第四章相似图形单元测试题.doc

合集下载

人教版七年级上册数学第四章图形认识初步单元全章测试题

人教版七年级上册数学第四章图形认识初步单元全章测试题

人教版七年级数学测试卷(考试题)第四单元《图形认识初步》单元测试ABCD班级 姓名 号数一、填空题 (每题3分,共30分)1、 三棱柱有 条棱, 个顶点, 个面;2、 如图1,若是中点,AB=4,则DB= ;3、42.79= 度 分 秒;4、 如果∠α=29°35′,那么∠α的余角的度数为 ;5、 如图2,从家A 上学时要走近路到学校B ,最近的路线为 (填序号),理由是 ;6、 如图3,OA 、OB 是两条射线,C 是OA 上一点,D 、E 分别是OB 上两点,则图中共有 条线段,共有 射线,共有 个角;7. 如图4,把书的一角斜折过去,使点A 落在E 点处,BC 为折痕,BD 是∠EBM 的平分线,则∠CBD =8. 如图5,将两块三角板的直角顶点重合,若∠AOD=128°,则∠BOC= ; 9. 2:35时钟面上时针与分针的夹角为 ;10. 经过平面内四点中的任意两点画直线,总共可以画 条直线; 二选择题(每题3分,共24分)7、 将一个直角三角形绕它的直角边旋转一周得到的几何体是( ) 12、 如果与互补,与互余,则与的关系是( )题号 123456789答案C BADE F(1)(2)(3)图2图3图5图4A.=B.C.D.以上都不对13、对于直线,线段,射线,在下列各图中能相交的是()14、下面图形经折叠后可以围成一个棱柱的有()A. 1个B. 2个C. 3个D. 4个15、已知M是线段AB的中点,那么,①AB=2AM;②BM=12AB;③AM=BM;④AM+BM=AB。

上面四个式子中,正确的有()A.1个 B.2个 C.3个 D.4个16、在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()方向A.南偏西50度B.南偏西40度C.北偏东50度D.北偏东40度17、如右图,AB、CD交于点O,∠AOE=90°,若∠AOC:∠COE=5:4,则∠AOD等于()A.120° B.130° C.140° D.150°18、图中(1)-(4)各图都是正方体的表面展开图,若将他们折成正方体,各面图案均在正方体外面,则其中两个正方体各面图案完全一样,他们是()A. (1)(2)B.(2)(3)C.(3)(4)D.(2)(4)三、作图题(各7分,共21分)19、已知、求作线段AB使AB=2a-b(不写作法,保留作图痕迹)ab20、按照要求,在图中画出表示下列方向的射线:(1)南偏东300 (2)北偏西600 (3)西南方向四、解答题(8+8+9分,共25分)21、若一个角的补角等于它的余角的4倍,求这个角的度数。

八年级下学期单元测试四(相似图形B卷)

八年级下学期单元测试四(相似图形B卷)

八年级下学期单元测试四(相似图形B 卷)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 如图,下列条件中不能判定ACD ABC △∽△的是( )(A)AB ADBC CD= (B)ADC ACB ∠=∠ (C)ACD B ∠=∠(D)2AC AD AB =2. 下列两个图形一定相似的是 . A.三角形与四边形 B.两个正五边形 C.两个六边形 D.两个四边形3. 若a cb d =,则下列式子中正确的是 A.ac n bd c +=+ B.ac bd = C.c n n nb d++=D.a a cb b d+=+ 4. 若32xx y=+,则y x 的值为(A)12 (B)23 (C)13(D)255. 如图,P 是Rt ABC △的斜边BC 上异于B 、C 的一点,过P 点作直线截ABC △,使截得的三角形与ABC △相似,满足这样条件的直线共有( )条A.1 B.2 C.3 D.46. 已知532x y y x -=-,则xy=A.87B.78-C.78D.87-7. 如图,D 为ABC △的边BC 上的一点,连接AD ,要使ABD CBA △∽△,应具备下列条件中的( )A.AC ABCD BD = B.2AB BD BC =C.AB BCCD AD=D.2AC CD CB =8. 下列各组线段中,能成比例的是A.3679,,, B.2568,,, C.36918,,, D.11121314,,,9. 如图,将DEF △缩小为原来的一半,操作方法如下:任意取一点P ,连接DP ,取DP 的中点A ,再连接EP FP 、,取它们的中点B C 、,得到ABC △,则下列说法正确的有( ) ①ABC △与DEF △是位似图形; ②ABC △与DEF △是相似图形;班级______________________________________ 姓名____________________ 考场号________________ 考号_______________----------------------------------------------------密---------------------------------封--------------------------------线------------------------------------------------ACD B ACA B D③ABC △与DEF △的周长比是1:2; ④ABC △与DEF △的面积比是1:2. (A)1个 (B)2个 (C)3个 (D)4个10. 如果两个等腰直角三角形斜边的比是1:2,那么它们面积的比为( ) (A)1:1(B)(C)1:2(D)1:4二、填空题:本大题共5小题,每小题3分,共15分,把答案填写在题中横线上.11. 两个矩形相似,它们的对角线之比为1:3,那么它们的相似比为 ,周长比为 ,面积比为 . 12. 若65x y =,则x y y += .13. 两个相似五边形的相似比为1:2,则它们的周长的比为 .14. 如图,在ABC △中,点D E 、分别在边AC AB 、上,且23AE AD AC AB ==,若4DE =cm ,则BC = cm .15. 已知250x y -=,则:x y = ;x y y -= ;yx y=+ .三、运算题:本大题共3小题,共15分,解答应写出必要的计算过程、推演步骤或文字说明. 16.(本小题5分) 如图,如果AD AE AB AC =,那么AD BD 与AECE的比值是否相等?请说明理由.17.(本小题5分) 小胖和小瘦去公园玩标准的...跷跷板游戏,两同学越玩越开心,小胖对小瘦说:“真可惜!我只能将你最高翘到1米高,如果我俩各边的跷跷板都再伸长相同的一段长度,那么我 就能翘到1米25,甚至更高!”(1)你认为小胖的话对吗?请你作图分析说明;(2)你能否找出将小瘦翘到1米25高的方法?试说明. 解:AEBCDAED B C地面 第23题图18.(本小题5分) 解答题.(1)在平面直角坐标系描出点(42)(24)(04)(02)(20)A B C D E ,,,,,,,,,,顺次连结点A B C D E A ,,,,,得到一个五边形ABCDE .(2)将点A B C D E ,,,,的横坐标和纵坐标都除以2,得到五个新的点,顺次连结这五个点,得到一个新的五边形,这两个五边形相似吗?是位似图形吗?为什么? 如果将点A B C D E ,,,,的横坐标和纵坐标都乘以3呢?四、画图题:本大题共2小题,共10分,解答应写出必要的计算过程、推演步骤或文字说明. 19.(本小题5分) 如图,在大小为44×的正方形网格上,有一ABC △,现要求在网格上再画A B C '''△,使ABC A B C '''△∽△(相似比不为1),且点A B C '''都在单位正方形的顶点上.20.(本小题5分) 如图,作出一个新图形,使新图形与原图形对应线段的比为2:1.五、合情推理题:本大题共2小题,共16分,解答应写出必要的计算过程、推演步骤或文字说明.21.(本小题8分) 如下图,用同样规格黑白两色的正方形瓷砖铺设矩形地面,请观察下面图形并回答有关问题:(1)在第n 上图中,每一横行共有 块瓷砖,每一竖行共有 块瓷砖.(均用含n 的代数式表示)(2)设铺设地面所用瓷砖的总块数为y ,请写出y 与(1)中的n 的函数关系式.(不要求写自变量n 的取值范围)(3)按上述铺设方案,铺一块这样的矩形地面共用了506块瓷砖,求此时n 的值.(4)若黑瓷砖每块4块,白瓷砖每块3元,在问题(3)中,共须花多少元钱购买瓷砖? (5)通过计算说明,是否存在黑瓷砖与白瓷砖块数相等的情形.22.(本小题8分) 你能用4个全等的正三角形拼出一个大正三角形吗?这个大正三角形与每一个小正三角形相似吗?为什么?A B1n = 2n = 3n =六、证明题:本大题共2小题,共14分,解答应写出必要的计算过程、推演步骤或文字说明. 23.(本小题7分) 已知:如图,等腰ABC △中,AB AC AD BC =,⊥交于D ,CG AB ∥,BG 分别交AD AC ,于E F ,. 求证:2BE EF EG =24.(本小题7分) 如图,梯形ABCD 中,AD BC AB DC =∥,,P 为梯形ABCD 外一点,PA 、PD 分别交线段BC 于点E 、F ,且PA PD =.(1) 写出图中三对你认为全等的三角形(不再添加辅助线);(2) 选择你在(1)中写出的全等三角形中的任意一对进行证明.参考答案一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. (A)2. B3. D4. A5. C6. A7. B8. C9. (C)10. (D)二、填空题:本大题共5小题,每小题3分,共15分,把答案填写在题中横线上. 11. 1:3 1:3 1:9 12.11513. 1:2 14. 615. 325:227,,三、运算题:本大题共3小题,共15分,解答应写出必要的计算过程、推演步骤或文字说明. 16.(本小题5分) 相等.理由略.17.(本小题5分) 解:(1)小胖的话不对.AB D G F EC B 班级______________________________________ 姓名____________________ 考场号________________ 考号_______________----------------------------------------------------密---------------------------------封--------------------------------线------------------------------------------------小胖说“真可惜!我现在只能将你最高翘到1 米高”,情形如图(1)所示,OP 是标准跷跷 板支架的高度,AC 是跷跷板一端能翘到的最 高高度1米,BC 是地面..OP BC AC BC OBP ABC OBP ABC ∠=∠∴ ⊥,⊥,,△∽△.BO OPBA AC∴= 又 此跷跷板是标准跷跷板,BO OA =, 12BO BA ∴=,而1AC =米,得0.5OP =米. 若将两端同时都再伸长相同的长度,假设为a 米(0)a >. 如图(2)所示,BD a =米,AE a =米 BO OA BO a OA a =∴+=+ ,,即DO OE =.12DO DE ∴=,同理可得DOP DEF △∽△. DO OP DE EF ∴=,由0.5OP =米,得1EF =米.综上所述,跷跷板两边同时都再伸长相同的一段长度, 跷跷板能翘到的最高高度始终为支架OP 高度的两倍, 所以不可能翘得更高.(2)方案一:如图(3)所示,保持BO 长度不变.将 OA 延长一半至E ,即只将小瘦一边伸长一半.使12AE OA =,则25BO BE =. 由BOP BEF △∽△,得.BO OPBE EF= 1.25EF ∴=米.方案二:如图(4)所示,只将支架升高0.125米.12B O B O P B AC B A ''''''''='' ,△∽△, 又0.50.1250.625O P ''=+=米.B O O P B A AC ''''∴=''''. 1.25A C ''∴=米.(注:其它方案正确,可参照上述方案评分!)18.(本小题5分) 略四、画图题:本大题共2小题,共10分,解答应写出必要的计算过程、推演步骤或文字说明. 19.(本小题5分) 略20.(本小题5分) 略五、合情推理题:本大题共2小题,共16分,解答应写出必要的计算过程、推演步骤或文字说明.21.(本小题8分) (1)3n +,2n +.(2)(3)(2)y n n =++,即256y n n =++.(3)当506y =时,256506n n ++=,即255000n n +-=,120n =,225n =-(舍去).(4)白瓷砖的块数是(1)20(201)420n n +=⨯+=,黑瓷砖的块数是50642086-=(块),故共须花86442031604⨯+⨯=(元).(5)由2(1)(56)(1)n n n n n n +=++-+得2360n n --=,得13n =,2302n -=<(舍去),n 的值不是正整数,∴不存在黑、白瓷砖块数相等的情形.本小题8分) 解:能并出一个大正三角形,如图所示:ABC AFE FBD EDC DEF △∽△∽△∽△∽△. 下面以ABC AFE △∽△为例说明: 由于正三角形每个角都等于60,所以6060BAC FAEABC AFE BCA FEA ∠=∠=∠=∠=∠=∠,,60.=C (3)F'(4)PB 'C由于正三角形三边相等,所以AF FE AEAB BC AC ==. 所以ABC AFE △∽△.六、证明题:本大题共2小题,共14分,解答应写出必要的计算过程、推演步骤或文字说明. 23.(本小题7分) 证明:连接EC . 证明ECF △与ECG △相似.2.EC EGEF EC EC EF EG ∴=∴= 又EC BE = , 2BE EF EG ∴= .24.(本小题7分) (1)以下四对.①ABP DCP △≌△;②ABE DCF △≌△;③BEP CFP △≌△; ④BFP CEP △≌△.(2)下面就ABP DCP △≌△给出参考答案.证明:AD BC AB DC = ∥,, ∴梯形ABCD 为等腰梯形, BAD CDA ∴∠=∠. 又PA PD = ,..PAD PDA BAD PAD CDA PDA ∴∠=∠∴∠-∠=∠-∠即.BAP CDP ∠=∠在ABP △和DCP △中,.PA PD BAP CDP AB DC =⎧⎪∠=∠⎨⎪=⎩ ,,.ABP DCP ∴△≌△A FE D BCB。

图形的相似单元测试【含答案】

图形的相似单元测试【含答案】

DC B A 图形的相似 单元测试(时间:60分钟,共100分)一、选择题(每小传统3分,共30分) 1.下列语句正确的是 ( )A .在△ABC 和△A′B′C′中,∠B=∠B′=90°,∠A=30°,∠C′=60°, 则△ABC 和△A′B′C′不相似B .在△ABC 和△A′B′C′中,AB=5,BC=7,AC=8,A′C′=16,B′C′=14,A′B ′=10,则△ABC ∽△A′B′C′C .两个全等三角形不一定相似D .所有的菱形都相似2.如图所示,△ABC ∽△ADE ,AE=30cm ,EC=15cm ,BC=60cm ,则DE 的长为 ( ) A .40cm B .50cm C .45cm D .35cm 3.如图所示,能保证△ACD ∽△ABC 的条件是 ( ) A .AB:BC=AC:CD B .CD:AD=BC:AC C .CD 2=AD .DC D .AC 2=AB .AD 4.如果两个相似多边形的面积比为9:4,那么这两个相似多边形的相似比为 ( ) A .9:4 B .2:3 C .3:2 D .81:16 5.小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,如图 所示给出的四个图案中,符合图示胶滚图案的是 ( )6.语句:“①所有度数相等的角都相似;②所有边长相等的菱形都相似;③所有的正方形都相似;④所有的圆都相似”中准确的有 ( )A .4句B .3句C .2句D .1句 7.下列语句中不正确的是 ( )A .求两条线段的比值,必需采用相同的长度单位B .求两条线段的比值,只需采用相同的长度单位,与选用何种长度单位无关C .两个相似三角形中,任意两组边对应成比例D .不相似的两个三角形中,也有可能两组边对应成比例 8.下列各组图形有可能不相似的是 ( ) A .各有一个角是50°的两个等腰三角形 B .各有一个角是100°的两个等腰三角形 C .各有一个角是50°的两个直角三角形 D .两个等腰直角三角形9.一个多边形的边长分别为2,3,4,5,6,另一个多边形和这个多边形相似,其最短边长为6,则最长边长为( )A .12B .18C .24D .301250800xy ╯ ╮ 650 536╭α ╰ ╯ 803 10. 已知cba b a c a c b +=+=+=k ,则k=( ) A .2 B .-1 C .2或-1 D .0二、填空题(每小题3分,共24分)11.如果一个三角形的面积扩大9倍,那么它的边长扩大_____________倍.12.如图所示,有一块呈三角形的草坪,其一边长为20m ,在这个草坪的图纸上,若这条边的长为5cm ,其他两边的长都是3.5cm ,则该草坪其他两边的实际长度为______________.13.如图所示的两个三角形是相似的x=_________,m=___________,n=____________.x2a 55︒m ︒45︒103a n ︒80︒45︒14. 已知如图,两个矩形相似, 则x= ,y= ,α= .15. 在相同时刻的物高与影长成比例,如果一古塔在地面上影长为50m ,同时,高为1.5m 的测竿的影长为2.5m ,那么,古塔的高是___米.16.如图中的两个矩形相似,则x=___________.17. 请把下列各组图形是否相似的结论写在下面的括号里.18.如图在直角坐标系中,右边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是 .三、解答题(19小题6分,其余各小题8分,共46分) 19.把上下对应的相似图形用线连起来20.如图所示,写出多边形ABCDEF 各个顶点的坐标,并画出多边形ABCDEF 关于y 轴的轴对称图形,它们相应的对称点的坐标有什么变化?-3 -2 -1 32 1 O -1 -212 3 xy21.学生会举办一个校园摄影艺术展览会,小华和小刚准备将矩形的作品四周镶上一圈等宽的纸边,如图所示.两人在设计时发生了争执:小华要使内外两个矩形相似,感到这样视觉效果较好;小刚试了几次不能办到,表示这是不可能的.小红和小莉了解情况后,小红说这一要求只有当矩形是黄金矩形时才能做到,小莉则坚持只有当矩形是正方形时才能做到.请你动手试一试,说一说你的看法.222.以下列正方形网络的交点为顶点,分别画出两个相似比不为1的相似三角形,使它们:(1)都是直角三角形;(2)都是锐角三角形;(3)都是钝角三角形.23.如果一个图形经过分割,能成为若干个与自身相似的图形,我们称它为“能相似分割的图形”,如图所示的等腰三角形和矩形就是能相似分割的图形. (1)你能否再各举出一个 “能相似分割”的三角形和四边形?(2)一般的三角形是否“能相似分割的图形”?如果是的话给出一种分割方案,否则说明原因.24.我们通常用到的一种复印纸,整张称为A 1纸,对折一分为二裁开成为A 2纸,再一分为二成为A 3纸,…,它们都是相似的矩形.求这种纸的长与宽的比值(精确到千分位).参考答案1.B ;对应边成比例 2.A ;根据对应边成比例 3.D ;比例性质 4.C ;相似形的性质 5.C ;图形的相似 6.B ;②③④ 7.C ;注意对应 8.A ;不符合对应关系 9. 由相似多边形对应边成比例,设最长边为x .∴x662 ,∴2x=36,x=18.答案:B 10.C .2或-1二、11.3倍 12.14m 13.20314.根据相似形的性质,得x=2.5,y=1.5,α=900;⑵x=22.5. 15.在相同时刻的物高与影长成比例,设古塔的高为xm ,则505.25.1x=,解得x=30(m ) 16.已知两个矩形相似,根据相似形的性质,有x201530=,∴30x =15×20,解得x =10;又152030=x ,∴x =22.5 17. ①相似,②不相似,③不相似,④相似,⑤不相似,⑥不相似 18. 由左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),不难发现左右眼睛之间的距离2个单位;平移后的图形右图中左眼的坐标是(3,4),则右图案中右眼的坐标的纵坐标不变,横坐标为3+2=5,即右图案中右眼的坐标是(5,3). 三、19.相似形连线如(1)-(a ),(2)-(d),(3)-(g)20.提示:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3),A′(2,0),B′(0, 3),C′(-3,-3),D′(-4,0),E′(-3,3),F′(0,3).21.只有正方形才能做到,设矩形的一边为a ,另一边为b ,等宽的纸边宽为c ,按小华的要求,应有cb ca b a 22--=,化简得a=b . 22.作图如下23.例如直角三角形,一组底角是60°、三边相等的等腰梯形. 三角形都是“能相似分割的图形”(提示:顺次连结三角形三边中点,将三角形分成的四个三角形都和原三角形相似)24. 1.414(提示:设 A 1纸的长为a ,观为b ,由A 1,A 2纸的长余观对应成比例,得a:b=b:21a )。

北师版九年级数学 第四章 图形的相似(单元综合测试卷)

北师版九年级数学  第四章 图形的相似(单元综合测试卷)

第四章图形的相似(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题(本大题共10小题,每小题3分,共30分)1.若23a b =,则a a b +等于()A .15B .25C .35D .452.如果两个相似三角形的面积之比为9:4,那么这两个三角形的周长之比为()A .81:16B .27:12C .9:4D .3:23.已知,点P 是线段AB 的黄金分割点(AP PB >),若线段2AB cm =,则线段AP 的长是()Acm B .1)cm C .(3cm D .(2cm4.如图,直线123l l l ∥∥,直线AC 和DF 被1l ,2l ,3l 所截,4AB =,9AC =,4EF =,则DE 的长为()A .165B .169C .5D .95.如图,下列条件不能判定BDC ABC ∽ 的是()A .∠=∠BDC ABCB .DBC BAC ∠=∠C .2D C A B C C =⋅D .AD AB AB BC=6.如图,在ABCD Y 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是()A .21:B .13:C .12:D .31:7.如图,BE 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区BE 的长度是6米,则车宽FA 的长度为()米.A .117B .127C .137D .28.如图,在平面直角坐标中,已知()()1030A D ,,,,ABC 与DEF 位似,原点O 是位似中心.若 1.5AB =,则DE 长为()A .4.5B .6C .7.5D .99.如图,ABC 是等边三角形,点D 、E 分别在BC 、AC 上,且60ADE ∠=︒,6AB =,2BD =,则CE 的长等于()A .1B .43C .53D .210.如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ∠=︒,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③13412DEC S =-△;④12DH HC =.则其中正确的结论有()A .①②③B .①②③④C .①②④D .①③④二、填空题(本大题共8小题,每小题3分,共24分)11.如图,四边形ABCD ∽四边形A B C D '''',则a ∠的度数是.12.如图,在ABC 中,DE CB ∥,DE 分别与AC AB 、相交于点D 、E ,若4=AD ,8DC =,则:AE EB 的值为.13.如图,在ABC ∆中,点P 为AB 上一点,连接CP .若再添加一个条件,使APC ACB ∆∆∽,则需添加的一个条件是.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边0.6=DE 米,0.3EF =米,测得边DF 离地面的高度 1.5AC =米,10CD =米,则树高AB 为米.15.如图,已知ABC 和A B C ''△是以点()1,0C -为位似中心,位似比为1:2的位似图形,若点B 的对应点B '的横坐标为a ,则点B 的横坐标为.16.如图,AD 是ABC 的中线,E 是AD 的中点,BE 的延长线交AC 于点F ,那么AF AC =.17.如图,菱形ABCD 的边长为5,对角线AC 、BD 相交于点O ,E 为BC 边的中点,连接DE 交AC 于点F .若6AC =,则EF 的长为.18.如图,在矩形ABCD 中,6AB =,10BC =,点E 是AB 的中点,点M 是BC 的动点.将BEM △沿EM 翻折至PEM △.再将CFM △沿MF 翻折至QFM △,使点M ,P ,Q 在同一直线上,折痕MF 交射线CD 于点F .则:(1)EMF ∠=°;(2)当点M 是BC 的中点时,DF 的长为.三、解答题(本大题共9小题,共66分)19.(1)若234x y z ==,且328x y z -+=,求234x y z -+的值;(2)若23a eb f ==,则a e b f +=+______.20.如图,已知直线1l ,2l ,3l 分别截直线4l 于点A ,B ,C ,截直线5l 于点D ,E ,F ,且123l l l ∥∥.若4AB =,8BC =,10EF =,求DF 的长.21.如图,在ABC ∆中,点D ,E 在AB 上,点G 在AC 上,连接,,DG CE EG ,DG EC EG BC ∥∥,.求证:AE AD AB AE=22.如图,线段BD 、CE 是ABC 的两条高.(1)求证:ACE ABD ∽;(2)若6AD =,5DE =,10AB =,求BC 的长.23.小琛周末去检查视力,发现该店老板利用平面镜来解决房间小的问题.已知正常情况下,人与视力表之间的距离应为5米,而测得该店两面墙的距离为3米,如图,根据平面镜成像原理作出光路图,视力表AB 的上下边沿A ,B 上发出的光线经平面镜'MM 的上下边反射后射入人眼C 处.已知视力表AB 的全长为0.8米,要使墙面上的镜子能呈现完整的视力表,请计算出镜长至少为多少米?24.图①、图②、图③均是55⨯的正方形网格,其顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中按下列要求作图,并保留作图痕迹.(1)在图①中,在ABC 的边BC 上找一点D ,连结AD ,使BAD BCA △∽△;(2)在图②中,在ABC 的边AB 上找一点P ,在边BC 上找一点Q ,连结PQ ,使BPQ BAC ∽,且相似比为1:2;(3)在图③中,在ABC 的边BC 上找一点E ,连结AE ,使2ABE ACE S S = .25.在正方形网格中,OBC △的顶点分别为()00O ,,()31B -,,()21C ,.(1)以点()00O ,为位似中心,以位似比21:在位似中心的异侧将OBC △放大为OB C ''△,放大后点B ,C 两点的对应点分别为B ',C ',请画出OB C ''△;(2)在(1)中,若点()M a b ,为线段BC 上任一点,直接写出变化后点M 的对应点M '的坐标.(用含a ,b 的代数式表示)26.已知四边形ABCD 的一组对边AD DC ,的延长线相交于点E .(1)如图1,若90ABC ADC ∠=∠=︒,求证:••ED EA EC EB =;(2)如图2.若12060510ABC ADC CD AB ∠=︒∠=︒==,,,,CDE 的面积为6,求四边形ABCD 的面积.27.如图1,在等腰直角三角形ABC 中,以BC 为边在ABC 右侧作正方形DEFG .(1)问题提出:图I 中线段AF 与线段BE 的数量关系为(直接写出答案);(2)深入探究:如图2,将正方形DEFG 绕点D 在平面内旋转,连接AF BE ,.判断线段AF 与线段BE 的数量关系并说明理由;(3)拓展延伸:若2AC =,正方形DEFG 绕点D 在平面内旋转的过程中,当点A ,E ,请直接写出线段BE 的长.28.如图,在菱形ABCD 中,=60B ∠︒,点E 为边BC 上一点,将CDE 沿DE 翻折得到C DE ' ,连接AC '并延长交DE 于点F ,交BC 于点G .(1)设2ADC α'∠=,探究AFD ∠的大小是否为定值,请说明理由;(2)在DF 上截取FH FA =,连接AH ,求证:DH C F '=;(3)若54AC FG '=,5BE =,求菱形的边长.第四章图形的相似(单元重点综合测试)班级___________姓名___________学号____________分数____________考试范围:全章的内容;考试时间:120分钟;总分:120分一、单选题1.若23a b =,则a a b +等于()A .15B .25C .35D .452.如果两个相似三角形的面积之比为9:4,那么这两个三角形的周长之比为()A .81:16B .27:12C .9:4D .3:2【答案】D【分析】本题考查了相似三角形的性质,直接根据相似三角形的性质即可得出答案,熟练掌握相似三角形的面积的比等于相似比的平方是解此题的关键.【解析】解:∵两个相似三角形的面积之比为9:4,∴两个相似三角形的相似比为3:2,∵相似三角形的周长比等于相似比,∴这两个三角形的周长之比为3:2,故选:D .3.已知,点P 是线段AB 的黄金分割点(AP PB >),若线段2AB cm =,则线段AP 的长是()Acm B .1)cm C .(3cm D .(2cm4.如图,直线123l l l ∥∥,直线AC 和DF 被1l ,2l ,3l 所截,4AB =,9AC =,4EF =,则DE 的长为()A .165B .169C .5D .95.如图,下列条件不能判定BDC ABC ∽ 的是()A .∠=∠BDC ABCB .DBC BAC ∠=∠C .2D C A B C C=⋅D .AD AB AB BC=【答案】D 【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解析】解:A 、∵∠=∠BDC ABC ,C C ∠=∠,∴BDC ABC ∽ ,故此选项不合题意;B 、∵DBC BAC ∠=∠,C C ∠=∠,∴BDC ABC ∽ ,故此选项不合题意;C 、∵2D C A B C C =⋅,∴BC AC DC BC=,又∵C C ∠=∠,∴BDC ABC ∽ ,故此选项不合题意;D 、AD AB AB BC=不能判定BDC ABC ∽ ,故此选项符合题意.故选:D .【点睛】本题考查了相似三角形的判定,熟悉相似三角形的判定定理是解题的关键.6.如图,在ABCD Y 中,E 是AB 的中点,EC 交BD 于点F ,那么EF 与CF 的比是()A .21:B .13:C .12:D .31:【答案】C 【分析】本题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的性质及相似三角形的判定与性质是解答本题的关键.根据平行四边形的性质得到AB CD =,进而推得12BE CD =,再证明BEF DCF ∽△△,根据相似三角形的性质,即得答案.7.如图,BE 为驾驶员的盲区,驾驶员的眼睛点P 处与地面BE 的距离为1.6米,车头FACD 近似看成一个矩形,且满足32FD FA =,若盲区BE 的长度是6米,则车宽FA 的长度为()米.A .117B .127C .137D .2则 1.6PM =,设FA x =米,由32FD FA =得,8.如图,在平面直角坐标中,已知()()1030A D ,,,,ABC 与DEF 位似,原点O 是位似中心.若 1.5AB =,则DE 长为()A .4.5B .6C .7.5D .99.如图,ABC 是等边三角形,点D 、E 分别在BC 、AC 上,且60ADE ∠=︒,6AB =,2BD =,则CE 的长等于()A .1B .43C .53D .210.如图,在正方形ABCD 的对角线AC 上取一点E .使得15CDE ∠=︒,连接BE 并延长BE 到F ,使CF CB =,BF 与CD 相交于点H ,若1AB =,有下列结论:①BE DE =;②CE DE EF +=;③14DEC S =-△;④12DH HC =.则其中正确的结论有()A.①②③B.①②③④C.①②④D.①③④ ≌,ABE ADE(SAS)∴.∠=∠ABE ADE∴∠=∠,CBE CDE,BC CF=在Rt ADC 中,根据勾股定理求出由面积公式得:1122AD DC AC ⨯=22DM ∴=,45DCA ∠=︒ ,二、填空题11.如图,四边形ABCD ∽四边形A B C D '''',则a ∠的度数是.【答案】100︒/100度【分析】利用相似多边形对应角相等、对应边成比例即可求解.【解析】解: 四边形ABCD ∽四边形A B C D '''',70B B '∴∠=∠=︒,3601306070100C '∴∠=︒-︒-︒-︒=︒100C α'∴∠=∠=︒,故答案为:100︒.【点睛】本题考查了相似多边形的性质,解题的关键是知道相似多边形的对应边的比相等,对应角相等.12.如图,在ABC 中,DE CB ∥,DE 分别与AC AB 、相交于点D 、E ,若4=AD ,8DC =,则:AE EB 的值为.【答案】1:2【分析】本题主要考查了平行线分线段成比例定理,熟练掌握该定理是解题的关键,根据DE CB ∥,由平行线分线段成比例定理可得::AE EB AD CD =,将已知条件代入即可求解.【解析】解:∵DE CB ∥,4=AD ,8DC =,∴::4:81:2AE EB AD CD ===.故答案为1:2.13.如图,在ABC ∆中,点P 为AB 上一点,连接CP .若再添加一个条件,使APC ACB ∆∆∽,则需添加的一个条件是.【答案】∠ACP =∠B 或∠APC =∠ACB 或AP :AC =AC :AB【分析】利用相似三角形的判定可求解.【解析】解:①当∠ACP =∠B ,∠A =∠A ,可得△APC ∽△ACB ,故可添加∠ACP =∠B ;②当∠APC =∠ACB ,∠A =∠A ,可得△APC ∽△ACB ,故可添加∠APC =∠ACB ;③当AP :AC =AC :AB ,∠A =∠A ,可得△APC ∽△ACB ,故可添加AP :AC =AC :AB ;故答案为∠ACP =∠B 或∠APC =∠ACB 或AP :AC =AC :AB .【点睛】本题考查了相似三角形的判定方法,相似三角形的判定方法有:①对应角相等,对应边成比例的两个三角形叫做相似三角形;②平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;③两角相等的两个三角形相似;④两边对应成比例,且夹角相等的两个三角形相似判定即可;⑤三边对应成比例的两个三角形相似.14.如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边0.6=DE 米,0.3EF =米,测得边DF 离地面的高度 1.5AC =米,10CD =米,则树高AB 为米.15.如图,已知ABC 和A B C ''△是以点()1,0C -为位似中心,位似比为1:2的位似图形,若点B 的对应点B '的横坐标为a ,则点B 的横坐标为.【答案】32a +-【分析】本题考查了位似变换的性质、相似三角形的性质,根据相似三角形的性质求出1112x a --=+是解题的关键.设B 点横坐标为x ,过B 作BM x ⊥轴于点M ,过B '作B N x '⊥轴于点N ,根据平行线分线段成比例定理得到CM BC CN B C =',根据相似三角形的性质求出1112x a --=+,计算即可.【解析】设B 点横坐标为x ,如图,过B 作BM x ⊥轴于点M ,过B '作B N x '⊥轴于点NBM B N '∴∥,BCM B CN ∴'△∽△,CM BC CN B C∴'=,∵ABC 和A B C ''△是位似比为1:2的位似图形,即1112x a --=+,解得32a x +=-,B ∴点横坐标为32a +-.16.如图,AD 是ABC 的中线,E 是AD 的中点,BE 的延长线交AC 于点F ,那么AC =.∵D为BC中点,DG BF∥∴12CG CDCF CB==,即:CG又E为AD的中点,BE的延长线交∴12AE AFAD AG==,即:AF17.如图,菱形ABCD的边长为5,对角线AC、BD相交于点O,E为BC边的中点,连接DE交AC于点F.若6AC=,则EF的长为.18.如图,在矩形ABCD 中,6AB =,10BC =,点E 是AB 的中点,点M 是BC 的动点.将BEM △沿EM 翻折至PEM △.再将CFM △沿MF 翻折至QFM △,使点M ,P ,Q 在同一直线上,折痕MF 交射线CD 于点F .则:(1)EMF ∠=°;(2)当点M 是BC 的中点时,DF 的长为.(2)如图,点M 是BC 的中点时,由折叠知,,MB MP MC =∴MP MQ =,即,P Q 两点重合.△MPE 中,MPE B ∠=∠=【点睛】本题考查矩形的性质,折叠的性质,相似三角形的判定和性质;由折叠得到角相等,线段相等是解题的关键.三、解答题19.(1)若234x y z ==,且328x y z -+=,求234x y z -+的值;(2)若23a eb f ==,则a e b f +=+______.20.如图,已知直线1l ,2l ,3l 分别截直线4l 于点A ,B ,C ,截直线5l 于点D ,E ,F ,且123l l l ∥∥.若4AB =,8BC =,10EF =,求DF 的长.【答案】15DF =【分析】本题考查了平行线分线段成比例;根据平行线分线段成比例列式求出DE ,再根据DF DE EF =+计算即可.【解析】解:∵123l l l ∥∥,∴AB DE BC EF =,即4810DE =,∴5DE =,∴51015DF DE EF =+=+=.21.如图,在ABC ∆中,点D ,E 在AB 上,点G 在AC 上,连接,,DG CE EG ,DG EC EG BC ∥∥,.求证:AE AD AB AE=【答案】证明见解析【分析】根据平行线分线段成比例可得=AG AE AC AB 和AG AD AC AE=,即得AE AD AB AE =【解析】证明:∵EG BC ∥,∴=AG AE AC AB ,∵DG EC ∥,∴AG AD AC AE =,∴AE AD AB AE=.【点睛】本题考查比例线段,解题的关键是掌握平行线分线段成比例.22.如图,线段BD 、CE 是ABC 的两条高.(1)求证:ACE ABD ∽;(2)若6AD =,5DE =,10AB =,求BC 的长.【答案】(1)见解析(2)253【分析】(1)根据高线的定义,得到90ADB CEA ∠=∠=︒,再根据A A ∠=∠,即可得证;(2)证明ADE ABC △△∽,列出比例式进行求解即可.【解析】(1)解:∵线段BD 、CE 是ABC 的两条高,∴90ADB CEA ∠=∠=︒,∵A A ∠=∠,∴ACE ABD ∽;(2)∵ACE ABD ∽,∴AD AB AE AC =,∴AD AE AB AC=,∵A A ∠=∠,∴ADE ABC △△∽,∴AD DE AB BC =,即:6510BC=,∴253BC =.【点睛】本题考查相似三角形的判定和性质.熟练掌握相似三角形的判定方法,证明三角形相似,是解题的关键.23.小琛周末去检查视力,发现该店老板利用平面镜来解决房间小的问题.已知正常情况下,人与视力表之间的距离应为5米,而测得该店两面墙的距离为3米,如图,根据平面镜成像原理作出光路图,视力表AB 的上下边沿A ,B 上发出的光线经平面镜'MM 的上下边反射后射入人眼C 处.已知视力表AB 的全长为0.8米,要使墙面上的镜子能呈现完整的视力表,请计算出镜长至少为多少米?∵AB MM A B '''∥∥,CE A B ∴⊥'',CMM CA B ''' ∽,MM CD '24.图①、图②、图③均是55⨯的正方形网格,其顶点称为格点,ABC 的顶点均在格点上,只用无刻度的直尺,在给定的网格中按下列要求作图,并保留作图痕迹.(1)在图①中,在ABC 的边BC 上找一点D ,连结AD ,使BAD BCA △∽△;(2)在图②中,在ABC 的边AB 上找一点P ,在边BC 上找一点Q ,连结PQ ,使BPQ BAC ∽,且相似比为1:2;(3)在图③中,在ABC 的边BC 上找一点E ,连结AE ,使2ABE ACE S S = .【答案】(1)详见解析(2)详见解析(3)详见解析【分析】(1)在BC 上取一点D ,使得AD BC ⊥即可;(2)取AB 的中点P ,取格点T ,连接PT 交BC 于点Q ,线段PQ 即为所求;(3)取格点P ,Q ,连接PQ 交BC 于点E ,连接AE 即可,本题考查作图,相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.【解析】(1)解:如图①中,线段AD 即为所求;(2)解:如图2中,线段PQ 即为所求;(3)解:如图③中,点E 即为所求.25.在正方形网格中,OBC △的顶点分别为()00O ,,()31B -,,()21C ,.(1)以点()00O ,为位似中心,以位似比21:在位似中心的异侧将OBC △放大为OB C ''△,放大后点B ,C 两点的对应点分别为B ',C ',请画出OB C ''△;(2)在(1)中,若点()M a b ,为线段BC 上任一点,直接写出变化后点M 的对应点M '的坐标.(用含a ,b 的代数式表示)【答案】(1)见详解(2)()22M a b '--,【分析】(1)利用位似变换的性质,2OC OC '=,2OB OB '=,再结合()00O ,,()31B -,,()21C ,,即可分别作出B ,C 的对应点B ',C ',再连接即可作答;(2)探究坐标变化规律,可得结论.【解析】(1)解:如图,OB C ''△即为所求:(2)解:因为()31B -,,()21C ,,且由(1)的图可知()62B '-,,()42C '--,,所以变化后点()M a b ,的对应点M '的坐标为()22a b --,.【点睛】本题考查作图−位似变换,解题的关键是掌握位似变换的性质,属于中考常考题型.26.已知四边形ABCD 的一组对边AD DC ,的延长线相交于点E .(1)如图1,若90ABC ADC ∠=∠=︒,求证:••ED EA EC EB =;(2)如图2.若12060510ABC ADC CD AB ∠=︒∠=︒==,,,,CDE 的面积为6,求四边形ABCD 的面积.【答案】(1)证明见解析(2)18【分析】本题考查了相似三角形的判定与性质,含30度角的直角三角形以及勾股定理等知识点,熟记相关定理内容是解题关键.(1)证EDC EBA ∽ 即可;(2)过C 作CF AD ⊥于F ,AG EB ⊥于G .可求出,,EF CF AG ;证EFC EGA ∽V V 得::EF EG CF AG =,即可求解;【解析】(1)证明:∵90ADC ∠=︒,180EDC ADC ∠+∠=︒,∴90EDC ∠=︒,∵90ABC ∠=︒,∴EDC ABC ∠=∠,∵E E ∠=∠,∴EDC EBA∽,V V ∴::ED EB EC EA =,∴··ED EA EC EB =;(2)解:如图2中,过C 作CF AD ⊥于F ,AG EB ⊥于G .在Rt CDF △中,60ADC ∠=∴30DCF ∠=°,∵5CD =,∴15,22DF CD ==CD CF =27.如图1,在等腰直角三角形ABC 中,以BC 为边在ABC 右侧作正方形DEFG .(1)问题提出:图I 中线段AF 与线段BE 的数量关系为(直接写出答案);(2)深入探究:如图2,将正方形DEFG 绕点D 在平面内旋转,连接AF BE ,.判断线段AF 与线段BE 的数量关系并说明理由;(3)拓展延伸:若2AC =,正方形DEFG 绕点D 在平面内旋转的过程中,当点A ,E ,请直接写出线段BE 的长.【答案】(1)2AF BE=(2)2AF BE =,理由见解答过程(3)62-或62+【分析】(1)根据ABC 是等腰直角三角形,得2AF BC =,再由正方形的性质即可解答;(2)连接BD CD ,,根据ABD △和DEF 都是等腰直角三角形,可证明BDE ADF ∽,然后根据线段比例即可解答;(3)分当点F 在线段AE 上或点F 在线段AE 的延长线两种情形,分别画出图形,利用勾股定理求得AF ,再由(2)得出BE 的长度即可.【解析】(1)解:∵ABC 是等腰直角三角形,∴2AF BC =,∵四边形DEFG 是正方形,∴BC GF BE ==,∴2AF BE =.故答案为:2AF BE =.(2)解:2AF BE =,理由如下:如图2,连接BD ,在Rt BAC 中,45BAC ∠=∴2sin 2BD BAC AD ∠==,在正方形DEFG 中,sin ∠∴BD DE AD DF=,∴45EDF BDA ∠=∠=︒,∴EDF BDF BDA ∠-∠=∠∴BDE ADF ∽,∴2AF AD ==,即AF 由(1)知,DE FE DG ==在Rt ADE △中,2,DE =∴222AE AD DE =-=∴23AF AE FE =-=-由(2)知,2AF BE =由(1)知,2DE FE DG ===,在Rt ADE △中,2DE =,∴2223AE AD DE =-=,∴232AF AE FE =-=+,由(2)知,2AF BE =,∴()223223226222222BE +++====⨯∴当正方形DEFG 旋转到A 、E 、F 三点共线时【点睛】本题主要考查四边形的综合题,主要考查了相似三角形的判定和性质、等腰直角三角形的性质、正方形的性质等知识点,灵活运用相关判定和性质定理是解题的关键.28.如图,在菱形ABCD 中,=60B ∠︒,点E 为边BC 上一点,将CDE 沿DE 翻折得到C DE ' ,连接AC '并延长交DE 于点F ,交BC 于点G .(1)设2ADC α'∠=,探究AFD ∠的大小是否为定值,请说明理由;(2)在DF 上截取FH FA =,连接AH ,求证:DH C F '=;(3)若54AC FG '=,5BE =,求菱形的边长.【答案】(1)AFD ∠的大小为定值,理由见解析(2)见解析∵AD DC =,60ADC ∠=∴ADC △为等边三角形,∴AC AD =,60CAD ∠=︒∵FH FA =,60AFD ∠=︒∴AFH 为等边三角形,∴AF AH =,60FAH ∠=∵CAF CAH CAH ∠+∠=∠∴CAF DAH ∠=∠,∴AFC AHD ≌,∴DH CF =,∵CD C D ¢=,CDF C ∠=∠∴CDF C DF ' ≌,∴C F CF '=,∴DH C F '=;(3)解:如图:由54AC FG '=,可设5AC a ='则4FG a =,DH C F CF '==∵AFH 为等边三角形,∴60AHF AFH ∠=∠=︒,∴120AHD ∠=︒由(2)AFC AHD ≌,。

七年级数学上学期第四单元几何图形初步测试卷5套带答案

七年级数学上学期第四单元几何图形初步测试卷5套带答案

第4章 单元测试题(时间100分钟 满分100分)一、选择题:(每小题3分,共30分)1.如图1所示的棱柱有( )A.4个面B.6个面C.12条棱D.15条棱C(2)A DB2.如图2,从正面看可看到△的是( )3.如图3,图中有( )A.3条直线B.3条射线C.3条线段 D.以上都不对4.下列语句正确的是( )A.如果PA=PB,那么P是线段AB的中点;B.作∠AOB的平分线CDC.连接A、B两点得直线AB;D.反向延长射线OP(O为端点)5.如图4,比较∠α、∠β、∠γ 的大小得( )A. ∠γ>∠β>∠α;B. ∠α=∠β;C. ∠γ>∠α>∠β;D. ∠β>∠α>∠γ.6.5点整时,时钟上时针与分钟之间的夹角是( )A.210°B.30°C.150°D.60°7.两个角,它们的比是6:4,其差为36°,则这两个角的关系是( )A.互余B.互补C.既不互余也不互补D.不确定8.∠α=40.4°,∠β=40°4′,则∠α与∠β的关系是( )A. ∠α=∠β;B. ∠α>∠β;C. ∠α<∠β;D. 以上都不对9.如果∠α=3∠β, ∠α=2∠θ,则必有( )2310.如图5所示,已知∠AOB=64°,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,则∠AOA4的大小为( )A.8°B.4°C.2°D.1°二、填空题:(每小题3分,共30分)11.已知线段AB=8cm,延长AB 至C,使AC=2AB,D 是AB 中点,则线段CD=______.12.如图,从城市A 到城市B 有三种不同的交通工作:汽车、火车、飞机,除去速度因素,坐飞机的时间最短是因为___________.13.57.32°=_______°_______′_______″;27°14′24″=_____°.14.已知∠a=36°42′15″,那么∠a 的余角等于________.15.∠1+∠2=180°,∠2+∠3=180°,根据________,得∠1=∠3.16.表示O 点南偏东15°方向和北偏东25°方向的两条射线组成的角等于____17.如图,∠AOC=90°,∠AOB=∠COD,则∠BOD=______°.航线铁路公路(6)A B18.102°43′32″+77°16′28″=________;98°12′25″÷5=_____.19.已知线段AB=acm,点A 1平分AB,A 2平分AA 1,A 3平分AA 2,……,____________cm.20.在平面上有任意四点,过其中任意两点画直线,能画_______条直线.三、解答题:(21、24、25、26每题6分,22、23题每题8分)21.根据下列语句画图:(1)画∠AOB=120°;(2)画∠AOB 的角平分线OC;(3)反向延长OC 得射线OD;(4)分别在射线OA、OB、OD 上画线段OE=OF=OG=2cm;(5)连接EF、EG、FG;(6)你能发现EF、EG、FG 有什么关系?∠EFG、∠EGF、∠GEF 有什么关系?22.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm,M 是线段AC 的中点,求AM 的长.23.如图,直线AB、CD 交于O 点,且∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线.(1)求∠2和∠3的度数.(2)OF平分∠AOD吗?为什么?24.一个角的补角与它的余角的度数之比是3:1,求这个角的度数.25.测量员沿着一块地的周围测绘.从A向东走600米到B,再从B向东南(∠ABC= 135°)走500米到C,再从C向西南(∠BCD=90°)走800米到D.用1厘米代表100米画图, 求DA的长(精确到10米)和DA的方向(精确到1°).北D CA B26.利用线段、角、三角形、圆等图形为你的学校设计一个校标,并简述你的设计思路.参考答案一、选择题1.D2.C3.C4.D5.C6.C7.B8.B9.C 10.B二、填空题11.12cm 12.两点之间,线段最短 13.57、19、12;27.2414. 53°17′45″ 15.同角的补角相等16.140° 17.90 18.180°;19°38′29″. 19. 20.1或4或6三、解答题21.(6)EF=EG=FG,∠EFG=∠EGF=∠FEG=60°22.AM=7cm或3cm23.(1)∠2=100°,∠3=40°;(2)∠AOF=40°,OF平分∠AOD24.设这个角为x0,( 180-x):(90-x)=3:1,x=45.第4章 单元测试题2检测时间:45分钟,满分:100分班级 学号 姓名 得分一、填空题:(每空2分,共46分)1.正方体有______条棱,_____个顶点, 个面.2.圆柱的侧面展开图是一个 ,圆锥的侧面展开图是一个 ,棱柱的侧面展开图是一个 。

相似图形单元测试题(含答案)

相似图形单元测试题(含答案)

第四章相似图形单元测试题时间120分钟,满分120分一.选择题(每小题3分,共30分)1、如图,在Rt ABC △内有边长分别为a ,b ,c 的三个正方形.则a ,b ,c 满足的关系式是( )A .b a c =+B .b ac =C .222b ac =+ D .22b a c ==2、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )3、如下左图,五边形ABCDE和五边形A 1B 1C 1D 1E 1是位似图形,且PA 1=32PA ,则AB ׃A 1B 1等于( ) A .32 B .23 C . 53 D .354、如上中图,在大小为4×4的正方形网格中,是相似三角形的是( ).A.①和② B.②和③ C.①和③ D.②和④5、厨房角柜的台面是三角形,如上右图,如果把各边中点的连线所围成的三角形铺成黑色大理石.(图中阴影部分)其余部分铺成白色大理石,那么黑色大理石的面积与白色大理石面积的比是( )A .14B .41C .13D .346、在△MBN 中,BM =6,点A ,C,D 分别在MB 、NB 、MN 上,四边形ABCD 为平行四边形,∠NDC =∠MDA 则□ABCD 的周长是( )A .24B .18C .16D .127、下列说法“①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1∶2;④两个相似多边形的面积比为4∶9,则周长的比为16∶81.”中,正确的有()A .1个B .2个C .3个D .4个8、如图,点M 在BC 上,点N 在AM 上,CM=CN ,CMBMAN AM =,下列结论正确的是( ) A .∆ABM ∽∆ACB B .∆ANC ∽∆AMB C .∆ANC ∽∆ACM D .∆CMN ∽∆BCA9、已知:如图,小明在打网球时,要使球恰好能打过而且落在离网5米的位置上(网球运行轨迹为直线),则球拍击球的高度h 应为( ).A.0.9m B.1.8m C.2.7m D.6m10、如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O )20米的点A 处,沿OA 所在的直线行走14米到点B 时,人影的长度A .增大1.5米B .减小1.5米C .增大3.5米D .减小3.5米BA C第8题图ABCN ME 1D1C 1B 1A 1BDACEP二、填空题:(30分)11、如图,在平行四边形ABCD 中,M 、N 为AB 的三等分点,DM 、DN 分别交AC 于P 、Q 两点,则AP :PQ :QC= .12、如图,将①∠BAD = ∠C ;②∠ADB = ∠CAB ; ③BC BD AB ⋅=2;④DBABAD CA =;⑤DA AC BA BC =; ⑥ACDABA BC =中的一个作为条件,另一个作为结论,组成一个真命题,则条件是__________,结论是_______.(注:填序号)13、如图,Rt ∆ABC 中,AC ⊥BC ,CD ⊥AB 于D ,AC=8,BC=6,则AD=_________。

人教版七年级上册数学第四章《几何图形》单元测试卷(Word版,含答案)

人教版七年级上册数学第四章《几何图形》单元测试卷(Word版,含答案)

人教版七年级上册数学第四章《几何图形》单元测试卷(满分100分,时间90分钟)一、选择题(本大题共十小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是正确的.)1.下列说法不正确的是()A.用一个平面去截一个正方体可能截得五边形B.五棱柱有10个顶点C.沿直角三角形某条边所在的直线旋转一周,所得的几何体为圆柱D.将折起的扇子打开,属于“线动成面”的现象2.下列图形中,经过折叠不能围成一个正方体的是()A.B.C.D.3.图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A.B.C.D.4.已知∠1=27°18′,∠2=27.18°,∠3=27.3°,则下列说法正确的是()A.∠1=∠3B.∠1=∠2C.∠1<∠2D.∠2=∠35.如图是顺义区地图的一部分,小明家在怡馨家园小区,小宇家在小明家的北偏东约15°方向上,则小宇家可能住在()A.裕龙花园三区B.双兴南区C.石园北区D.万科四季花城6.一个正方体的展开图如图所示,将它折成正方体后,数字“0”的对面是()A.数B.5 C.1 D.学7.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A.65°B.50°C.40°D.25°8.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形,其中作法错误的为()A.B.C.D.9.如图所示,一艘船从A点出发,沿东北方向航行至点B,再从B点出发沿南偏东15°方向航行至C点,则∠ABC的余角是()A.15°B.30°C.45°D.75°10.某乡镇的4个村庄A,B,C,D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)在上述四个方案中最短的道路系统是方案()A.一B.二C.三D.四二、填空题(本大题共10小题,每小题2分,共20分)11.有一正角锥的底面为正三角形.如果这个正角锥其中两个面的周长分别为27,15,则此正角锥所有边的长度和为.12.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是.13.如图是一个立方体的平面展开图形,每个面上都有一个自然数,且相对的两个面上两数之和都相等,若13,9,3的对面的数分别是a,b,c,则a2+b2+c2﹣ab﹣ac﹣bc的值为.14.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.15.经过A,B两点的直线上有一点C,AB=10,CB=6,D和E分别是AB,BC的中点,则DE 的长是.16.上午8:30钟表的时针和分针构成角的度数是.17.下列几何体属于柱体的有个.18.平面内不同的两点确定一条直线,不同的三点最多确定三条直线,平面内不同的七个点最多可确定条直线.19.用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱(写出所有正确结果的序号).20.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.三、解答题(21 ~23题每题7分,25题8分,26题8分,27题8分)21.如图,点C在线段AB上,AC=6cm,MB=10cm,点M,N分别为AC,BC的中点.(1)求线段BC,MN的长;(2)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M,N分别是线段AC,BC的中点,求MN的长度.22.如图是一个正方体的展开图,标注了字母“a”的面是正方体的正面,已知正方体相对两个面上的代数式的值相等.求a+的值.。

2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)

第四章测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,)题号12345678910答案B C A D B C C C A C1.下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )2.在比例尺为1:500000的交通地图上,玉林到灵山的长度约为 23.6cm ,则它的实际长度约为( )A.0.118km B.1.18km C.118km D.1180km3.如图,以A ,B ,C 为顶点的三角形与以D ,E ,F 为顶点的三角形相似,则这两个三角形的相似比为( )A.2:1B.3:1C.4:3D.3:24.在△ABC 中,D 是AB 中点,E 是AC 中点,若△ADE 的面积是3,则△ABC 的面积是 ( )A.3 B.6 C.9 D.125.如图,在△ABC 中,点D 在AB 边上,过点 D 作DE ∥BC 交AC 于点E,DF ∥AC 交BC 于F,若AE:DF=2:3,则BF:BC 的值是 ( )A. 23 B. 35 C. 12D. 256.如图,在四边形ABCD 中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC 相似的是 ( )A.∠DAC=∠ABC B. AC 是∠BCD 的平分线 C.AC²=BC ⋅CD D.ADAB =DCAC7. 若△ABC 的各 边都分别扩大到原来的 2 倍,得到△A ₁B ₁C ₁,下列结论正确的是 ( )A.△ABC 与△A ₁B ₁C ₁的对应角不相等 B.△ABC 与△A ₁B ₁C ₁不一定相似C.△ABC 与△A ₁B ₁C ₁的相似比为1:2 D.△ABC 与△A ₁B ₁C ₁的相似比为2:18.如图,点 E 是▱ABCD 的边 BC 延长线上的一点,AE 和CD 交于点G ,AC 是▱ABCD 的对角线,则图中相似三角形共有 ( )A.2 对B.3 对C.4 对D.5 对9.如图,已知E(-4,2),F(--2,--2),以O 为位似中心,把△EFO 缩小到原来的 12,则点E 的对应点的坐标为( )A.(2,一1)或(-2,1)B.(8,一4)或(一8,4)C.(2,-1)D.(8,-4)10.如图,在正方形 ABCD 中,点 E 、F 分别在边AD 和CD 上,AF ⊥BE,垂足为G,若 AEED =2,则 AGGF 的值为( )A. 45B. 56C.67D.78二、填空题(每小题3分,共15分)11.若△ABC ∽△A'B'C',且相似比为3:5,已知△ABC 的周长为21,则△A'B'C'的周长为 .12.如图是一架梯子的示意图,其中 AA₁‖BB₁‖CC₁‖DD₁,且AB=BC=CD.为使其更稳固,在A ,D ₁间加绑一条安全绳( 线段AD ₁),量得 AE=0.4m,则 AD₁= m13.如图,阳光通过窗口照到室内,在地上留下3m 宽的亮区.已知亮区一边到窗下的墙角的距离CE=7m ,窗口高AB=1.8m,那么窗口底边离地面的高BC 等于 m.14.如图,已知每个小方格的边长均为1,则△ABC 与△CDE 的面积比为 .15.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且 CF =14CD,下列结论:①∠BAE=30°,②△ABE ∽△ECF,③AE ⊥EF,④△ADF ∽△ECF.其中正确的结论是 (填序号).三、解答题(本大题8个小题,共75 分)16.(8分)根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由. AB =3,BC =4,AC =5,A 'B '=12,B 'C '=16,C 'A '=2017.(9分)如图,D 是△ABC 的边AC 上的一点,连接BD,已知∠ABD=∠C,BC=6,BD=4,如果△ABD 的面积为4,求△BC D 的面积.18.(9分)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是 A(1,3),B(4,1),C(1,1).(1)画出△ABC 关于x 轴成轴对称的△A ₁B ₁C ₁;(2)画出△ABC 以点O 为位似中心,相似比为 1:2的△A ₂B ₂C ₂.19.(9分)如图,四边形ABCD 是菱形,AF ⊥BC 交BD 于E,交 BC 于F.求证: AD 2=12DE ⋅DB.20.(10分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一颗大树,将其底部作为点 A,在他们所在的岸边选择了 B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点 D 竖起标杆DE,使得点 E 与点C、A共线.已知:CB⊥AD,ED⊥AD,测得 BC=1m,DE=1.5m,BD=8.5m,测量示意图如图所示.请根据相关测量信息,求河宽 AB.21.(10分)如图,E是平行四边形ABCD的边 DA 延长线上一点,连结 EC 交AB 于 P.(1)写出图中的三对相似三角形(不添加辅助线);(2)请在你所写的相似三角形中选一对,说明相似的理由.22.(10分)阅读与计算:请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理:如图1,在△ABC中,AD平分∠BAC,则ABAC =BDCD.下面是这个定理的部分证明过程.证明:如图2,过点C作CE∥DA,交 BA的延长线于点 E⋯任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分;(2)如图3,在△ABC中,AD是角平分线,AB=5cm ,AC=4 cm,BC=7 cm.求 BD的长.23.(10分)在矩形 ABCD中,点 E 是对角线AC 上一动点,连接 DE,过点 E 作EF⊥DE 交AB 于点 F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E 在运动过程中,DEEF的值是否发生变化?请说明理由.第四章测试卷答案一、选择题1、B2、C3、A4、D5、B6、C7、C8、C9、A 10、C 二、填空题11、35 12、1.2m 13、2.4m 14、4:1 15、②③三、解答题16、解:相似,理由: ∵AB A 'B '=312=14,BC B 'C '=416=14,AC A 'C '=520=14,∴ABA 'B'=BCB 'C '=ACA 'C ',∴ABC ∽A 'B 'C '.17、解:∵∠ABD=∠C,又∠A=∠A,∴△ABD ∽△ACB,S ABD S ACB=(BD CB )2=(46)2=49,18、解:如图所示19、证明:连接AC 交 BD 于点O,∵四边形ABCD 为菱形,∴AC ⊥BD,BO=OD,∵AE ⊥AD,∴△AOD ∽△EAD, ∴AD OD=ED AD,∴A D 2=ED ⋅OD,即 A D 2=12DE ⋅DB.20、解:∵CB ⊥AD,ED ⊥AD, ∴∠CBA =∠EDA =90°.∵∠CAB=∠EAD, ∴ABCOADE,∴AB AD=BC DE,∴AB AB +8.5=11.5,∴AB =17,.∴河宽为17m.21、解:(1)△EAP ∽△CBP,△AEP ∽△DEC,△BCP ∽△DEC.(2)选. △EAPO △CBP,理由如下:在▱ABCD 中AD ∥BC,∴∠EAP=∠B.又∵∠APE=∠BPC,∴△EAP ∽△CBP.22、解:(1)证明:如图2,过点C作CE∥DA,交BA的延长线于点E, ∵CEDA,∴BDCD =BAEA,∠CAD=∠ACE,∠BAD=∠E,∵AD平分∠BAC,∴∠BAD=∠CAD, ∠ACE=∠E,∴AE=AC,∴ABAC =BDCD;(2)∵AD是角平分线, ∴ABAC =BDCD,AB=5 cm,AC=4 cm,BC=7 cm, C.54=BD7−BD,解得BD=359cm.23、解:(1)证明:如图,连接 DF,在矩形ABCD 中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)DEEF 的值不变.如图,过点E作EM⊥AD于点M,过点E 作EN⊥AB 于点 N,∵EM∥CD,EN∥BC,∴EMCD =AEAC,ENBC=AEAC,∴EMEN=CDBC,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又·∴∠DME=∠ENF=90°,∴△DME⊗△FNE,∴DEEF =EMEN,∴DEEF=CDBC,∵CD 与BC 的长度不变, ∴DEFF的长度不变.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章《相似图形》单元测验卷
当他向前再步行20m 到达Q 点时,发现身前他影子的顶部
刚好接触到路灯BD 的底部,已知丁轩同学的身高是
1.5m ,两个路灯的高度都是 9m,且
AP=BQ 则两路灯之间的距离是( 如图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚1.6m,梯上点D 距墙1.4m,BD 长0.55m 则梯子
班级: 姓名: 学号: 成绩: 1. 2. 3. 选择题: A. 3 (3 分 X 10=30 分) ,则 3x — 2y=( 甲、乙两地相距3.5km ,画在地图上的距离为7cm 则这张地图的比例尺为( A. 2: 1 B . 1: 50000 C . 1: 2 D . 50000: 1 已知△ ABSA DEF 且AB DE=1 2,则厶ABC 勺面积与△ DEF 的面积之比为( .1: 4 C . 2: 1 D .4: 1 与左图中的三角形相似的是( ) A . B . D .
A . 1: 2
B 4.下列四个三角形, (第 4 题) 5.如图,在 Rt △ AB
C 中, / ACB=90 ,C
D 丄AB 于 D,
C . 若 AD=1 BD=4 贝U CD=(
A 、2 6.如图,丁轩同学在晚上由路灯
AC 走向路灯BD , 当他走到点P 时,发现身后他影子的顶
部刚好接触到路灯AC 的底部, B . 25m C . 28m
D . 30m
7. Q R
(第5题)
(第6题)
如图,△ DEF 是由厶ABC 经过位似变换得到的,
点 OC 的中点,则△ DEF 与△ ABC 的面积比是(
A. 1:2
B. 1:4
C. 1: 5
D. 1:6
第8题)
O 是位似中心,D, E , F 分别是OA OB )
8. 的长为(
A.3.85m
B.4.00m
C.4.40m
D.4.50m 9.如图所示, 给出下列条件:①
B ACD :② ADC
A. 24m
③AC AB :④AC2 AD? AB •其中单独能够判定△ ABC ACD CD BC
的个数有()
A. 1
B. 2
C. 3
D. 4
10.已知点C是线段AB的黄金分割点,且CB>AC则下列等式中成立的是()
A. AB=AC・ CB
B. CB=AC・ AB C . AC=CB・ AB D. AC=2BC・ AB
二、填空题:(4分X 5=20分)
11.__________________________________________________________________ 已知线段a、b、c、d是成比例线段,且a = 2 cm, b = 0.6 cm, c=4 cm,那么d=
_____________________________________________________________________________ cm .
12.已知a -—-,则皂亠= .
b d f 3 b f
13.三角尺在灯泡O的照射下在墙上形成影子(如图所示).现测得OA 20cm, AA 50cm ,
这个三角尺的周长与它在墙上形成的影子的周长的比是____________ .
14.如图,在△ ABC中, A吐4cm, AO 2cm,在AB上取一点D,当AD- ______________ cm 时,
△ ACSA ABC.
15.如图,D是厶ABC勺边AB上的一点,过点D作DE// BC交AC于E,若AD BD = 4 : 3,
则Sx ADE:S 四边形BCED= ____________________________ .
三、解答题:(共50分)
16.(9 分)如图,AD = 2, AC = 4, BC = 6,Z B = 36°, / D = 117, △ ABCDAC.
(1)求AB的长;(2)求CD的长;(3)求/ BAD勺大小.
D
A
X
17. (7分)如图,在8X8的网格中,每个小正方形的顶点 叫做
格点,△ OAB 的顶点都在格点上,请在网格中画出.△ OAB 的一个位似图形,使两个图形以 0为位似中心,且所画图形 与厶OAB 的位似比为2: 1.
18. (10分)如图,△ ABC 是一块锐角三角形余料,边 BC=120mm 高AD=80mm 要把它加工 成矩形零件,使一边在BC 上,其余两个顶点分别在边 AB AC 上,若这个矩形的长PN 是宽 PQ 的2
倍,求长、宽各是多少?
19. (12分)已知:Rt △OAB 在直角坐标系中的位置如图所示,P (3,4)为0B 的中点,点C 为折
线OAB 上的动点,线段PC 把Rt △OAB 分割成两部分. 问:点C 在什么位置时,分割得到的三角形与 Rt A OAB 相似?
(注:在图上画出所有符合要求的线段 PC ,并求出相应的点C 的坐标).
O 1
(第19题)
A
20. (12分)如图,△ ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,A与BE相交于点
F. (AEF与厶ABE相似吗?说说你的理由.(2)BD2=AD • DF吗?请说明理由.
附加题:21.(10分)在RtA ABC中, BAC 90o, AB AC 2,点D在BC所在的直线上
运动,作 ADE 45°( A, D,E按逆时针方向).如图,若点D在线段BC上运动,DE交AC 于
E .①求证:△ ABD DCE ;②当△ ADE是等腰三角形时,求AE的长
.
X
(2 )设边宽为xmm ,则长为2xmm ,
•/ PNMQ 为矩形,
/• PQ // BC , PN // AD ,
PN BP PQ AP 根据平行线的性质可以得岀:
P — T7、一.< P
由题意知 PN=2xmm , AD=80mm , BC=120mm , AP=xmm , 即于—二7,=
•/ AP+BP=AB ,
____ E
F 丄盘F
m 三―zr 77=1, 解得 x=30 , 2x=60 . 即长为60mm ,宽为30mm .
则厶 C 3PBOAB
匸 . (6 分)
符合要求的点C 有三个,其连线段分别是 PC i , PC 2, PC 3 (如图).(10分) 解:(1)①由/ BAC=90 , AB=AC ,推出/ B= / C=45 .
由/ BAD+ / ADB=135 ,/ ADB+ / EDC=135 得到/ BAD= / EDC . 推出△ ABD
DCE .
②分三种情况:
(i)
当 AD=AE 时,/ ADE= / AED=45 时,得到/ DAE=90,点 D 、E 分别与 B 、C 重合,所以 AE=AC=2 .
(ii) 当 AD=DE 时,由①知厶 ABDDCE ,
又 AD=DE ,知△ ABD DCE .
所以 AB=CD=2,故 BD=CE=2$\sqrt{2}-2$ ,
所以 AE=AC-CE=4-2$\sqrt{2}$ .
易知 OB=10 , BP=5 , BA=8 ,
7-4
(8分)
7-4
3
9分)
则^ OC i POAB .
点C i 坐标是(3, 0) . (2分) 过P 作PC 2丄AB ,垂足是C 2, 则厶 PC 2BOAB .
点C 2坐标是(6, 4) . (4分) 过P 作PC 3丄0B ,垂足是P (如图),
(iii)当AE=DE 时,有/ EAD= /ADE=45 =/ C, 故/ ADC= / AED=90 . 所以DE=AE=$\frac{1}{2}$AC=1 .。

相关文档
最新文档