中文第二章卡尔曼滤波器共20页

合集下载

卡尔曼滤波器 ppt课件

卡尔曼滤波器 ppt课件

卡尔曼滤波器的应用
• 卡尔曼滤波器对于解决阿波罗计划的轨 道预测很有用,后来阿波罗飞船的导航 电脑使用了这种滤波器。
• 它的广泛应用已经超过30年,包括导航 ,控制,传感器数据融合甚至在军事方 面的雷达系统以及导弹追踪等等,尤其是 在自动或辅助导航系统。近年来更被应 用于计算机视觉领域,例如人脸识别, 运动物体跟踪等等。
卡尔曼滤波器的思想
• 基本思想:卡尔曼滤波器提供了一种有 效的以最小均方误差来估算系统状态计 算递归方法。若有一组强而合理的假设, 给出系统的历史测量值,则可以建立最 大化这些早前测量值的后验概率的系统 状态模型。并且无需存储很长的早前测 量历史,我们也可以最大化后验概率, 即重复更新系统状态模型,并只为下一 次更新保存模型。这样就大大地简化了 这个方法的计算机实现。
• 最常用的是最小二乘估计,其他如风险准则的 贝叶斯估计、最大似然估计、随机逼近等方法 也都有应用。不管是维纳滤波还是卡尔曼滤波, 这些方法都只适用于线性系统,而且需要对被 估计过程有充分的知识。对于非线性系统或对 动态系统特性不完全了解的复杂估计问题,还 需要深入研究。工程上可用一些近似计算方法 来处理,常见的有基于局部线性化思想的广义 卡尔曼滤波器、贝叶斯或极大后验估值器和可 以根据滤波过程的历史知识自动修改参数的自 适应滤波或预报技术等
卡尔曼滤波器
1
卡尔曼滤波器
精品资料
你怎么称呼老师? 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? 你所经历的课堂,是讲座式还是讨论式? 教师的教鞭 “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” “太阳当空照,花儿对我笑,小鸟说早早早……”
• 卡尔曼滤波的实质是由量测值重构系统 的状态向量。它以“预测—实测—修正” 的顺序递推,根据系统的量测值来消除 随机干扰,再现系统的状态,或根据系 统的量测值从被污染的系统中恢复系统 的本来面目。

卡尔曼滤波器

卡尔曼滤波器

Ak (xk1 xˆk1 H kCk Ak (xˆk1 xk1) k1 H kCk Akk1 H k vk
(I H kCk ) Ak (xk1 xˆk1) (I H kCk )k1 H k vk
(I H kCk ) Ak (xk1 xˆk1) k1 H kvk
(2.5.17)
精品文档
第二章 维纳滤波和卡尔曼滤波
所以(xˆskuǒ1yǐ) 仅依赖于xk-1,vk-1,而与vk不相关,即 E[(xk1 xˆk1)vkT ] E[vk (xk1 xˆk1)T ] 0 (2.5.18)
E[(xk1 xˆk1)kT1] E[k1(xk1 xˆk1)T ] 0 (2.5.19)
(2.5.24)

U T (Pk'CkT )T Ck Pk'T Ck Pk'
(2.5.25)
精品文档
第二章 维纳滤波和卡尔曼滤波
定义:设A∈Cn×n是Hermite矩阵,如果对任意0≠x∈Cn,都有 xHAx>0,则A是Hermite正定阵; 若xHAx≥0,则A是Hermite半正定阵.
定理(dìnglǐ):设A∈ Cn×n 是Hermite矩阵,则下列条件等价 (1)A是Hermite矩阵,AH=A (2)A的特征值全为正实数 (3)存在矩阵P ∈Cn×n,使得A=PHP
(3) 卡尔曼滤波采取的误差准则仍为估计误差的均方值最小。
精品文档
第二章 维纳滤波和卡尔曼滤波 2.5.1 卡尔曼滤波的状态方程(fāngchéng)和量测方程(fāngchéng)
假设某系统k时刻的状态变量为xk,状态方程(fāngchéng)和量 测方程(fāngchéng)(也称为输出方程(fāngchéng))表示为

卡尔曼滤波器

卡尔曼滤波器

本章思路
首先介绍新息过程的概念,然后导出 卡尔曼滤波算法,最后介绍卡尔曼滤波在 维纳滤波中的应用。
一、基于新息过程的最小均方误差估计
z(n)ZFra bibliotek-1z(n-1)
Z
-1
z(n-2)
Z-1 w*1
z(1) d(n)=z(n) d (n) + + + ^
w*n-1
w*n-2 +
a(n)=z(n)
n-1抽头线性预测器结构
^
∑ Bi(k )a(k ) + Bi(n − 1)a(n − 1)
k =1
n− n− 2
= x (i|Zn-2)+Bi(n-1)a(n-1) (令i=n-1得) ^ ^ x (n-1|Zn-1)= x (n-1|Zn-2)+ E[x(n-1) aH(n-1)]A-1(n-1)a(n-1) ^ =x (n-1|Zn-2)+ K(n-1)a(n-1) (4)
二、卡尔曼滤波算法
卡尔曼滤波计算步骤 步骤1 状态一步预测,即 x^(n|Zn-1)=F(n,n-1) x^(n-1|Zn-1) 步骤2 由观测信号z(n)计算新息过程,即 a(n)=z(n)-z^(n|Zn-1)=z(n)-C(n)x^(n|Zn-1) 步骤3 一步预测误差自相关矩阵 P(n,n-1)=F(n,n-1)P(n-1)FH(n,n-1)+ T(n,n-1)Q1(n-1)TH(n,n-1) 步骤4 新息过程的自相关矩阵 A(n)=C(n)P(n,n-1) CH(n) )+Q2(n) 步骤5 卡尔曼增益 K(n)=P(n,n-1) CH(n)A-1(n)
二、卡尔曼滤波算法
卡尔曼滤波的黎卡蒂方程 式(15)给出了n-1时刻估计状态误差自相关 矩阵P(n-1)到n时刻一步预测误差自相关矩阵 P(n,n-1)的递推算法,它被称为黎卡蒂差分方程, 也常简称为黎卡蒂方程。 又x^(n|Zn )=x^(n|Zn-1)+ K(n)a(n) =x^(n|Zn-1)+ K(n)[C(n)h(n,n-1)+v2(n)] 因此有 h(n)=x(n)-x^(n|Zn) =h(n,n-1)- K(n)C(n)h(n,n-1)-K(n)v2(n)

卡尔曼滤波器原理详解课件

卡尔曼滤波器原理详解课件
利用卡尔曼滤波器对机器人进行路径规 划,通过传感器数据和运动模型对机器 人进行最优路径规划。
VS
机器人避障
通过卡尔曼滤波器对机器人进行避障控制, 实现机器人在复杂环境中的安全导航。
06
卡尔曼滤词
详细描述
无迹卡尔曼滤波器
总结词 详细描述
自适应卡尔曼滤波器
缺点分析
假设限制
01
初值问题
02
计算复杂度
03
改进方向
扩展到非线性系统 优化算法 融合其他方法
05
卡尔曼滤波器的应用实例
无人机定位与控制
无人机定位
无人机控制
通过卡尔曼滤波器对无人机进行控制, 实现无人机的稳定飞行和精确控制。
航天器轨道确定
航天器轨道估计
航天器导航
机器人导航与避障
机器人路径规划
状态方程和观测方程
状态方程 观测方程
卡尔曼滤波器的递推算法
预测步骤
根据当前状态和输入预测下一个状态。
更新步骤
根据观测值和预测值更新状态估计。
递推算法
通过重复执行预测步骤和更新步骤,逐步更新状态估计。
卡尔曼滤波器的最优估计
最优估计
在给定观测数据和模型的情况下,使用某种准则(如最小方差)找到的最佳估计。
卡尔曼滤波器的基本原理
01
02
数学模型
递归估计
03 最优估计
02
卡尔曼滤波器的数学模型
线性动态系统
线性系统
如果系统的状态变量可以表示为输入和输出的 线性组合,则该系统是线性的。
动态系统
如果系统的状态随时间变化,则该系统是动态的。
线性动态系统
如果一个系统既是线性的又是动态的,则该系统被称为线性动态系统。

(中文)第二章 卡尔曼滤波器

(中文)第二章 卡尔曼滤波器

两个步骤递归计算就构成了最优的贝叶斯估计。遗憾的是,式和在很多场合
下没有可分解的计算方法,所以它们只是一个理论上的解。基于特定分布的
假设,如高斯分布可以获得最优估计的解析的计算方法 。
卡尔曼滤波
卡尔曼滤波器认为后验概率在任何时刻都是高斯分布的,这样由均
值和方差就可以完全确定其概率分布。可以证明,如果 p xk1 | z1:k1 是高 斯的,那么要使 p xk | z1:k 也是高斯的话,隐含了下面的假设:
结构框图
计算步骤
Pn a2 n 1 Q
Gn
R
cPn c2Pn
n 1 cGn Pn
sˆn n a sˆn 1n 1Gnxn acsˆn 1n 1
Initiation sˆ00,0 P1 G1 1, sˆ11
信号矢量:例1
(同时估计若干个信号)
si n aisi n 1 wi n , i 1, 2, , q
2.2 维纳滤波器的迭代实现
信号模型和测量模型: sn asn 1 wn xn csn vn
因果IIR维纳滤波器 (前面推导结果):
sˆ n n , sˆ n n 1 , xˆ n n 1
分别代表用n时刻以及n-1时刻及以 前所有数据对s(n)和x(n)的估计值


差分方程

sˆn n f sˆn 1n 1Gnxn
使用观察值更新预测(求后 验分布均值)
mk|k mk|k1 Kk zk Hk mk|k 1
求估计误差功率(求后验分 布方差)
Pk|k Pk|k 1 Kk Hk Pk|k 1
初始估计:m0|0 P0|0
2.4 卡尔曼滤波器扩展(非线性)
1。Extended Kalman Filter(EKF)

卡尔曼滤波器学习资料

卡尔曼滤波器学习资料

卡尔曼滤波技术介绍卡尔曼滤波器是在估计线性系统状态的过程中,以最小均方差为目的而推导出的几个递推数学等式,也可以从贝叶斯推断的角度来推导。

本文将分为两部分:第一部分,结合例子,从最小均方差的角度,直观地介绍卡尔曼滤波的原理,并给出较为详细的数学推导。

第二部分,通过两个例子给出卡尔曼滤波的实际应用。

其中将详细介绍一个匀加速模型,并直观的对比系统状态模型的建立对滤波的影响。

第一部分先看一个对理解卡尔曼滤波能起到作用的的笑话:一片绿油油的草地上有一条曲折的小径,通向一棵大树.一个要求被提出:从起点沿着小径走到树下.“很简单.” A说,于是他丝毫不差地沿着小径走到了树下.现在,难度被增加了:蒙上眼。

“也不难,我当过特种兵。

” B说,于是他歪歪扭扭地走到了树旁。

“唉,好久不练,生疏了。

” (只凭自己的预测能力)“看我的,我有DIY 的GPS!” C说,于是他像个醉汉似地歪歪扭扭的走到了树旁。

“唉,这个GPS 没做好,漂移太大。

”(只依靠外界有很大噪声的测量)“我来试试。

” 旁边一也当过特种兵的拿过GPS, 蒙上眼,居然沿着小径很顺滑的走到了树下。

(自己能预测+测量结果的反馈)“这么厉害!你是什么人?”“卡尔曼! ”“卡尔曼?!你就是卡尔曼?”众人大吃一惊。

“我是说这个GPS 卡而慢。

”此段引用自 highgear 的《授之以渔:卡尔曼滤波器...大泄蜜...》 (点击可跳转到该网页)这个小笑话很有意思的指出了卡尔曼滤波的核心,预测+测量反馈,记住这种思想。

在介绍卡尔曼滤波前,简单说明几个在学卡尔曼过程中要用到的概念。

即什么是协方差,它有什么含义,以及什么叫最小均方差估计,什么是多元高斯分布。

如果对这些有了了解,可以跳过,直接到下面的分割线。

均方差:它是"误差"的平方的期望值(误差就是每个估计值与真实值的差),也就是多个样本的时候,均方差等于每个样本的误差平方再乘以该样本出现的概率的和。

卡尔曼滤波PPT课件

卡尔曼滤波PPT课件

• k=1, (2) 0.5000H,(2) 0.500Sˆ(02), 0.4762 Sˆ(1) 0.4048 X (2)
• k=2, (3) 0.4048H,(3)
(4)
H (4)
• k=3, (5) 0.3824H,(5)
• k=4, (6) 0.3768H,(6)
0.404Sˆ(83) , 0.4941Sˆ(2) 0.3824 X (3)
其中

尔曼滤波器的稳态

X(k) C(k)S(k) w(k)
S信(k号) 和A噪(k声)S统(k计独1立) 。w求1卡(k 1)

A 0.8 C 1
Q(k
)
2 w1
0.36
R(k) var(w(k)) 1
H(k) ε(k )
第22页/共32页
(5)
ε(k )
ε(k) 0.64ε(k 1) 0.36 H(k) 0.64ε(k 1) 1.36
第19页/共32页
初始条件为Sˆ(1) 0, (0) 1 ,k=0开始
观测,利用等式(4),(5)进行递推得:
(0)
H (0)
Sˆ (0) X (0)
• k=0, (1) 1.0000H,(1) 1.000Sˆ(01), 0.4Sˆ(0) 0.5X (1)
ε(k令) H(K)C(k) ε(k) ε(k,)C(k) τ H(k) τ H(k)[C(k) ε(k)C(k) τ R(k)]H(k) τ
代入上C式(化k简)ε:(k)C(k) τ R(k) SSτ U ε(k)C(k) τ
ε(k ) ε(k) H(K)U τ (6-U68H) (k) τ H(k)SS τ H(k) τ

卡尔曼滤波

卡尔曼滤波

卡尔曼滤波卡尔曼滤波(Kalman filtering ) 一种利用线性系统状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。

由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。

卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器。

关于这种滤波器的论文由Swerli ng (1958), Kalman (I960) 与Kalma n and Bucy (1961) 发表。

数据滤波是去除噪声还原真实数据的一种数据处理技术,Kalman滤波在测量方差已知的情况下能够从一系列存在测量噪声的数据中,估计动态系统的状态•由于,它便于计算机编程实现,并能够对现场采集的数据进行实时的更新和处理,Kalman滤波是目前应用最为广泛的滤波方法,在通信,导航,制导与控制等多领域得到了较好的应用•中文名卡尔曼滤波器,Kalman滤波,卡曼滤波外文名KALMAN FILTER表达式X(k)=A X(k-1)+B U(k)+W(k)提岀者斯坦利施密特提岀时间1958应用学科天文,宇航,气象适用领域范围雷达跟踪去噪声适用领域范围控制、制导、导航、通讯等现代工程斯坦利施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。

卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导—航电脑使用了这种滤波器。

关于这种滤波器的论文由Swerling (1958), Kalman (1960)与Kalma n and Bucy (1961) 发表。

2定义传统的滤波方法,只能是在有用信号与噪声具有不同频带的条件下才能实现. 20世纪40年代,N .维纳和A. H .柯尔莫哥罗夫把信号和噪声的统计性质引进了滤波理论,在假设信号和噪声都是平稳过程的条件下,利用最优化方法对信号真值进行估计,达到滤波目的,从而在概念上与传统的滤波方法联系起来,被称为维纳滤波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


f a1cG
s ˆ n n a s ˆ n 1 n 1 G n x n a s ˆ n 1 c n 1
新息
一步预测: a s ˆn 1 n 1 s ˆn n 1
第二步预测: x ˆ n n 1 c s ˆ n n 1 a s ˆ n c 1 n 1
用测量模型来更新先验概率分布,从而获得需要的滤波结果:
pxk|z1:kpzkp |x k zkp |z 1 x :kk 1 |z1:k1
(2)
p z k |z 1 :k 1 p z k|x k p x k|z 1 :k 1 d x k
两个步骤递归计算就构成了最优的贝叶斯估计。遗憾的是,式和在很多场合
下没有可分解的计算方法,所以它们只是一个理论上的解。基于特定分布的
假设,如高斯分布可以获得最优估计的解析的计算方法 。
卡尔曼滤波
卡尔曼滤波器认为后验概率在任何时刻都是高斯分布的,这样由均
值和方差就可以完全确定其概率分布。可以证明,如果 pxk1|z1:k1 是高 斯的,那么要使 pxk |z1:k 也是高斯的话,隐含了下面的假设:
信号矢量 噪声矢量
a1 0 0
A
0
a2
0
0 0 a q
sn As n 1 w n
参数矩阵 信号模型的矩阵形式
信号矢量:例2
s1 n as1 n 1 bs2 n 1 wn s2 n s1 n 1
s
n
s1 s2
n n
wn
wn
0
sn Asn 1 wn
号为k时的观测矢量。观测量和系统状态之间的关系为:
zk hkxk,nk
pzk xk k0
v和n分别为方差为Q和R的高斯白噪声 需要注意的是:这里x表示信号状态,z表示观察/测量值。
贝叶斯估计
假设需要计算的后验分布 pxk1|z1:k1在时刻k-1已经得到,那
么我们利用状态模型可以获得时刻k状态的先验概率分布:
a b A 1 0
观察/测量矢量
xi n cisi n vi n i 1, 2, , k (k q)
xn x1n x2 n xk nT
vn v1n v2 n vk nT
Hale Waihona Puke c1 0 C0 0
c2 0
0 0
0 0
ck
0
xn Cs n vn
测量模型的矩阵形式
p x k |z 1 : k 1 p x k |x k 1p x k 1 |z 1 : k 1 d x k 1
(1)
注意:做了如下假设(即认为状态模型为一阶马尔科夫过程):
px k|x k 1 ,z1 :k 1px k|x k 1
在k时刻可以获得新的观测矢量Zk,基于贝叶斯准则可以利
•R.E. Kalman (1960)
•Optimal? formulating the MMSE linear filtering problem (causal IIR Wiener filter)
•Recursive? The time-recursive processing of the input data
新息(Innovation): n x n x ˆ n n 1 x n a s ˆ n 1 c n 1
卡尔曼增益:
Gn R ccP 2 n PnPR ncc2
预测误差功率:
PnEe12na2n1Q
e1nsnsˆnn1 预测误差
估计误差功率和预测误差功率关系:
Initiation s ˆ 0 0 , 0 P 1 G 1 1 ,s ˆ 1 1
信号矢量:例1
(同时估计若干个信号)
s i n a i s i n 1 w i n ,i 1 ,2 , ,q
sn s1 n s2 n sq n T w n w1 n w2 n wq n T
内容
2.1 卡尔曼滤波器 2.2 由因果IIR维纳滤波器看卡尔曼滤波器 2.3 从bayes滤波角度看卡尔曼滤波器 2.4 卡尔曼滤波器的扩展
2.1 卡尔曼滤波器
• What is Kalman filter? An optimal recursive data processing algorithm.
v和n都是参数已知的高斯分布
fk xk1,vk 是 x k 1 和 v k 的线性函数 hk xk,nk 是 x k 和n k 的线性函数
xk Fkxk1vk
zk Hkxknk
(1) (2)
px k 1 |z 1 :k 1 N x k 1 ;m k 1 |k 1 ,P k 1 |k 1
2.2 维纳滤波器的迭代实现
信号模型和测量模型: snasn1wn xncsnvn
因果IIR维纳滤波器 (前面推导结果):
s ˆn n ,s ˆn n 1 ,x ˆn n 1
分别代表用n时刻以及n-1时刻及以 前所有数据对s(n)和x(n)的估计值


差分方程

s ˆ n n fs ˆ n 1 n 1 G n x n
nE e2n Een sns ˆnn Eensn
PncG nPn
1cG nPnPn ensnsˆnn 估计误差
结构框图
计算步骤
P na2 n 1 Q
Gn RccP2nPn
n 1 cn G P n
s ˆ n n a s ˆ n 1 n 1 G n x n a s ˆ n 1 c n 1
矢量卡尔曼滤波器的计算公式
snAsn1wn xnCsnvn
标量算术 矢量算术
ab aba2 a2 b 1ab A BAB ATA AB T A A B T
PnAnn1n1ATnQn
GnPnCTnCnPnCTnRn1
nnIGnCnPn
sˆnnAnsˆn1n1GnxnAnCnsˆn1n1
2.3卡尔曼滤波的统计原理
状态模型和观察信号模型 贝叶斯滤波 卡尔曼滤波
状态模型和观测模型
假设实际系统的状态序列为xk ,k¥ ,其中k为时间序列标
号,xk ¡ nx 表示时间标号为k时的状态矢量,nx ¥ 为状态矢量的
维数。状态间的转移关系为
xkfk xk1,vk
pxk xk1 k0
系统观测到的序列为zk,k¥,其中 zk ¡ nz 表示时间标
相关文档
最新文档