典求极限方法(最全)

求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011ΛΛ3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。

【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

经典求极限方法

经典求极限方法

精心整理求极限的常用方法典型例题1.约去零因子求极限例1:求极限11lim41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。

【解】6)1)(1(lim)1)(1)(1(lim 22=++=++-x x x x x x 2例2【解】x 【注】 (2)3.分子例3【解】x 例4:求极限30sin 1tan 1limx xx x +-+→【解】x x x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim 0=→x xx 和ex n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim 11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。

主要考第二个重要极限。

例5:求极限xx x x ⎪⎭⎫⎝⎛-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1+,最后凑指数部分。

【解】22121x xx x ⎤⎡-→例6:(1)5(1)当0→x x cos 1-(2)(3)例7【解】x →例8【解】x x x x 30tan sin lim-→613lim 31cos lim sin lim 222102030-=-==-=-=→→→x x x x x x x x x x 6.用罗必塔法则求极限例9:求极限220)sin 1ln(2cos ln lim x x x x +-→【说明】∞∞或00型的极限,可通过罗必塔法则来求。

【解】22)sin1ln(2coslnlimxxxx+-→xxxxxx2sin12sin2cos2sin2lim2+--=→【注】许多变动上显的积分表示的极限,常用罗必塔法则求解例10:设函数f(x)连续,且)0(≠f,求极限.)()()(lim0⎰⎰--→xxx dttxfxdttftx【解】由于⎰⎰⎰=-=-=-0)())(()(xxx utxduufduufdttxf,于是→x lim =x 7例lim 例【解1】原式2cosln331limxxxex+⎛⎫⎪⎝⎭→-=22cosln3limxxx→+⎛⎫⎪⎝⎭=【解2】原式2cosln331limxxxex+⎛⎫⎪⎝⎭→-=22cosln3limxxx→+⎛⎫⎪⎝⎭=8.利用Taylor公式求极限例13求极限)0(,2lim2>-+-→axaa xxx.【解】)(ln 2ln 1222ln x a x a x ea ax x +++==,)(ln 2ln 1222x a x a x ax++-=-;∴a x x a x x a a x x x x 22222020ln ) (ln lim 2lim =+=-+→-→ . 例14求极限011lim (cot )x x x x →-.x →=9例1510.n n (1)(2)利用两边夹法则求极限.例16:极限⎪⎪⎭⎫⎝⎛++++++∞→22222212111lim n n n n n【说明】用定积分的定义把极限转化为定积分计算,是把)(x f 看成[0,1]定积分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求极限的常用方法典型例题
掌握求简单极限的常用方法。

求极限的常用方法有
(1) 利用极限的四则运算法则;
(2) 利用两个重要极限;
(3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量);
(4) 利用连续函数的定义。

例 求下列极限:
(1)x
x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1
0)21(lim -→ (4)2
22)sin (1cos lim x x x x x +-+∞→ (5))1
1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x
x x 33sin 9lim 0-+→ =)
33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3
3sin 91lim 3sin lim 00++⨯→→x x x x x =2
1613=⨯ (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1
)1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim
11+⋅--=→→x x x x x 2
11111=+⨯= (3)利用第二重要极限计算,即 x x x 1
0)21(lim -→=2210])21[(lim --→-x x x 2e -=。

(4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即
222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x
x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x
x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。

(5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11
01e 00-=-+⋅。

相关文档
最新文档