运用动量定理求流体的冲力

合集下载

高中物理:运用动量定理求流体的冲力

高中物理:运用动量定理求流体的冲力

高中物理:运用动量定理求流体的冲力在学习动量时,我们常会遇到运动流体(包括气体和液体)与固体相互作用求平均冲力的问题。

由于流体的质量是连续不断的,许多同学做起来感到困惑,实际上只要抓住以下三点,这类疑难问题就能迎刃而解。

1. 建立一种模型——柱体模型对于流体问题,可沿流速v的方向选取一段柱形流体,设在时间内通过某一横截面S的流体长度为,如图(1)所示,若流体的密度为,那么,在这段时间内流过该截面的流体的质量为2. 掌握一种方法——微元法当所取时间为足够短时,图(1)流体柱长度甚短,相应的质量也很小。

显然,选取流体柱的这一微小元段作为研究对象就称微元法。

图(1)3. 运用一个规律——动量定理求解这类问题一般运用动量定理,即流体微元所受的合外力的冲量等于微元动量的增量,即。

下面举例说明:例1. 在采煤方法中,有一种是用高压水流将煤层击碎而将煤采下,今有一采煤高压水枪,设水枪喷水口横截面积,由枪口喷出的高压水流流速为,已知水的密度为,水流垂直射向煤层,试求煤层表面可能受到的最大平均冲击力。

解析:采取微元法,选取贴近煤层表面的一小段水流柱为研究对象,受力如图(2)所示,设其质量为,以初速度v的方向为正方向,依题意,要使煤层表面可能的冲力最大,即水流柱受煤层的作用力最大,则柱体碰到煤层后其速度必与初速度大小相等,方向相反。

由动量定理有:而所以即,代入数值得。

图(2)例2. 在水平地面上放置一个氧气瓶,设瓶内高压氧气的密度为,瓶口甚小,其横截面积为S。

若打开阀门,当喷出氧气的速率为v时,求地面对氧气瓶的静摩擦力大小(在此过程中,瓶内氧气密度的变化忽略不计,且设氧气瓶保持静止状态)。

解析:选取极短时间内喷出的相应速率为v的一小段氧气柱为研究对象,其微元的质量,受到的冲力为F,由动量定理有:,而代入得根据牛顿第三定律,氧气瓶所受气体的反作用力与气体的冲力大小相等,又因氧气瓶保持静止,由平衡条件得静摩擦力大小为▍ 来源:综合网络。

3动量定理流体问题

3动量定理流体问题

3动量定理流体问题动量定理在流体问题中的应用是解决质量连续变动问题的基本思路。

首先,我们可以建立“柱体”模型,选择一段柱形流体沿流速方向,通过某一横截面积为S的流体长度为Δl,流体的密度为ρ,那么在Δt时间内通过该截面的流体的质量为Δm=ρSΔl=ρSvΔt。

其次,当所取时间Δt足够短时,我们可以采用微元法,即以一微小段为研究对象的方法。

最后,我们可以应用动量定理,即流体微元所受的合外力的冲量等于微元动量的增量,即F合Δt=Δp。

解答质量连续变动问题的具体步骤是应用动量定理分析连续体相互作用问题的方法是微元法。

具体步骤为:首先,确定一小段时间Δt内的连续体为研究对象;其次,写出Δt内连续体的质量Δm与Δt的关系式;然后,分析连续体的受力情况和动量变化;最后,应用动量定理列式、求解。

举个例子,当飞船进入宇宙微粒尘区时,为了保持飞船速度不变,我们需要增加飞船的牵引力。

假设有一宇宙飞船,它的正面面积为S=0.98 m2,以v=2×103m/s的速度进入宇宙微粒尘区,尘区每1 m3空间有一微粒,每一微粒平均质量m=2×10-4g,若要使飞船速度保持不变,飞船的牵引力应增加多少?由于飞船速度保持不变,因此增加的牵引力应与微粒对飞船的作用力相等。

只要求出时间t内微粒的质量,再由动量定理求出飞船对微粒的作用力,即可得到飞船增加的牵引力。

时间t内附着到飞船上的微粒质量为M=m·S·vt,设飞船对微粒的作用力为F,由动量定理得Ft=Mv=mSvt·v,即F=mSv2,代入数据解得F=0.784 N,由牛顿第三定律得,微粒对飞船的作用力为0.784N,故飞船的牵引力应增加0.784 N。

另外,还有一个例子是一艘小船在静水中由于风力的推动作用做匀速直线运动,船体的迎风面积S=1 m2,风速v1=10 m/s,船速v2=4 m/s,空气密度ρ=1.29kg/m3.小船在匀速前进时船体受到的平均风力大小为多少?根据动量定理,我们可以求出小船受到的风力大小为46.4 N。

动量定理在流体问题上的应用.pptx

动量定理在流体问题上的应用.pptx

vt
陨石的质量为:
S
m Svt
由动量定理得:
Ft m v
F Sv2
由牛顿第三定律,飞船 所受阻力:
F F Sv2 因此推力 F推 Sv2
例三、一艘帆船在静水中由于风力的推动做匀速直线运 动,帆面的面积为S,风速为v1,船速为v2(v2﹤v1), 空气密度为ρ,帆船在匀速前进时帆面受到的平均风力 大小为多少?(设空气碰到帆后随帆一起运动)
F

F1

F2

3m 2L
g 2t 2
当: t 2L g
F 3mg
动量定理在流体问题 上的应用
精品文档
例一、高压采煤水枪出水口的截面积为S,水的射速为
v,射到煤层上后,水速度为零,若水的密度为ρ,求
水对煤层的冲力。
Δt时间内冲到煤层上的
水的体积为
V Svt 这些水的质量为:
m Svt
由动量定理得:
vt
S
Ft m0 v
F Sv2
由牛顿第三定律,水对 煤层的冲力为:
F F Sv2
例二、最大截面S=5m2的一艘宇宙飞船,以速度v=
10km/s在太空中航行时,进入静止的、密度ρ=2×10-5
kg/m3的微陨石云中。如果微陨石与飞船相撞时都附着
在飞船上,要使飞船维微
例四、一质量为m,长为L的柔软绳自由悬垂,下端恰 与一台秤秤盘接触。某时刻放开柔软绳上端,求台秤的 最大示数。(重力加速度大小为g)
0—t时间内静止在台秤上的 绳子的长度为
L1

1 2
gt
2
质量为:
m1

m
L1 L
对台秤的压力为:

应用动量定理分析流体问题

应用动量定理分析流体问题

应用动量定理分析流体问题分析流体模型的思路(1)在极短时间Δt内,取一小段柱体作为研究对象,小柱体的体积ΔV=v SΔt;(2)小柱体的质量Δm=ρΔV=ρv SΔt;(3)小柱体的动量变化量大小Δp=Δm v=ρv2SΔt;(4)应用动量定理FΔt=Δp,列方程计算;(5)结合牛顿运动定律进行综合分析。

典例2021年7月25日台风“烟花”登陆舟山普陀区。

台风“烟花”登陆时的最大风速为38 m/s。

如图所示,某高层建筑顶部广告牌的尺寸为高5 m、宽20 m,空气密度ρ=1.2 kg/m3,空气吹到广告牌上后速度瞬间减为0,则该广告牌受到的最大风力约为()A. 1.7×104 NB. 1.7×105 NC. 2.7×104 ND. 9.0×104 NB解析:广告牌的面积S=5×20 m2=100 m2,设Δt时间内吹到广告牌上的空气质量为Δm,则有Δm=ρS vΔt,以风速的方向为正方向,根据动量定理有-FΔt=0-Δm v=0-ρS v2Δt,解得广告牌对空气的最大作用力的大小为F=ρS v2,代入数据得F=1.7×105 N,根据牛顿第三定律得,广告牌受到的最大风力大小约为1.7×105 N,故B正确。

2.(应用动量定理处理“流体冲击力问题”)如图所示为清洗汽车用的高压水枪。

设水枪喷出的水柱直径为D,水流速度为v,水柱垂直汽车表面,水柱冲击汽车后水的速度变为0。

手持高压水枪操作,进入水枪的水流速度可忽略不计,已知水的密度为ρ。

下列说法正确的是()A. 高压水枪单位时间内喷出的水的质量为ρπv D 2B. 高压水枪单位时间内喷出的水的质量为14ρv D 2 C. 水柱对汽车的平均冲力为14ρv 2D 2 D. 当高压水枪喷口的出水速度变为原来的2倍时,喷出的水对汽车的压强变为原来的4倍D 解析:高压水枪单位时间内喷出的水的质量等于单位时间内喷出的水柱的质量,即m 0=ρV =ρπ⎝ ⎛⎭⎪⎫D 22·v =14πρv D 2,故A 、B 错误;设水柱对汽车的平均冲力为F ,由动量定理得F Δt =m Δv ,即F Δt =14πρv D 2Δt v ,解得F =14πρv 2D 2,故C 错误;高压水枪喷出的水对汽车产生的压强p =F S =14πρv 2D 214πD 2=ρv 2,则当高压水枪喷口的出水速度变为原来的2倍时,喷出的水对汽车的压强变为原来的4倍,故D 正确。

微专题动量定理解决流体类问题

微专题动量定理解决流体类问题

微专题:动量定理解决流体类问题题型一:液体、气体类解决方法:沿流速v 方向,任取一段流体,假设作用时间极短为Δt,流体横截面积为S ,密度为ρ,那么在极短时间内流体的长度:t L ∆⋅=v ,流体体积为:t S SL V ∆⋅==v ,流体质量为:t S V m ∆⋅==v ρρ根据动量定理:v m t F ∆⋅=∆⋅带入m 的值得:v S F ∆⋅=v ρ【例】如图所示,用高压水枪喷出的强力水柱洗车,设水柱截面半径为r ,水流速度大小为v 。

水柱垂直车窗,水柱冲击车窗后水的速度变为零,水的密度为ρ,水柱对车窗的平均冲击力大小为( )【解析】取Δt 时间内高压水枪喷出的水为研究对象,取喷出水的方向为正方向,根据动量定理解得,车窗对水柱的平均作用力为F =22r v πρ负号表示方向与正方向相反,根据牛顿第三定律,水柱对车窗的平均冲击力大小为22r v πρ。

故选D 。

题型二:粒子类(电子、光子、尘埃等)解决方法:沿流速v 方向,任取一段流体,假设作用时间极短为Δt,单位体积内粒子数目为n ,每个粒子的质量为m ,流体横截面积为S ,那么在极短时间内流体的长度:t L ∆⋅=v ,流体体积为:t S SL V ∆⋅==v ,流体内的粒子数目为:t S V N ∆⋅==v n n流体质量为:t S N M ∆⋅==vm n m根据动量定理:v M t F ∆⋅=∆⋅带入M 的值得:v vm n F ∆⋅=S【例】一宇宙飞船以v =1.0×104 m/s 的速度进入密度为ρ=2.0×107 kg/m 3的微陨石流中,如果飞船在垂直于运动方向的最大截面积为S =5m 2,且认为微陨石与飞船碰撞后都附着在飞船上。

为使飞船的速度保持不变,飞船的牵引力应为( )A .100 NB .200 NC .50 ND .150 N【解析】选在时间Δt 内与飞船碰撞的微陨石为研究对象,其质量应等于底面积为S ,高为v t ∆的直柱体内微陨石尘的质量,即 初动量为0,末动量为mv 。

高中物理模型:应用动量定理解决流体模型的冲击力问题

高中物理模型:应用动量定理解决流体模型的冲击力问题

模型/题型:应用动量定理处理“流体模型”的冲击力问题一、模型概述1.研究对象:常常需要选取流体为研究对象,如水、空气等.2.研究方法:隔离出一定形状的一部分流体作为研究对象,然后列式求解.3.基本思路(1)在极短时间Δt 内,取一小柱体作为研究对象. (2)求小柱体的体积ΔV =vS Δt(3)求小柱体质量Δm =ρΔV =ρvS Δt(4)求小柱体的动量变化Δp =v Δm =ρv 2S Δt (5)应用动量定理F Δt =Δp二、题型分类处理办法 模型一流体类问题通常液体流、气体流等被广义地视为“流体”,质量具有连续性,通常已知密度ρ建立“柱状”模型,沿流速v 的方向选取一段柱形流体,其横截面积为S模型二 微粒类问题 三、典型例题1.(2016·全国卷Ⅰ·35(2))某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.答案 (1)ρv 0S (2)v 022g - M 2g2ρ2v 02S2解析 (1)在刚喷出一段很短的Δt 时间内,可认为喷出的水柱保持速度v 0不变. 该时间内,喷出水柱高度Δl =v 0Δt① 喷出水柱质量Δm =ρΔV ② 其中ΔV 为水柱体积,满足ΔV =ΔlS ③由①②③可得:喷泉单位时间内喷出的水的质量为 ΔmΔt=ρv 0S (2)设玩具底板相对于喷口的高度为h 由玩具受力平衡得F 冲=Mg④ 其中,F 冲为水柱对玩具底板的作用力 由牛顿第三定律:F 压=F 冲⑤ 其中,F 压为玩具底板对水柱的作用力,设v ′为水柱到达玩具底面时的速度由运动学公式:v ′2-v 02=-2gh ⑥ 在很短Δt 时间内,冲击玩具的水柱的质量为Δm Δm =ρv 0S Δt⑦ 由题意可知,在竖直方向上,对该部分水柱应用动量定理 (F 压+Δmg )Δt =Δmv ′ ⑧ 由于Δt 很小,Δmg 也很小,可以忽略,⑧式变为 F 压Δt =Δmv ′⑨由④⑤⑥⑦⑨可得h =v 022g -M 2g 2ρ2v 02S22.如图所示,由喷泉中喷出的水柱,把一个质量为M 的垃圾桶倒顶在空中,水以速率v0、恒定的质量增率(即单位时间喷出的质量)ΔmΔt从地下射向空中.求垃圾桶可停留的最大高度.(设水柱喷到桶底后以相同的速率反弹)答案 h =v 022g -M 2g 8(Δt Δm)2解析 设垃圾桶可停留的最大高度为h ,并设水柱到达h 高处的速度为vt ,则 v 2-v 02=-2gh得v 2=v 02-2gh由动量定理得,在极短时间Δt 内,水受到的冲量为FΔt=2(ΔmΔt ·Δt)v解得F =2Δm Δt ·vt=2Δm Δtv 02-2gh据题意有F =Mg联立解得h =v 022g -M 2g 8(Δt Δm)23. 有一宇宙飞船,它的正面面积S = 0.98m2,以v = 2×103 m/s 的速度飞入一宇宙微粒尘区,此尘区每立方米空间有一个微粒,微粒的平均质量m = 2×10﹣7 kg ,要使飞船速度保持不变,飞船的牵引力应增加多少?(设微粒与飞船外壳碰撞后附于飞船上)。

高考物理复习---应用动量定理处理流体冲击力问题基础知识与例题PPT课件

高考物理复习---应用动量定理处理流体冲击力问题基础知识与例题PPT课件
高考物理复习---应用动量定理处理流体冲击力问 题基础知识与例题PPT课件
研究
流体类:液体流、气体流等,通常已知密度ρ
对象 微粒类:电子流、光子流、尘埃等,通常给出单位体积内粒子数n
①构建“柱状”模型:沿流速v的方向选取一段小柱体,其横截面
积为S
小柱体的体积ΔV=vSΔt 分析
②微元 小柱体质量m=ρΔV=ρvSΔt 步骤
78
本课结束
的出水速度变为原来的 2 倍时,压强变为原来的 4 倍,选项 D 正确.
跟进训练
7.(流体类冲击力问题)(2019·全国卷Ⅰ·16)最近,我国为“长征九号”研制的
大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得
突破性进展.若某次实验中该发动机向后喷射的气体速度约为3 km/s,产生
B.3.6√N
C.1.2×103 N
D.1.2 N
78
解析 t时间内与飞船碰撞并附着于飞船上的微粒总质量为M=vtSm,设 飞 船 对 微 粒 的 作 用 力 为 F , 由 动 量 定 理 得 , Ft = Mv , 联 立 解 得 : F = v2Sm,代入数据解得F=3.6 N.根据牛顿第三定律,微粒对飞船的作用力 为3.6 N.要使飞船速度不变,根据平衡条件,飞船的牵引力应增加3.6 N, 选项B正确.
研究 小柱体粒子数N=nvSΔt
小柱体动量p=Байду номын сангаасv=ρv2SΔt
③建立方程,应用动量定理FΔt=Δp研究
例5 (2020·黑龙江大庆实验中学期末)如图6所示为清洗汽车用的高压水
枪.设水枪喷出水柱直径为D,水流速度为v,水柱垂直汽车表面,水柱冲
击汽车后水的速度为零.手持高压水枪操作,进入水枪的水流速度可忽略

流体冲击力计算公式

流体冲击力计算公式

流体冲击力计算公式1. 基本概念。

- 流体冲击力是指流体(液体或气体)对物体表面施加的力。

在许多实际工程和物理现象中,如水流对大坝的冲击、空气对飞机机翼的冲击等,都涉及到流体冲击力的计算。

2. 公式推导(以动量定理为基础)- 假设一股流体以速度v垂直冲击一个平面,在Δ t时间内,有质量为Δ m的流体与平面发生作用。

- 根据动量定理FΔ t=Δ p(其中F是平均冲击力,Δ p是动量的变化量)。

- 对于流体,Δ m = ρ V(ρ是流体的密度,V是流体的体积),如果流体冲击平面的横截面积为A,在Δ t时间内,流体流过的长度为l = vΔ t,那么V = Al,所以Δ m=ρ Al。

- 流体冲击平面前的速度为v,冲击后速度变为0(假设完全被平面阻挡),则动量变化量Δ p=Δ m× v=ρ Alv。

- 由FΔ t=Δ p可得F=(Δ p)/(Δ t)=ρ Av^2。

3. 公式应用条件和注意事项。

- 适用条件:- 这个公式适用于理想情况下,即流体是不可压缩的(对于液体在大多数情况下是合理的近似,对于气体在低速情况下也可近似适用),并且流体冲击物体后速度变为零(垂直冲击完全阻挡的情况)。

- 注意事项:- 如果流体不是垂直冲击物体,需要考虑速度在垂直于物体表面方向上的分量。

设冲击角度为θ(θ是流体速度方向与物体表面法线方向的夹角),则冲击力公式变为F = ρ Av^2sinθ。

- 在实际问题中,还需要考虑流体的粘性等因素的影响,上述公式是一种简化的理想模型,对于更精确的计算可能需要考虑更复杂的流体力学理论,如纳维 - 斯托克斯方程等,但对于一些初步的工程估算等情况,F=ρ Av^2sinθ(垂直冲击时θ = 90^∘,F=ρ Av^2)是非常有用的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运用动量定理求流体的冲力
1. 建立一种模型——柱体模型
对于流体问题,可沿流速v 的方向选取一段柱形流体,设在Δt 时间内通过某一横截面S 的流体长度为ΔL,如图(1)所示,若流体的密度为ρ,那么,在这段时间内流过该截面的流体的质量为t Sv L S ∆=∆=∆ρρm
2. 掌握一种方法——微元法
当所取时间Δt 为足够短时,图(1)流体柱长度ΔL 甚短,相应的质量Δm 也很小。

显然,选取流体柱的这一微小元段作为研究对象就称微元法。

图(1)
3. 运用一个规律——动量定理
求解这类问题一般运用动量定理,即流体微元所受的合外力的冲量等于微元动量的增量,即 合 ,下面举例说明:
例1. 在采煤方法中,有一种是用高压水流将煤层击碎而将煤采下,今有一采煤高压水枪,设水枪喷水口横截面积S=6cm 2,由枪口喷出的高压水流流速为v=60m/s ,
已知水的密度为ρ= kg/m 3,水流垂直射向煤层,试求煤层表面可能受到的最
大平均冲击力。

解析:采取微元法,设水柱冲击煤层时间△t,以这段水流柱为研究对象,受力如图所示,设其质量为,以初速度v 的方向为正方向,依题意,要使煤层表面可能的冲力最大,即水流柱受煤层的作用力最大,则柱体碰到煤层后其速度必与初速度大小相等,方向相反。

体积 体=Sv △t,质量△m= ρSv △t
由动量定理有:
所以(以原速率反弹,冲击力最大)
即,代入数值得。

由牛顿第三定律有水柱对煤层的最大冲击力是
练习1、最大截面S=5m2的一艘宇宙飞船,以速度v=10km/s在太空中航行时,进入静止的、密度ρ=2×10-5 kg/m3的微陨石云中。

如果微陨石与飞船相撞时都附着在飞船上,要使飞船维持原速度前进,飞船的推力应为多大?
练习2. 在水平地面上放置一个氧气瓶,设瓶内高压氧气的密度为ρ,瓶口甚小,其横截面积为S。

若打开阀门,当喷出氧气的速率为v时,求地面对氧气瓶的静摩擦力大小(在此过程中,瓶内氧气密度的变化忽略不计,且设氧气瓶保持静止状态)。

例2、一艘帆船在静水中由于风力的推动做匀速直线运动,帆面的面积为S,风速为v1,船速为v2(v2﹤v1),空气密度为ρ,帆船在匀速前进时帆面受到的平均风力大小为多少?(设空气碰到帆后随帆一起运动)
练习3(2016年全国一)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中。

为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开。

忽略空气阻力。

已知水的密度为ρ,重力加速度大小为g,求:
(i) 喷泉单位时间内喷出的水的质量;
(ii) 玩具在空中悬停时,其底面相对于喷口的高度。

相关文档
最新文档