第二章-方程与不等式(组)复习教案

合集下载

(完整word版)中考复习教案方程与不等式

(完整word版)中考复习教案方程与不等式

新课标中考复习教案:方程与不等式一、方程 【知识梳理】1、知识结构方程⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎩⎨⎧分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。

(2)含有 2 个未知数,并且所含未知数的项的次数都是 1 次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组. (4)二元一次方程组的解法有 法和 法.(5)只含有 1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为 )0(02≠=++a c bx ax 。

(6)解一元二次方程的方法有:① 直接开平方法;②配方法;③ 公式法;④ 因式分解法例:(1)042=-x (2)0342=--x x (3)4722=+x x (4)0232=+-x x (7)一元二次方程的根的判别式:ac b 42-=∆叫做一元二次方程的根的判别式。

对于一元二次方程)0(02≠=++a c bx ax当△>0时,有两个不相等的实数根; 当△=0时,有两个相等的实数根;当△<0时,没有实数根; 反之也成立。

(8)一元二次方程的根与系数的关系:如果)0(02≠=++a c bx ax 的两个根是21,x x 那么a b x x -=+21, ac x x =⋅21(9)一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x(10) 分母 中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是 将分式方程通过去分母转化为整式方程 . ◆ 解分式方程的步骤◆ 1、去分母, 化 分式方程 为 整式方程 ; ◆ 2、解这个 整式方程 ; ◆ 3、验 根。

专题二-方程与不等式教案

专题二-方程与不等式教案

课题:方程与不等式一、 教学目标:1、 理解一次方程、一元二次方程和分式方程及一元一次不等式的概念;2、 重点掌握三种方程和一元一次不等式的解法;3、 掌握方程及不等式的应用。

二、 教学重点、难点:重点:方程及不等式的解法难点:方程及不等式的应用三、 教学过程:1、 课堂引入:(15—20分钟)(1) 上节知识回顾:各位同学,大家好!首先,让我们来回顾上节课所学的内容——数与式。

数与式的重难点是关于实数的运算和整式的运算,所以我们必须牢牢掌握所有的运算公式。

①01(0)a a =≠ ②1(0,)p p a a p a -=≠是正整数 ③()()(0)()m m m a m a a a m ⎧⎪-=≠⎨-⎪⎩为偶数为奇数(奇负偶正)幂的运算:①同底数幂相乘(,)m n m n a a am n +∙=都是整数 ②幂的乘方()(,)n m mn a a m n =都是整数③积的乘方()()n n n ab a b n =∙为整数④同底数幂相除(,)m n m n a a am n -÷=都为整数乘法公式:①平方差公式()()22a b a b a b +-=- ②完全平方公式()2222a b a ab b ±=±+ ③常用恒等变形()()()()222222224a b a b ab a b ab a b a b ab ⎧+=+-=-+⎪⎨-=+-⎪⎩ (2) 本讲导入:本讲我们要复习的是方程与不等式,接下来我们来看看方程与不等式在中考当中的题型及考察点:一般情况下,选择题,填空题各1题(考察方程或不等式的应用)大题1题(考察解方程或解不等式)所以,本讲的重难点就是解方程或不等式及方程或不等式的应用2、 做课前检测试卷(20—30分钟)(1)做课前检测试卷(2)请第一位做好的同学在白板上书写最后一题大题解题步骤(3)按照出错率由高到低依次讲解(老师讲解)3、复习重难点:(60分钟)(1)解一元一次方程的步骤:①去分母②去括号③移项④合并同类项⑤系数化为1(2)一元二次方程的解法:① 直接开平方法:适合于()()20x a b b +=≥或()()22ax b cx d +=+形式的方程 ②因式分解法:把方程化成0ab =的形式,得0a =或0b =③公式法:当240b ac -≥时,x = ④配方法:配成完全平方的形式,再利用①(3) 分式方程的解法:方程两边同乘分式的最简公分母,约去分母,化为整式方程,在求根,验根(4) 一元一次不等式的解法:①去分母②去括号③移项④合并同类项⑤系数化为14、做课堂达标试卷(20—30分钟)(1)做课堂达标试卷(2)请第一位做好的同学在白板上书写最后一题大题解题步骤(3)按照出错率由高到低依次讲解(学生讲解,老师补充)四、 反思与总结:本讲优点:与学生之间的课堂互动较第一堂课自然很多,知识点的讲解也能收放自如 不足之处:根据考生做完试卷的结果来看,在出题难度方面还需斟酌,个别题难题大,可以删除。

初三数学总复习教案第二单元 方程与不等式

初三数学总复习教案第二单元     方程与不等式
A.3B.1C.-3D.-1
4、方程1- 去分母得( )
A.1-2(2x-4)=-(x-7)B.6-2(2x-4)=-x-7
C.6-2(2x-4)=-(x-7)D.以上答案均不对
5、一份数学试卷,只有25个选择题,做对一题得4分,做错一题倒扣1分,某同学做了全部试卷,得了70分,他一共做对了().
(A)17道(B)18道(C)19道(D)20道
2、在80克食盐中,加入______克水,才能配成浓度为10%的盐水.
3、一个两位数,个位上的数字是十位上数字的3倍,它们的和是12,那么这个两位数是______.
4、某工厂引进了一批设备,使单位成品的成本降低了20%。已知今年单位成品的成本为8元,则去年单位成品的成本为_______元。
5、某商品的进价为200元,标价为300元,折价销售时的利润为5%,那么此商品是按_______折销售的。
5、一家商店进行装修,若请甲乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付两组费用共3480元,问:
(1)甲乙两组工作一天,商店应各付多少钱?
(2)已知甲乙两组单独完成分别需要12天和24天,单独请哪组,商店所付的费用较少?
(3)若装修完后,商店营业,每天可赢利200元,你认为如何安排施工有利于商店经营,为什么?
6
7
表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有 名同学,捐款3元的有 名同学,根据题意,可得方程组( )
A、 B、
C、 D、
4、初三(1)班的一个综合实践活动小组去A,B两个超市调查去年和今年“春节”期间的销售情况,下图是调查后小敏与其它两位同学进行交流的情景.根据他们的对话,请你分别求出A、B两个超市今年“春节”期间的销售额.

中考数学复习第二章方程组与不等式组讲义

中考数学复习第二章方程组与不等式组讲义

第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。

(系数不为0)的整式方程。

形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。

解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。

一般形式: ax+by=c ,有无数组解。

2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。

⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。

【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。

2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。

中考复习教案:方程与不等式

中考复习教案:方程与不等式

中考复习教案:方程与不等式一、教学目标1. 回顾一元一次方程的定义、解法及应用,使学生能够熟练掌握解一元一次方程的方法,并能够将其应用于实际问题中。

2. 复习一元一次不等式的定义、解法及应用,帮助学生理解不等式的基本性质,并能够解一元一次不等式。

3. 通过对实际问题的分析,培养学生运用方程与不等式解决实际问题的能力。

二、教学内容1. 一元一次方程的定义、解法及应用。

2. 一元一次不等式的定义、解法及应用。

3. 方程与不等式的实际问题应用。

三、教学重点与难点1. 教学重点:一元一次方程的解法、一元一次不等式的解法。

2. 教学难点:方程与不等式在实际问题中的应用。

四、教学方法1. 采用讲解、示例、练习、讨论等多种教学方法,引导学生复习和巩固方程与不等式的知识。

2. 通过实际问题的引入,激发学生的学习兴趣,培养学生运用方程与不等式解决实际问题的能力。

五、教学过程1. 复习导入:回顾一元一次方程的定义、解法及应用,引导学生复习相关知识。

2. 知识讲解:讲解一元一次不等式的定义、解法及应用,与方程进行对比,帮助学生理解不等式的基本性质。

3. 示例讲解:给出一些实际问题,引导学生运用方程与不等式进行解决,示例讲解解题思路和方法。

4. 练习巩固:布置一些练习题,让学生独立完成,巩固所学知识。

5. 讨论交流:组织学生进行小组讨论,分享解题心得和经验,互相学习。

6. 总结归纳:对本节课的内容进行总结归纳,强调方程与不等式在实际问题中的应用。

7. 作业布置:布置一些相关的作业题,让学生课后巩固复习。

六、教学评估1. 课堂练习:通过课堂练习,检测学生对一元一次方程和不等式的理解和掌握程度。

2. 课后作业:布置相关的作业题,要求学生在课后完成,以巩固所学知识。

3. 单元测试:进行一次方程与不等式的单元测试,全面评估学生对本单元知识的掌握情况。

七、教学资源1. 教学PPT:制作详细的PPT,展示一元一次方程和不等式的定义、解法及应用。

方程和不等式的解法复习课教案

方程和不等式的解法复习课教案

方程和不等式的解法复习课教案一、教学目标1. 回顾和巩固方程和不等式的解法,提高学生解决实际问题的能力。

2. 培养学生运用数学知识分析和解决问题的能力。

3. 激发学生的学习兴趣,培养合作意识和创新精神。

二、教学内容1. 回顾一元一次方程、一元二次方程、不等式的解法。

2. 分析实际问题,运用方程和不等式解决生活中的问题。

三、教学重点与难点1. 重点:方程和不等式的解法及其应用。

2. 难点:如何将实际问题转化为方程和不等式,并灵活运用解法求解。

四、教学方法与手段1. 采用问题驱动法,引导学生主动探究方程和不等式的解法。

2. 利用多媒体课件,展示实际问题,帮助学生理解和运用方程和不等式。

3. 组织小组讨论,培养学生的合作意识和沟通能力。

五、教学过程1. 导入:回顾方程和不等式的基本概念,引导学生思考实际问题与方程不等式之间的关系。

2. 自主学习:学生通过阅读教材,回顾一元一次方程、一元二次方程、不等式的解法。

3. 课堂讲解:讲解方程和不等式的解法,结合实例进行分析,引导学生理解解法的原理和步骤。

4. 案例分析:出示实际问题,让学生运用方程和不等式进行解答,培养学生的应用能力。

5. 小组讨论:组织学生进行小组讨论,分享解题心得,互相学习,提高解题能力。

6. 课堂练习:布置练习题,让学生巩固所学知识,及时发现并解决学习中存在的问题。

7. 总结与反思:对本节课的内容进行总结,引导学生反思自己在解题过程中的优点和不足,提出改进措施。

8. 课后作业:布置适量作业,让学生进一步巩固方程和不等式的解法。

六、教学评价1. 评价学生对方程和不等式解法的掌握程度。

2. 评价学生在解决实际问题中的应用能力和创新精神。

3. 采用课堂练习、小组讨论、课后作业等多种形式进行评价。

七、教学资源1. 教材:提供相关章节,方便学生复习和自学。

2. 多媒体课件:展示实际问题,辅助教学。

3. 练习题:供学生课堂练习和课后巩固。

4. 小组讨论材料:提供案例,促进学生交流和合作。

中考复习教案:方程与不等式

中考复习教案:方程与不等式

中考复习教案:方程与不等式一、教学目标1. 回顾一元一次方程的定义、解法及应用,提高学生解一元一次方程的能力。

2. 掌握一元一次不等式的定义、解法及应用,提高学生解一元一次不等式的能力。

3. 理解方程与不等式的联系与区别,能够灵活运用方程与不等式解决实际问题。

二、教学内容1. 一元一次方程的定义、解法及应用。

2. 一元一次不等式的定义、解法及应用。

3. 方程与不等式的联系与区别。

三、教学重点与难点1. 教学重点:一元一次方程和一元一次不等式的定义、解法及应用。

2. 教学难点:方程与不等式的联系与区别。

四、教学方法1. 采用案例分析法,通过具体例题讲解一元一次方程和一元一次不等式的解法。

2. 采用对比教学法,引导学生发现方程与不等式的联系与区别。

3. 采用实践练习法,让学生在练习中巩固所学知识。

五、教学过程1. 导入新课:通过复习已学知识,引导学生回顾一元一次方程和一元一次不等式的定义及解法。

2. 讲解与示范:讲解一元一次方程和一元一次不等式的解法,并通过具体例题展示解题过程。

3. 对比分析:分析方程与不等式的联系与区别,引导学生理解两者之间的关系。

4. 实践练习:布置练习题,让学生独立解答,巩固所学知识。

5. 总结与反思:对本节课的内容进行总结,强调方程与不等式在实际问题中的应用。

教学评价:通过课堂讲解、练习题解答和课后作业,评估学生对一元一次方程和一元一次不等式的掌握程度。

六、教学内容1. 一元二次方程的定义、解法及应用。

2. 不等式的基本性质,包括不等式的加减乘除法、乘方等。

七、教学重点与难点1. 教学重点:一元二次方程的定义、解法及应用,不等式的基本性质。

2. 教学难点:一元二次方程的解法和不等式乘方运算。

八、教学方法1. 采用案例分析法,通过具体例题讲解一元二次方程的解法。

2. 采用归纳教学法,引导学生总结不等式的基本性质。

3. 采用实践练习法,让学生在练习中巩固所学知识。

九、教学过程1. 导入新课:通过复习已学知识,引导学生回顾一元二次方程和不等式的基本性质。

方程和不等式的解法复习课教案

方程和不等式的解法复习课教案

方程和不等式的解法复习课教案一、教学目标1. 回顾和巩固方程和不等式的解法,提高解题技能。

2. 培养学生的逻辑思维能力和问题解决能力。

二、教学内容1. 方程的解法:因式分解法、提取公因式法、配方法、求根公式法等。

2. 不等式的解法:同向相加、反向相减、乘除运算、绝对值不等式等。

三、教学重点与难点1. 重点:各种方程和不等式的解法及其应用。

2. 难点:解复杂方程和不等式,以及灵活运用解法。

四、教学方法1. 采用问题导入法,引导学生回顾和复习方程和不等式的解法。

2. 通过例题讲解和练习,让学生巩固解法,提高解题技能。

3. 利用小组讨论和互动,培养学生的合作意识和解决问题的能力。

五、教学过程1. 导入:提问学生关于方程和不等式的解法,引导学生回顾已学知识。

2. 讲解:讲解各种方程和不等式的解法,结合例题进行解释和演示。

3. 练习:布置练习题,让学生独立解答,进行讲解和解析。

4. 互动:组织小组讨论,让学生分享解题心得和经验,互相学习和交流。

6. 作业:布置作业,巩固所学知识,提高解题能力。

六、教学评估1. 课堂练习:通过课堂练习题,观察学生对方程和不等式解法的掌握程度。

2. 小组讨论:通过小组讨论,了解学生在解决问题时的合作能力和思维过程。

3. 作业批改:通过作业批改,评估学生对课堂所学知识的掌握情况。

七、教学资源1. PPT课件:制作课件,展示方程和不等式的解法,方便学生理解和记忆。

2. 练习题库:准备一定数量的练习题,用于课堂练习和课后作业。

3. 教学视频:搜集相关教学视频,用于为学生提供更多的学习资源和参考。

八、教学进度安排1. 第1-2周:回顾和复习一元一次方程、一元二次方程的解法。

2. 第3-4周:讲解不等式的解法,包括同向相加、反向相减等。

3. 第5-6周:讲解二元一次方程组的解法,以及应用问题。

4. 第7-8周:讲解不等式组的解法,以及应用问题。

5. 第9-10周:讲解函数与方程的关系,以及函数图像的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

普文镇中学2014----2015学年下学期九年级面对面第二章方程(组)与不等式(组)教案主备人:唐泽燕参与教师:兰艳李玉娇郭兵肖兴斌李朝阳授课班级:授课教师:第一节一次方程式(组)教学目标:1.理解方程、方程组,以及方程和方程组的解的概念2.掌握解一元一次方程和二元一次方程组的一般步骤与方法,体会“消元”的数学思想,会求二元一次方程的正整数解3.能根据实际问题中的数量关系,列出一元一次方程或二元一次方程组来解决简单的实际问题,并能检验解的合理性教学重点:解一元一次方程和二元一次方程组的一般步骤和方法教学难点:根据实际问题中的数量关系,列出一元一次方程或二元一次方程组学情分析:教学手段及运用:多媒体课件,运用多媒体课件让学生更容易观察理解教学方法运用:复习知识,教师讲解,学生练习教学过程:一、知识点复习考点一等式的性质(2011版新课标新增内容)性质1:等式两边加(或减)同一个数(或式子),结果仍相等.如果a=b,那么性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.如果a=b,那么ac=bc;如果a=b(c≠0),那么考点二一元一次方程及解法1. 方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.2. 形式:任何一个一元一次方程都可以化成ax+b=0(a、b是常数,且a≠0)的形式.3. 方程的解:使方程中等号左右两边相等的未知数的值,这个值就是方程的解.4. 一元一次方程的解法步骤具体做法去分母在方程两边都乘以各分母的①____________(若未知数的系数含有分母,则先去分母)去括号先去小括号,再去中括号,最后去大括号(若方程含有括号,则去括号)移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边,注意移项时一定要改变符号合并把方程化成ax=b(a≠0)的形式系数化为1 方程两边都除以未知数的②______,得到方程的解③__________.考点三二元一次方程(组)及其解法1. 二元一次方程:方程含有两个未知数(x和y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.2. 二元一次方程组:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.3. 二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,且解应写成的形式.4. 解二元一次方程组的基本思想是④______,将二元一次方程组转化为⑤_________方程然后求解.5. 二元一次方程组的解法常用的消元法有代入消元法和加减消元法.(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.考点四三元一次方程组(2011版新课标新增内容)1. 三元一次方程组:一个方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.2. 解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.考点五一次方程(组)的应用(高频考点)1. 列方程解应用题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系;(2)设元:设未知数(可设直接或间接未知数);(3)列方程(组):挖掘题目中的关系,找两个等量关系,列方程(组);(4)求解;(5)检验作答:检验所求未知数的值是否符合题意,写出答案. 2.一次方程(组)常考应用类型及关系式常见类型重要的关系式销售打折问题销售额=售价×销量,利润=售价-成本价利润率=利润×100%,售价=标价×折扣工程问题工作量=工作效率×工作时间行程问题相遇问题:全路程=甲走的路程+乙走的路程追及问题:同地不同时出发:前者走的路程=追者走的路程;同时不同地出发:前者走的路程+两地间距离=追者走的路程水中航行问题:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度二、常考类型剖析类型一二元一次方程组的解法例1(’14滨州)解方程组:解:由①,得y=3x-7③,把③代入②,得x+3(3x-7)=-1,解这个方程,得x=2,把x=2代入③,得y=3×2-7,解这个方程,得y=-1,所以,方程组的解是x=2y=-1.【方法指导】1. 当方程组中某一个未知数的系数为1或-1时,选用代入消元法较合适.2. 当方程组中某一个方程的常数项为0时,选用代入消元法较合适.3. 当两个方程中同一个未知数的系数相同或互为相反数时,选用加减消元法较合适.4. 当两个方程中同一个未知数的系数成整数倍关系时,选用加减消元法较合适.拓展变式1(’14泰安)方程5x+2y=-9与下列方程构成的方程组的解为的是( )A.x+2y=1B. 3x+2y=-8C. 5x+4y=-3D. 3x-4y=-8【解析】本题考查二元一次方程组解的意义.可将x=-2,y=12分别代入各个选项验证.选项正误逐项分析A ×-2+2×12=-1≠1B ×3×(-2)+2×12=-5≠-8C ×5×(-2)+4×12=-8≠-3D √3×(-2)-4×12=-8类型二一次方程(组)的应用例2(’14黄冈)浠州县为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?【信息梳理】设购买一块电子白板需要x元,购买一台投影机需要y 元,原题信息整理后的信息一购买2块电子白板比购买3台投影机多4000元2x-3y=4000二购买4块电子白板和3台投影4x+3y=44000机共需44000元解:设购买一块电子白板需要x元,购买一台投影机需要y元,(1分)根据题意列方程组:2x-3y=40004x+3y=44000,(3分)解得x=8000y=4000.(5分)答:购买一台电子白板需8000元,购买一台投影机需要4000元.(6分)【踩分答题】1. 理清题目中已知未知量的关系,设出未知数可得分;2. 根据题意列出方程组可得分;3. 正确解出方程组可得分;4. 写出答可得分.总结:解答此类题时,根据题意进行信息梳理列出方程(组)是解题的关键.拓展变式2 (’14抚州)情景:试根据图中的信息,解答下列问题:(1)购买6根跳绳需_________元,购买12根跳绳需________元. (2)小红比小明多买2根,付款时小红反而比小明少5元.你认为有这种可能吗?若有,请求出小红购买跳绳的根数;若没有,请说明理由.解:有这种可能.设小红购买跳绳x根,则25×0.8x=25(x-2)-5,解得x=11.故小红购买跳绳11根.(1)【思路分析】根据总价=单价×数量,现价=原价×0.8,列式计算即可求解;解:25×6=150(元),25×12×0.8=300×0.8=240(元).即购买6根跳绳需150元,购买12根跳绳需240元.(2)【思路分析】设小红购买跳绳x根,根据等量关系:小红比小明多买2根,付款时小红反而比小明少5元;即可列出方程求解.解:有这种可能.设小红购买跳绳x根,则25×0.8x=25(x-2)-5,解得x=11.故小红购买跳绳11根.三、练习:面对面P23四、小结:五、作业:面对面P25六、教学反思:第二节一元二次方程教学目标1.理解一元二次方程的概念和一般形式,能把一个一元二次方程化为一般形式2.理解配方法,会用因式分解法,直接开平方法和公式法解简单的一元二次方程,掌握一元二次方程的求根公式3.能用一元二次方程解决实际问题,能根据具体问题的实际意义检验结果的合理性教学重点用因式分解法,直接开平方法和公式法解简单的一元二次方程教学难点配方法,一元二次方程解决实际问题,能检验结果的合理性学情分析:教学手段及运用:多媒体课件,运用多媒体课件让学生更容易观察理解教学方法运用:复习知识,教师讲解,学生练习教学过程:一、知识点复习考点一一元二次方程及有关概念1. 一元二次方程:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2. 一般形式:ax2+bx+c=0(其中a、b、c为常数,a≠0),其中ax2、bx、c分别叫做二次项、一次项和常数项,a、b分别称为二次项系数和一次项系数.3. 一元二次方程必须具备三个条件:(1)必须是①________方程;(2)必须只含有②__________未知数;(3)所含未知数的最高次数是③____________.【温馨提示】在一元二次方程的一般形式中要注意a≠0.因为当a=0时,不含有二次项,即不是一元二次方程.4. 一元二次方程的解:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根. 考点二一元二次方程的解法1. 解一元二次方程的基本思想——转化,即把一元二次方程转化为一元一次方程来求解.2. 一元二次方程的解法适用题型方法或步骤直接开平方法x2=m(m≥0)或(x±m)2=n(n≥0)1.观察方程是否符合2. x2=m(m≥0)或(x±m)2=n(n≥0)的形式3.直接开方,得两个一元一次方程3. 解这两个一元一次方程得原方程的两个根配方法所有一元二次方程ax2+bx+c=0(a≠0)1.将二次项系数④___________,即方程两边同除以二次项系数a,得2.2. 移项,使方程左边只含有二次项和一次项,右边为⑤___________,即3. 方程两边都加上一次项系数一半的平方;4. 原方程变为⑥__________________,5. 直接开平方,得两个一元一次方程;6. 解这两个一元一次方程得原方程的两个根公式法所有有根的一元二次方程1.把方程化为ax2+bx+c=0(a≠0)的形式;2. 确定a、b、c的值;3. 求出b2-4ac的值;4.将a、b、c的值代入x= ⑦因式分解法左边能分解因式,右边为0的方程1. 将方程右边化为0;2. 将方程左边进行因式分解;3. 令每个因式⑧____________,得两个一元一次方程;4. 解这两个一元一次方程得方程的两个根1. 根的判别式:一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0(a≠0)根的判别式,通常用希腊字母“Δ”表示,即Δ=b2-4ac.2. 一元二次方程根的情况与判别式的关系:(1)b2-4ac>0 方程有⑨__________的实数根;(2)b2-4ac=0 方程有⑩__________的实数根;(3)b2-4ac<0 方程 ____________实数根.【温馨提示】在使用根的判别式解决问题时,如果二次项系数中含有字母,要加上二次项系数不为0这个限制条件.3. 一元二次方程根与系数的关系:若一元二次方程ax2+bx+c=0(a≠0)的两实根分别为x1,x2,则x1+x2= _____,x1x2= _____.考点四一元二次方程的应用1. 列一元二次方程解应用题的步骤和列一元一次方程(组)解应用题的步骤相同,即审、设、列、解、验答五步.2. 列一元二次方程解应用题中,经济类和面积类问题是常考类型,解决这些问题应掌握以下内容:(1)增长率等量关系:A.增长率=×100%;B.设a为原来量,m为平均增长率,n为增长次数,b为增长后的量,则a(1+m)n=b;当m为平均下降率,n为下降次数,b为下降后的量时,则有a(1-m)n=b.(2)利润等量关系:A.利润=售价-成本;B.利润率=利润成本×100%.(3)面积问题常见图形归纳如下:第一:如图①,矩形ABCD长为a,宽为b,空白部分的宽为x,则阴影部分的面积表示为(a-2x)(b-2x).第二:如图②,矩形ABCD长为a,宽为b,阴影道路的宽为x,则空白部分的面积为(a-x)(b-x).第三:如图③,矩形ABCD长为a,宽为b,阴影道路的宽为x,则空白部分的面积为(a-x)(b-x).二、常考类型剖析类型一解一元二次方程例1 (’14岳阳改编)一元二次方程x2+2x-8=0的根是( ) A. x1=2,x2=4 B. x1=2,x2=-4C. x1=-2,x2=4D. x1=-2,x2=-4【解析】用因式分解法,∵x2+2x-8=0,∴(x-2)(x+4)=0,即x1=2,x2=-4.【归纳总结】一元二次方程有四种解法:因式分解法、直接开平方法、配方法和公式法.(1)若一元二次方程缺少常数项,且方程的右边为0,可考虑用因式分解法求解;(2)若一元二次方程缺少一次项,可考虑用因式分解法或直接开平方法求解;(3)若一元二次方程的二次项系数为1,且一次项的系数是偶数时或常数项非常大时,可考虑用配方法求解;(4)若用以上三种方法都不容易求解时,可考虑用公式法求解.拓展变式1 (’14宁夏) 一元二次方程x2=2x+1的解是()A. x1=x2=1B. x1=1 ,x2=-1C. x1=1 ,x2=1D. x1=-1 ,x2=-1【解析】方程x2=2x+1,变形得:x2-2x=1,配方得:x2-2x+1=2,即(x-1)2=2,开方得:x-1=± ,解得:x1=1+ ,x2=1-类型二一元二次方程的判别式及其根与系数的关系例2(’14深圳)下列方程没有实数根的是( )A. x2+4x=10B. 3x2+8x-3=0C. x2-2x+3=0D. (x-2)(x-3)=12【解析】分别计算出判别式b2-4ac的值,然后根据b2-4ac的意义分别判断,选项正误逐项分析A ×方程变形为:x2+4x-10=0,b2-4ac=42-4×1×(-10)=56>0,所以方程有两个不相等的实数根B ×b2-4ac=82-4×3×(-3)=100>0,所以方程有两个不相等的实数根C √b2-4ac=(-2)2-4×1×3=-8<0,所以方程没有实数根D ×方程变形为:x2-5x-6=0,b2-4ac=(-5)2-4×1×(-6)=49>0,所以方程有两个不相等的实数根【方法指导】1. 如果是判断一元二次方程根的个数可以用判别式与0的大小判断决定;2. 求两根之和与两根之积可直接利用根与系数关系;3. 已知方程的一个根求另一个根,可用方程解的意义,也可用根与系数的关系,后者更简单.拓展变式2 (’14黄冈) 若α、β是一元二次方程x2+2x-6=0的两根,则α2+β2=( )A. -8B. 32C. 16D. 40【解析】根据根与系数的关系得到α+β=-2,αβ=-6,再利用完全平方公式得到α2+β2=(α+β)2-2αβ,然后利用整体代入的方法计算.根据题意得α+β=-2,αβ=-6,所以α2+β2=(α+β)2-2αβ=(-2)2-2×(-6)=16.故选C.类型三一元二次方程的应用例3(’15原创)巴西世界杯的某纪念品原价188元,连续两次降价a%后售价为118元,下列所列方程中正确的是( )A. 188(1+a%)2=118B. 188(1- a%)2=118C. 188(1-2a%)=118D. 188(1- a2%)=118【解析】由题意得:第一次降价后的售价为188(1-a%)元,第二次降价后的售价为188(1-a%)(1-a%)元,则所列方程为188(1-a%)2=118.拓展变式3 (’14泰安)某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是( )A. (3+x)(4-0.5x)=15B. (x+3)(4+0.5x)=15C. (x+4)(3-0.5x)=15D. (x+1)(4-0.5x)=15【解析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4-0.5x)元,由题意得(x+3)(4-0.5x)=15. 失分点8 一元二次方程的解法方程x(x-1)=2(x-1)2的根为( )A. 1B. 2C. 1和2D. 1和-2 【解析】方程两边同时除以公因式得:x=2(x-1),………第一步方程移项得:x-2(x-1)=0,………………第二步去括号得:-x+2=0,………………………第三步解得:x=2.………………………………第四步上述解析过程是从第__________步开始出现错误的,应该改为________________,此题最终的结果是___________【名师提醒】对于缺少常数项的一元二次方程,方程两边不能同时除以未知数或含有未知数的项.三、练习:面对面P28四、小结:五、作业:面对面P30六、教学反思:第三节分式方程教学目标1.了解分式方程的概念,能将实际问题中的等量关系用分式方程表示出来2.会解可化为一元一次方程(或一元二次方程)的分式方程,体验转化的数学思想,了解增根的概念,会进行分式方程的验根3.能根据实际问题中的数量关系,列出分式方程来解决简单的实际问题,并能检验解的合理性教学重点解可化为一元一次方程(或一元二次方程)的分式方程的一般步骤和方法教学难点根据实际问题中的数量关系,列出分式方程来解决简单的实际问题,并能检验解的合理性学情分析:教学手段及运用:多媒体课件,运用多媒体课件让学生更容易观察理解教学方法运用:复习知识,教师讲解,学生练习教学过程:一、知识点复习考点一分式方程及其解法1. 概念:①______中含有未知数的方程叫做分式方程.2. 解分式方程的基本思路:分式方程整式方程解整式方程检验确定原方程的根.3. 解分式方程的步骤:(1)去分母,在方程的两边都乘以②___________ ,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入最简公分母,如果③______,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解. 【温馨提示】分式方程的增根与无解并非同一个概念,分式方程无解,可能是解为增根,也可能是去分母后的整式方程无解,分式方程的增根是去分母后的整式方程的根,也是使分式方程的分母为0的根.考点二分式方程的应用1. 与列整式方程解应用题的思考方法与步骤相同:审题、设未知数、找等量关系、列方程、解方程、检验、作答.不同点是要检验两次,既要检验求出的解是否为原方程的根,又要检验是否符合题意.2. 常考类型及公式分式方程的应用题主要涉及工程问题,工作量问题,行程问题等,每个问题中涉及到三个量的关系,如:工作时间=,时间=二、常考类型剖析类型一解分式方程例1(’14苏州)解方程:=3.【解题指导】本题考查解分式方程,按照解分式方程的步骤直接求解即可.解:去分母,得______________,……(2分)移项,得______________,…………(3分)合并同类项,得_______,系数化为1,得________,………(4分)检验 ___________________________________________________...(5分)∴原方程的解是:_______.......(6分)【踩分答题】1. 解分式方程过程中,去分母、移项、系数化为1计算正确均可得分;2. 写出检验过程可得分;3. 正确写出分式方程的解可得分.总结:解分式方程的关键是去分母,移项,系数化为1,在解分式方程时要将其化为整式方程进行求解,切勿漏掉检验过程.拓展变式1(’14佛山)解分式方程 .【思路分析】解分式方程,在分式方程的两边同乘以分母的最简公分母,去掉分母,得到整式方程.然后去括号,移项,合并同类项,系数化为1,求出整式方程的解.最后把整式方程的解代入最简公分母,当最简公分母不等于0时,这个解就是原分式方程的解;当最简公分母等于0时,这个解不是原分式方程的解,是增根.解:去分母得:2[-(1+a)]=a+4.去括号得:-2-2a=a+4,合并同类项得:3a=-6,化系数为1:a=-2.经检验,a=-2是原方程的根.∴原方程的解为a=-2.类型二分式方程的应用例2(’14广州)从广州某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.(1)【信息梳理】设普通列车的平均速度为千米/时,原题信息整理后的信息一高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍普通列车的行驶路程为400×1.3=520(千米)解:普通列车的行驶路程为400×1.3=520(千米). …………………(4分)(2)【信息梳理】设普通列车的平均速度为x 千米/时,原题信息整理后的信息一高铁的平均速度是普通列车平均速度的2.5倍普通列车行驶完这段路程的时为,高铁行驶完这段路程的时间为二乘坐高铁所需时间比普通列车所需时间缩短3小时解:设普通列车的平均速度为x千米/时,则高铁平均速度为 2.5 千米/时,………….(5分)根据题意,得,………(7分)解得 x=120,…………..(9分)经检验得出, x=120是原分式方程的解,…………(10分)所以2.5 x =300.………..(11分)答:普通列车的行驶路程为520千米;高铁的平均速度为300千米/时.…………..(12分)【踩分答题】1. 理解题意设出未知数可得分;2. 对题目信息进行整理列出符合题意的分式方程可得分;3. 解这个分式方程并进行检验均可得分;4. 作答可得分.总结:对于分式方程的应用题关键是要整理题目中的信息找出对应的等量关系.【方法指导】1. 列方程解应用题要先找等量关系,然后用含有未知数的代数式表示每一个量,再利用等量关系列出分式方程.2. 注意最后要检验,既要检验求出的未知数的值是否为增根,还要检验是否符合实际意义.拓展变式2(’14日照)为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标.现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务,问甲队每天完成多少平方米?【信息梳理】设甲工程队每天工作量为 x平方米,原题信息整理后的信息一某单位决定对7200平方米的“外墙保温”工程进行招标,乙队每天完成的工程量是甲队的1.5倍乙队单独完成任务需要天二乙队单独干比甲队单独干能提前15天完成解:设甲工程队每天施工 x m2,则乙工程队每天施工1.5 x m2,由题意得,解得 x=160,经检验, x =160是原分式方程的解,答:甲队每天完成160平方米.失分点9 分式方程的解法解方程: .解:方程两边同乘以(x-5)得:1=x+1+2,……………第一步整理得:1=x+3,……………第二步解得:x=-2……………………第三步所以原方程的解为-2………第四步上述解法是从第_______步开始出现错误的,应改为_____________________________________,此题最终的结果是________.【名师提醒】对于含有常数项的分式方程,在解的过程中应注意:(1)给分式两边同乘以公分母时不要给常数项漏乘;(2)在合并同类项时注意去括号后符号的变化;(3)解方程中有没有进行检验.在解分式方程时,要记住“三步”:一是分化整解方程;二是检验;三是下结论有无根.小心“四漏”:漏乘、漏括号、漏检、漏变号.三、练习:面对面P33四、小结:五、作业:面对面P35六、教学反思:第四节一次不等式(组)教学目标1.了解不等式和一元一次不等式(组)的概念,掌握不等式的基本性质2.了解一元一次不等式(组)的解和解集的概念,理解他们与方程的解飞区别,会在数轴上表示一元一次不等式(组)的解集3.掌握解一元一次不等式(组)的一般方法和步骤,能熟练的解一元一次不等式(组),会用口诀或数轴确定一元一次不等式组的解集4.能够根据具体问题中的数量关系,列出一元一次不等式或一元一次不等式组解决简单的实际问题,能确定一元一次不等式(组)的整数解教学重点一元一次不等式(组)的解法,列一元一次不等式(组)解应用题教学难点列出一元一次不等式或一元一次不等式组解决简单的实际问题,能确定一元一次不等式(组)的整数解学情分析:教学手段及运用:多媒体课件,运用多媒体课件让学生更容易观察理解教学方法运用:复习知识,教师讲解,学生练习教学过程:一、知识点复习考点一不等式的概念及其性质1. 不等式:一般地,用不等号连接起来的式子叫做不等式.2. 不等式的性质性质内容式子表示性质1 不等式两边加(或减)同一个数(或式子),不等号的方向不变如果a>b,那么a±c①______ b±c性质2 不等式两边乘(或除以)同一个正数,不等号的方向不变如果a>b, c>0,那么ac>b (或)性质3 不等式两边乘(或除以)同一个负数,不等号的方向改变如果a>b, c<0,那么ac②____ bc(或③ ___ )考点二一元一次不等式及其解法1. 一元一次不等式:含有一个未知数,未知数的次数是1的不等式叫做一元一次不等式.2. 解集:使一元一次不等式成立的未知数的值,叫做一元一次不等式的解.一个含有未知数的一元一次不等式的所有解,叫做这个一元一次不等式的解集.3. 解一元一次不等式的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.4. 解集的表示解集在数轴上的表示考点三一元一次不等式组及其解法1. 一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成一元一次不等式组.2. 一元一次不等式组的解集:一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集.解不等式组就是求它的解集.3. 解不等式组的一般步骤:先分别解出不等式组中各个不等式的解集,并表示在数轴上,再求出他们的公共部分,就得到不等式组的解集.4. 几种常见的不等式组的解集:设a<b,a,b是常数,关于x的不等式组的解集的四种情况如下表:不等式组(a<b)图示解集口诀x≥ ax≥ b④______ 同大取大x≤ ax≤ b⑤______ 同小取小x≥ a x≤ b ⑥_________ 大小、小大中间找x≤ a x≥ b 无解小小、大大找不到考点四一元一次不等式的应用。

相关文档
最新文档