《等差数列求和》说课课件学习资料
合集下载
等差数列求和公式课件PPT资料(正式版)

等差数列求和公式课 件
一、巩固与预习
1. {an}为等差数列 an+1- an=d an=a1+(n-1)d
an=an+b a、b为常数, 更一般的,an=am+(n-m)d ,d=
an am
nm .
2. a、b、c成等差数列b为a、c 的 等差中项
b ac
2
2b= a+c .
下一页
3.
若 m n p q 则 a m + a n = a p + a q
三、公式的应用:
Sn
n(a1 2
an
)
....(1)
Sn
na1
n(n 1) 2
d ...(2)
例1.根据下列各题中的条件,求相应的等差数列{an} 的Sn
(1)a1=5,an=95,n=10
S10=500
(2)a1=100,d=-2,n=50 S50=2550
例2. 等差数列-10,-6, -2,2,…前 多少项和是54?
2.若d=S0n,an=naa,1 则nS(nn=2_1_)_nd_a__ (2)
3.推导公式的方法是用倒序相加法
思考:若Sn=an2+bn,则{an}是等差数 列吗?
作业:习题2.3. 2.
谢谢观看
练习:
(1)等差数列5,4,3,2,…前多少
项的和 是-30?
15项
(2)求等差数列13,15,17,…81的各
项和
1645
(3)在等差数列{an}中,
已知 a2a5a12a1536 求S16
(4)已知 a6=20 ,你能求出S11吗?
课堂小结:
1.会用两公式
Sn
一、巩固与预习
1. {an}为等差数列 an+1- an=d an=a1+(n-1)d
an=an+b a、b为常数, 更一般的,an=am+(n-m)d ,d=
an am
nm .
2. a、b、c成等差数列b为a、c 的 等差中项
b ac
2
2b= a+c .
下一页
3.
若 m n p q 则 a m + a n = a p + a q
三、公式的应用:
Sn
n(a1 2
an
)
....(1)
Sn
na1
n(n 1) 2
d ...(2)
例1.根据下列各题中的条件,求相应的等差数列{an} 的Sn
(1)a1=5,an=95,n=10
S10=500
(2)a1=100,d=-2,n=50 S50=2550
例2. 等差数列-10,-6, -2,2,…前 多少项和是54?
2.若d=S0n,an=naa,1 则nS(nn=2_1_)_nd_a__ (2)
3.推导公式的方法是用倒序相加法
思考:若Sn=an2+bn,则{an}是等差数 列吗?
作业:习题2.3. 2.
谢谢观看
练习:
(1)等差数列5,4,3,2,…前多少
项的和 是-30?
15项
(2)求等差数列13,15,17,…81的各
项和
1645
(3)在等差数列{an}中,
已知 a2a5a12a1536 求S16
(4)已知 a6=20 ,你能求出S11吗?
课堂小结:
1.会用两公式
Sn
等差数列求和课件-高二数学人教A版(2019)选择性必修第二册

1 2 3
1 2 3
100 ?
100 101 ?
n ?
探究问题
Sn 1 2 3 ... (n 2) (n 1) n
Sn 1 2 3 ... (n 2) (n 1) n
探究问题
Sn 1 2 3 ... ( n 2) ( n 1) n
2
− 5, 求.
d=
1
− ,
6
=
数学应用
例3、已知一个等差数列前10项的和是310,前20项
的和是1220,由这些条件能确定这个等差数列的首项
和公差吗?如果能确定,请求出这个数列的前n项和,
如果不能确定,请说明理由;
S n 3n 2 n
进一步思考:公式的函数意义
2
S
3
n
n关于n的一个二次函数,我们可以用
倒序相加法
探究问题
等差数列前n项和:
Sn a1 a2 a3
n(a1
an )
2
an 2 an 1 an
概念建构
等差数列前n项和公式
Sn
n(a1
an )
2
n(n 1)
Sn na1
d
2
an f (n 1) f (n)
Sn a1 a2 a3
2
2
S n na n 1
2
数学应用
例1、解决下列问题
(1)1 3 5
(2n 1)
“知三求二”
方程思想
(2)已知数列{an}是等差数列,若a1=5, 20 =95,求 20 ;
变式:条件变为a2=2, 19 =100,求20 .
1 2 3
100 ?
100 101 ?
n ?
探究问题
Sn 1 2 3 ... (n 2) (n 1) n
Sn 1 2 3 ... (n 2) (n 1) n
探究问题
Sn 1 2 3 ... ( n 2) ( n 1) n
2
− 5, 求.
d=
1
− ,
6
=
数学应用
例3、已知一个等差数列前10项的和是310,前20项
的和是1220,由这些条件能确定这个等差数列的首项
和公差吗?如果能确定,请求出这个数列的前n项和,
如果不能确定,请说明理由;
S n 3n 2 n
进一步思考:公式的函数意义
2
S
3
n
n关于n的一个二次函数,我们可以用
倒序相加法
探究问题
等差数列前n项和:
Sn a1 a2 a3
n(a1
an )
2
an 2 an 1 an
概念建构
等差数列前n项和公式
Sn
n(a1
an )
2
n(n 1)
Sn na1
d
2
an f (n 1) f (n)
Sn a1 a2 a3
2
2
S n na n 1
2
数学应用
例1、解决下列问题
(1)1 3 5
(2n 1)
“知三求二”
方程思想
(2)已知数列{an}是等差数列,若a1=5, 20 =95,求 20 ;
变式:条件变为a2=2, 19 =100,求20 .
等差数列求和课件

n n1
两等差数列前n项和与通项的关系
性质6:若数列{an}与{bn}都是等差数列,且前n
项的和分别为Sn和Tn,则
an S2n1 bn T2n1
3.等差数列{an}前n项和的性质的应用
例1.设等差数列{an}的前n项和为Sn,若
S3=9,S6=36,则a7+a8+a9=(
)
A.63
B.45
1.等差数列的定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的 差等于同一个常数,那么这个数列就叫做等差数列。这个常 数叫做公差
an是等差数列 an an1 d(n 2)
2.通项公式: an a1 (n 1)d .
3.重要性质: ⑴an am (n m)d .
n(n
1)d
n(12 2d ) 1 n(n 1)d
2
d n2 (12 5d )n
2
∴Sn图象的对称轴为
2
n
5
12
由(1)知 24 d
3
2d
∴Sn有最大值.
7
由上得 6 5 12 13 即 6 n 13
2d 2
2
由于n为正整数,所以当n=6时Sn有最大值.
差为 n2d
性质2:若Sm=p,Sp=m(m≠p),则Sm+p=
- (m+p)
性质3:若Sm=Sp (m≠p),则 Sp+m= 0
性质4:(1)若项数为偶数2n,则
S2n=n(a1+a2n)=n(an+an+1) (an,an+1为中
间两项),
此时有:S偶-S奇= nd ,S奇 an S偶 an1
《等差数列求和》说课课件备课讲稿

《等差数列求和》说课课件
LOREM IPSUM DOLOR 教材分析 教学方法 反馈评价
目录
教学目标 教学程序
结束
1、教材的地位和作用
教材 分析
等差数列是重要工具,为进一 步用代数方法研究数列问题奠定 了基础 。
教材 分析
2、教学的重点、难点
教学重点
等差数列通项公式的推导过程及蕴含在其中的 数学思想方法
教学 程序
C公式 应用
练习3:简单变式,针对全体学生
如图,一个堆放铅笔的V形架的最下面一层放1支铅笔,往上每一层 都比它下面一层多放1支,最上面一层放120支. 这个V形架上共放了 多少支铅笔?
解:由题意知,这个V型架自下而上是个由120
层的铅笔构成的等差数列,上一层比下一层多1,
则公差为1。运用等差数列的公式Sn=
No Image
A
学习基础
No Image
B
学习障碍
教法 学法
2、教学方法
No Image
No Image
ENIM
“学生为主体,教师为主导”的 自主合作式的教学方法
须 注 重 概 念 、 3、学习指导
教法
原 理 、 公 式 、 学法
No Image
法 则 的 形 成 1
No Image
过 程 , 突 出2 •通过观察、比较、思考、探索、交流、应用等活动
,在潜移默化中领会
教学程序
A问题探究 B公式推导 C公式应用 D小结作业
ቤተ መጻሕፍቲ ባይዱ
教学 程序
A问题 探究
如图,建筑工地上一堆圆木,从上到下每层的数目分别为1,2, 3,……,10 . 问共有多少根圆木?如何用简便的方法来计算?
LOREM IPSUM DOLOR 教材分析 教学方法 反馈评价
目录
教学目标 教学程序
结束
1、教材的地位和作用
教材 分析
等差数列是重要工具,为进一 步用代数方法研究数列问题奠定 了基础 。
教材 分析
2、教学的重点、难点
教学重点
等差数列通项公式的推导过程及蕴含在其中的 数学思想方法
教学 程序
C公式 应用
练习3:简单变式,针对全体学生
如图,一个堆放铅笔的V形架的最下面一层放1支铅笔,往上每一层 都比它下面一层多放1支,最上面一层放120支. 这个V形架上共放了 多少支铅笔?
解:由题意知,这个V型架自下而上是个由120
层的铅笔构成的等差数列,上一层比下一层多1,
则公差为1。运用等差数列的公式Sn=
No Image
A
学习基础
No Image
B
学习障碍
教法 学法
2、教学方法
No Image
No Image
ENIM
“学生为主体,教师为主导”的 自主合作式的教学方法
须 注 重 概 念 、 3、学习指导
教法
原 理 、 公 式 、 学法
No Image
法 则 的 形 成 1
No Image
过 程 , 突 出2 •通过观察、比较、思考、探索、交流、应用等活动
,在潜移默化中领会
教学程序
A问题探究 B公式推导 C公式应用 D小结作业
ቤተ መጻሕፍቲ ባይዱ
教学 程序
A问题 探究
如图,建筑工地上一堆圆木,从上到下每层的数目分别为1,2, 3,……,10 . 问共有多少根圆木?如何用简便的方法来计算?
等差数列求和(共24张PPT)

例子二
求1+4+7+10+13的和,这是一个等差数列,公差为3,项数为5。根据等差数 列求和公式,可以得出结果为30。
04
等差数列求和的变种
04
等差数列求和的变种
倒序相加求和
总结词
倒序相加求和是一种特殊的等差数列求和方法,通过将数列倒序排列,再与原数列正序求和,最后除 以2得到结果。
详细描述
倒序相加求和的步骤包括将等差数列倒序排列,然后从第一个数开始与原数列对应项相加,直到最后 一个数。这种方法可以简化等差数列求和的计算过程,特别是对于较大的数列。
计算
使用通项公式,第5项$a_5=a_1+(5-1)d=1+(5-1)times1=5$。
03
等差数列求和公式
03
等差数列求和公式
公式推导
公式推导方法一
利用等差数列的性质,将等差数列的 项进行分组求和,再利用等差数列的 通项公式进行化简,最终得到等差数 列求和公式。
公式推导方法二
利用等差数列的特性,将等差数列的 项进行倒序相加,再利用等差数列的 通项公式进行化简,最终得到等差数 列求和公式。
应用场景二
在金融领域中,等差数列求和公式可以用于计算等额本息还 款法下的贷款总还款额、计算等额本金还款法下的贷款总还 款额等。
公式应用
应用场景一
在数学、物理、工程等领域中,常常需要求解等差数列的和 ,如计算等差数列的各项之和、计算等差数列的和的极限等 。
应用场景二
在金融领域中,等差数列求和公式可以用于计算等额本息还 款法下的贷款总还款额、计算等额本金还款法下的贷款总还 款额等。
定义与特性
定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常 数,这个常数被称为公差。
求1+4+7+10+13的和,这是一个等差数列,公差为3,项数为5。根据等差数 列求和公式,可以得出结果为30。
04
等差数列求和的变种
04
等差数列求和的变种
倒序相加求和
总结词
倒序相加求和是一种特殊的等差数列求和方法,通过将数列倒序排列,再与原数列正序求和,最后除 以2得到结果。
详细描述
倒序相加求和的步骤包括将等差数列倒序排列,然后从第一个数开始与原数列对应项相加,直到最后 一个数。这种方法可以简化等差数列求和的计算过程,特别是对于较大的数列。
计算
使用通项公式,第5项$a_5=a_1+(5-1)d=1+(5-1)times1=5$。
03
等差数列求和公式
03
等差数列求和公式
公式推导
公式推导方法一
利用等差数列的性质,将等差数列的 项进行分组求和,再利用等差数列的 通项公式进行化简,最终得到等差数 列求和公式。
公式推导方法二
利用等差数列的特性,将等差数列的 项进行倒序相加,再利用等差数列的 通项公式进行化简,最终得到等差数 列求和公式。
应用场景二
在金融领域中,等差数列求和公式可以用于计算等额本息还 款法下的贷款总还款额、计算等额本金还款法下的贷款总还 款额等。
公式应用
应用场景一
在数学、物理、工程等领域中,常常需要求解等差数列的和 ,如计算等差数列的各项之和、计算等差数列的和的极限等 。
应用场景二
在金融领域中,等差数列求和公式可以用于计算等额本息还 款法下的贷款总还款额、计算等额本金还款法下的贷款总还 款额等。
定义与特性
定义
等差数列是一种常见的数列,其 中任意两个相邻项的差是一个常 数,这个常数被称为公差。
等差数列求和PPT优秀课件3

s7=7,s15=75,Tn为 数 列 snn 的 前 n项 和 , 求 Tn s1 s5 7 7 7 5 1 5 7 a a 1 1 1 2 0 1 5 d d 7 7 5 a a 1 1 7 3 d d 1 5
――[阿萨·赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特]
116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子]
――[阿萨·赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉·海兹利特]
116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯·里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可·汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰·夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯·米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子]
等差数列求和PPT优秀课件

113, 22
也满a足 n 2n12,
所以a数 n的列 通项 an公 2n式 1 2. 为
由此可知, an数 是列 一个首23项 ,为
公差2为 的等差数列。
例3、等差数列 { a n } 中,S 15 = 90,求 a 8 S15a1 2a151590 即 a 1 + a 15 = 12
m,n,p,q∈N★
am+an=ap+aq
5. 在等差数列{an}中a1+an = a2+ an-1 = a3+ an-2 = …
引例:1+2+3+…+100=?
10岁的高斯(德国)的算法: • 首项与末项的和:1+100=101 • 第2项与倒数第2项的和:2+99=101 • 第3项与倒数第3项的和:3+98=101 • ……………………………………… • 第50项与倒数第50项的和:50+51=101 • ∴101×(100/2)=5050
Байду номын сангаас
新课学习
n(a1 an ) ㈠等差数列前n 项和Sn = 2 =
na1
n(n1) d
2
.
=an2+bn a、b 为常数
Sn=a1+a2+a3+…+an-2+an-1+an (1) Sn=an+an-1+an-2+…+a3+a2+a1 (2)
(1)+ (2)得 2Sn=n(a1+ an)
①推导等差数列的前n项和公式的方法叫 倒序相加法 ; ②等差数列的前n项和公式类同于 梯形的面积公式 ; ③{an}为等差数列 Sn=an2+bn ,这是一个关于 n 的
等差数列求和性质说课讲解

本 课
当n≥2时,an=Sn-Sn-1=4n-5.
时
栏 目
又∵a1=-1适合an=4n-5,
开 关
∴an=4n-5(n∈N*).
小结 已知前n项和Sn求通项an,先由n=1时,a1=S1求得a1,
再由n≥2时,an=Sn-Sn-1求an,最后验证a1是否符合an,若符
合则统一用一个解析式表示.
研一研·问题探究、课堂更高效
=
本
d
课 时
na1;当 d≠0 时,此解析式可以看作二次项系数为_2__,一次项
栏 目 开
系数为_a_1_-__d2_,常数项为 0 的二次函数,其图象为抛物线 y=
关
d2x2+(a1-d2)x 上的点集,坐标为(n,Sn)(n∈N*).
因此,由二次函数的性质立即可以得出结论:当 d>0 时,Sn
有最小 值;当 d<0 时,Sn 有最大 值;且 n 取最接近对称轴的
(1)若a1>0,d<0,则数列的前面若干项为_正___项(或0),所以将
本 课
这些项相加即得{Sn}的最__大__值.
时 栏
(2)若a1<0,d>0,则数列的前面若干项为_负___项(或0),所以将
目 开
这些项相加即得{Sn}的最_小___值;
关 特别地,若a1>0,d>0,则S1是{Sn}的最__小__值;若a1<0,d<
时
栏
故S23=S24最小.
目
开
关
研一研·问题探究、课堂更高效
2.2.2(二)
[问题情境]
1.如果已知数列{an}的前n项和Sn的公式,那么这个数列确定了吗?
本
如果确定了,那么如何求它的通项公式?应注意一些什么问题?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《等差数列求和》说课课件
1、教材的地位和作用
教材 分析
等差数列是重要工具,为进一 步用代数方法研究数列问题奠定 了基础 。
教材 分析
2、教学的重点、难点
教学重点
等差数列通项公式的推导过程及蕴含在其中的 数学思想方法
教:学难点 公式推导过程中的转化思想
1、知识与技能目标
教学 目标
掌握等差数列通项公式推导过程,并能正 确使用公式解决简单问题 。
记:Sn= 1+2+3+…+(n-2)+(n-1)+n
2Sn n(n 1)
n(n 1) Sn 2
教学 程序
B公式 推导
问题3:现在把问题推广到更一般的情形: 等差数列 {an} 的首项为a1,公差为d,如何求等差数
列的前n项和Sn=a1+a2+a3+…+an? Sn=a1+ a2 +a3 +…+an-2+an-1+an Sn=an+an-1+an-2+…+a3 + a2 +a1
独立思考
→ 提出方案 →
评价
教学 程序
A问题 探究
问题1: 若把问题变成求:1+2+3+4+‥ ‥ +99=?可
以用哪些方法求出来呢?
方案
1 求一组数的和
常规方案:交点法
高斯求和法
1+2+3+ … +98+99+100= ?
101
高斯 Gauss.C.F
教学 程序
B公式 推导
问题2: 求和:1+2+3+4+…+n=? Sn= n+(n-1)+(n-2)+…+3+2+1
Sn
n(a1 an) 2
可得n=120,ɑ1=1,ɑ2=120,Sn=7260
教学 程序
D小结 作业
❖布置作业:
1.课本P55 ex13,14,15,16. 2.用其它方法推导公式。
反馈 评价
结束
THANK YOU
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
教学 目标
2、过程与方法目标
理解同项公式的推导过程以及等差中项的 求法。
3、情意目标
教学 目标
1
感受公式简洁的数学美
2
初步体验公式在代数中的重要作用
教法 学法
1、学情分析
No Image
A
学习基础
No Image
B
学习障碍
教法 学法
2、教学方法
No Image
No Image
ENIM
“学生为主体,教师为主导”的 自主合作式的教学方法
须 注 重 概 念 、 3、学习指导
教法
原 理 、Leabharlann 公 式 、 学法No Image
法 则 的 形 成 1
No Image
过 程 , 突 出2 •通过观察、比较、思考、探索、交流、应用等活动
,在潜移默化中领会
教学程序
A问题探究 B公式推导 C公式应用 D小结作业
教学 程序
A问题 探究
如图,建筑工地上一堆圆木,从上到下每层的数目分别为1,2, 3,……,10 . 问共有多少根圆木?如何用简便的方法来计算?
教学 程序
C公式 应用
练习3:简单变式,针对全体学生
如图,一个堆放铅笔的V形架的最下面一层放1支铅笔,往上每一层 都比它下面一层多放1支,最上面一层放120支. 这个V形架上共放了 多少支铅笔?
解:由题意知,这个V型架自下而上是个由120
层的铅笔构成的等差数列,上一层比下一层多1,
则公差为1。运用等差数列的公式Sn=
2Sn=(a1+an)+ (a2+an-1)+ (a3+an-2)+…+
(an-2+a3)+ (an-1+a2)+ (an+a1)=n(a1+an)
教学 程序
C公式 应用
Sn
na1
n(n 1) 2
d
an=a1+(n-1)d
Sn
n(a1 2
an
)
教学 程序
C公式 应用
❖怎样记忆公式?应用公式时应注意那些问题? ❖等差数列的通项公式an=a1+(n-1)d ❖等差数列的性质:若m+n=q+P ❖则am+an=ap+aq
1、教材的地位和作用
教材 分析
等差数列是重要工具,为进一 步用代数方法研究数列问题奠定 了基础 。
教材 分析
2、教学的重点、难点
教学重点
等差数列通项公式的推导过程及蕴含在其中的 数学思想方法
教:学难点 公式推导过程中的转化思想
1、知识与技能目标
教学 目标
掌握等差数列通项公式推导过程,并能正 确使用公式解决简单问题 。
记:Sn= 1+2+3+…+(n-2)+(n-1)+n
2Sn n(n 1)
n(n 1) Sn 2
教学 程序
B公式 推导
问题3:现在把问题推广到更一般的情形: 等差数列 {an} 的首项为a1,公差为d,如何求等差数
列的前n项和Sn=a1+a2+a3+…+an? Sn=a1+ a2 +a3 +…+an-2+an-1+an Sn=an+an-1+an-2+…+a3 + a2 +a1
独立思考
→ 提出方案 →
评价
教学 程序
A问题 探究
问题1: 若把问题变成求:1+2+3+4+‥ ‥ +99=?可
以用哪些方法求出来呢?
方案
1 求一组数的和
常规方案:交点法
高斯求和法
1+2+3+ … +98+99+100= ?
101
高斯 Gauss.C.F
教学 程序
B公式 推导
问题2: 求和:1+2+3+4+…+n=? Sn= n+(n-1)+(n-2)+…+3+2+1
Sn
n(a1 an) 2
可得n=120,ɑ1=1,ɑ2=120,Sn=7260
教学 程序
D小结 作业
❖布置作业:
1.课本P55 ex13,14,15,16. 2.用其它方法推导公式。
反馈 评价
结束
THANK YOU
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
教学 目标
2、过程与方法目标
理解同项公式的推导过程以及等差中项的 求法。
3、情意目标
教学 目标
1
感受公式简洁的数学美
2
初步体验公式在代数中的重要作用
教法 学法
1、学情分析
No Image
A
学习基础
No Image
B
学习障碍
教法 学法
2、教学方法
No Image
No Image
ENIM
“学生为主体,教师为主导”的 自主合作式的教学方法
须 注 重 概 念 、 3、学习指导
教法
原 理 、Leabharlann 公 式 、 学法No Image
法 则 的 形 成 1
No Image
过 程 , 突 出2 •通过观察、比较、思考、探索、交流、应用等活动
,在潜移默化中领会
教学程序
A问题探究 B公式推导 C公式应用 D小结作业
教学 程序
A问题 探究
如图,建筑工地上一堆圆木,从上到下每层的数目分别为1,2, 3,……,10 . 问共有多少根圆木?如何用简便的方法来计算?
教学 程序
C公式 应用
练习3:简单变式,针对全体学生
如图,一个堆放铅笔的V形架的最下面一层放1支铅笔,往上每一层 都比它下面一层多放1支,最上面一层放120支. 这个V形架上共放了 多少支铅笔?
解:由题意知,这个V型架自下而上是个由120
层的铅笔构成的等差数列,上一层比下一层多1,
则公差为1。运用等差数列的公式Sn=
2Sn=(a1+an)+ (a2+an-1)+ (a3+an-2)+…+
(an-2+a3)+ (an-1+a2)+ (an+a1)=n(a1+an)
教学 程序
C公式 应用
Sn
na1
n(n 1) 2
d
an=a1+(n-1)d
Sn
n(a1 2
an
)
教学 程序
C公式 应用
❖怎样记忆公式?应用公式时应注意那些问题? ❖等差数列的通项公式an=a1+(n-1)d ❖等差数列的性质:若m+n=q+P ❖则am+an=ap+aq