大气质量环境监测系统方案

合集下载

大气环境监测方案

大气环境监测方案

大气环境监测方案简介大气环境监测是对大气环境的污染物浓度、气象因子以及其他相关指标进行实时监测、分析和评估的一项工作。

随着人类经济和工业活动的不断发展,大气污染已成为严重的环境问题。

因此,建立科学有效的大气环境监测方案至关重要。

本文将介绍一个基于传感器技术的大气环境监测方案。

方案概述大气环境监测方案基于传感器技术,通过部署多个传感器节点来实时监测大气环境的各项指标。

传感器节点包括大气污染物传感器、气象传感器和空气质量传感器等,覆盖了大气环境监测的主要内容。

方案的核心是搭建一个数据采集和处理平台,通过无线网络将传感器节点采集到的数据传输到平台上进行实时处理和存储。

利用物联网技术,可以实现对大气环境监测设备的远程监控和管理,方便操作和维护。

传感器节点大气污染物传感器大气污染物传感器用于监测大气中各种主要污染物的浓度,包括颗粒物、二氧化硫、氮氧化物等。

这些传感器可以根据测量原理的不同分为多种类型,如激光散射型颗粒物传感器、电化学气体传感器等。

气象传感器气象传感器主要用于监测大气的温度、湿度、气压、风速和风向等气象因子。

这些因子对于了解大气环境的变化和污染物的传输具有重要意义。

常见的气象传感器包括温湿度传感器、压力传感器、风速传感器和风向传感器等。

空气质量传感器空气质量传感器用于监测大气中的VOCs(挥发性有机化合物)、甲醛等有机污染物的浓度。

这些有机污染物通常对人体健康造成较大的威胁,因此对其进行监测和控制十分重要。

空气质量传感器可以采用电化学传感器、光电传感器等不同原理的传感器。

数据采集和处理平台数据采集和处理平台是大气环境监测方案的核心部分,通过平台可以实现对传感器节点采集到的数据进行实时处理和存储,提供相关的数据分析和报告功能。

平台可以基于云计算技术构建,通过云服务器实现数据的存储和处理。

传感器节点通过无线网络将采集到的数据传输到云服务器上,然后通过数据分析算法对数据进行处理,并生成相应的报告和分析结果。

大气环境监测实施方案

大气环境监测实施方案

大气环境监测实施方案【正文】大气环境监测实施方案第一章绪论近年来,随着经济的快速发展和城市化进程的加快,大气污染已成为严重的环境问题。

为了保护和改善大气环境质量,制定并实施一套科学、高效的大气环境监测实施方案势在必行。

第二章大气环境监测基础2.1 监测目标与内容大气环境监测的主要目标是评估大气质量状况、了解大气环境的污染源及其排放水平,并为制定环境保护政策提供数据支持。

监测内容包括大气污染物浓度、大气气象因素、污染源排放数据等。

2.2 监测网点布局根据区域大气环境的特点和重点监测区域的划分,合理确定监测网点布局。

应在城市、工业园区、交通干线、农村以及区域边界等关键区域设置监测站点,确保监测数据的准确性和代表性。

第三章监测方法与技术3.1 气象因素监测方法气象因素是影响大气污染扩散和输送的关键因素,可通过安装气象监测仪器、利用卫星遥感技术和模拟模型等方法进行监测。

例如,利用气象塔测量风速、风向、温度、湿度等参数数据。

3.2 大气污染物监测方法大气污染物的监测可以采用连续性监测方法和间歇性监测方法相结合。

连续性监测方法包括自动监测站、移动监测车等,可以实时监测污染物浓度数据。

间歇性监测方法通过采集空气样品进行分析,可以获取更为准确的污染物组分信息。

第四章数据处理与分析4.1 数据收集与存储监测站点应配备高精度、高可靠性的数据采集系统,实时收集环境监测数据,并进行数据质量控制,确保数据的准确性。

同时,建立完善的数据存储系统,方便后续数据处理和分析。

4.2 数据质量评估与分析对于采集到的监测数据,应进行数据质量评估与分析,包括数据的完整性、准确性、一致性等方面的检查和验证。

对于数据异常点,需要进行排除或修正,以确保数据的可靠性和科学性。

第五章监测结果应用5.1 环境评估与预警基于大气环境监测数据,可以进行环境评估和预警工作。

通过对监测数据的分析和综合评估,及时发现和预警大气污染问题,采取相应的环境保护措施,保障公众的健康和生态环境的可持续发展。

大气环境监测方案

大气环境监测方案

大气环境监测方案1. 引言大气环境监测是指对大气中各种污染物质的浓度、组成及其对环境造成的影响进行实时监测和评估的过程。

随着工业化和城市化进程的加快,大气污染问题日益严重,因此建立一个高效可靠的大气环境监测方案变得尤为重要。

本文将阐述一种针对大气环境监测的方案,并提供具体的实施步骤。

2. 设备和传感器选择在实施大气环境监测方案之前,首先需要选择合适的设备和传感器来收集大气污染相关的数据。

下面列举了几种常用的设备和传感器:•气象站:用于测量大气温度、湿度、风速和风向等气象参数。

•颗粒物传感器:用于检测大气中的可吸入颗粒物PM2.5和PM10的浓度。

•气体传感器:用于监测大气中的气体污染物,如二氧化硫(SO2)、一氧化碳(CO)、臭氧(O3)等。

•光学传感器:用于测量大气中的可见光和紫外光等辐射。

根据实际需求和预算选择适当的设备和传感器,并确保其与数据采集系统的兼容性。

3. 数据采集系统搭建数据采集是大气环境监测的关键步骤之一。

在数据采集系统的搭建中,我们需要考虑以下几个因素:3.1 硬件平台选择选择适合的硬件平台是确保数据采集系统正常运行的关键。

一般来说,可以选择树莓派(Raspberry Pi)等嵌入式平台作为数据采集系统的核心,因其低功耗、易于扩展和开源的特点而受到广泛关注。

3.2 软件开发为了实现数据的采集和处理,我们需要进行软件开发。

根据硬件平台的选择,可以使用Python、C++等编程语言编写相应的代码。

在软件开发中,需要注意数据采集的频率和数据存储的格式,以便后续的数据分析和可视化。

3.3 数据传输和存储采集到的数据需要被传输和存储起来。

传输方面,可以使用WiFi、蓝牙或者有线连接等不同的方式,根据实际环境和需求进行选择。

存储方面,可以使用数据库来保存采集到的数据,如MySQL、InfluxDB等。

4. 数据分析和可视化通过数据采集系统获取到的数据,可以进行进一步的分析和可视化,以便更好地理解和评估大气环境状况。

大气环境监测实施方案

大气环境监测实施方案

大气环境监测实施方案一、简介大气环境监测是为了掌握空气质量状况,预防和控制大气污染,保障人民群众健康而开展的一项重要工作。

有效的大气环境监测实施方案是确保监测工作顺利进行的基础。

下面将就大气环境监测实施方案的内容、工作流程和技术要求进行详细介绍。

二、监测内容1. 监测点位:根据国家和地方大气环境监测布点方案确定监测点位。

2. 监测参数:包括臭氧、二氧化硫、氮氧化物、颗粒物等主要大气污染物,以及气象要素等。

3. 监测频次:根据监测要求确定监测频次,通常为每天连续监测,并及时上报监测数据。

三、工作流程1. 监测准备:对监测仪器设备进行日常检查和维护,确保设备正常运行。

2. 数据采集:严格按照监测方案要求,准确记录监测数据,确保数据的真实性和准确性。

3. 数据处理:对采集到的监测数据进行处理和分析,生成监测报告。

4. 数据发布:将监测报告按照规定时间和方式发布,便于社会公众了解大气环境质量状况。

四、技术要求1. 仪器设备要求:使用符合国家标准的监测仪器设备,确保监测数据的准确性和可靠性。

2. 人员素质要求:监测人员应具备专业的大气环境监测背景知识和操作技能,严格遵守监测规范和流程。

3. 质控要求:建立健全的监测质控体系,严格执行质控程序和标准,确保监测数据的可比性和准确性。

4. 数据管理要求:建立完善的监测数据管理系统,做好监测数据的存储和备份工作,确保数据的安全性和可查询性。

五、结语大气环境监测实施方案是确保监测工作科学有序进行的关键。

各级监测部门应严格按照实施方案要求,认真履行监测职责,为保护地球家园、净化空气质量作出应有的贡献。

希望通过不懈的努力,我们能够共同守护好我们的蓝天白云,让大气环境质量不断提升,让人民群众呼吸着清新的空气,生活在一个更加美好的环境中。

大气环境监测项目施工方案

大气环境监测项目施工方案

大气环境监测项目施工方案一、项目概述随着工业化和城市化的快速发展,大气环境问题日益突出,开展大气环境监测对于保护生态环境、保障公众健康具有重要意义。

本施工方案旨在明确大气环境监测项目的具体施工步骤和方法,确保项目的顺利实施和高效运行。

二、监测站点选址与建设选址原则:根据大气环境特征、污染源分布、气象条件等因素,优先选择具有代表性的地点作为监测站点。

同时,确保站点位置安全、交通便利,便于后续维护和管理。

建设要求:监测站点应按照相关标准和规范进行建设,确保站点设施的稳固性、耐久性和防护性能。

站点应配置必要的避雷、防风、防雨等设施,以保障设备的正常运行和数据的安全性。

三、传感器与设备配置传感器选择:根据监测需求,选用精度高、稳定性好的大气环境监测传感器,如颗粒物传感器、气体传感器等。

同时,确保传感器具有足够的测量范围和分辨率,以满足数据采集的要求。

设备配置:根据站点布局和监测需求,合理配置数据采集器、气象站、数据传输设备等。

确保设备间的兼容性和通信稳定性,以实现数据的准确采集和实时传输。

四、数据传输与存储数据传输:采用稳定可靠的数据传输方式,如有线网络、无线网络等,确保监测数据的实时性和准确性。

同时,建立数据传输的加密和安全机制,保障数据的安全性。

数据存储:建立高效的数据存储系统,采用大容量存储设备对监测数据进行长期保存。

同时,建立数据备份和恢复机制,以防数据丢失或损坏。

五、数据分析与报告生成数据分析:采用专业的数据分析工具和方法,对采集的监测数据进行处理和分析,提取关键信息和指标。

通过对比分析、趋势预测等手段,评估大气环境质量状况和变化趋势。

报告生成:根据分析结果,编写详细的大气环境监测报告。

报告应包含监测数据的统计分析、环境质量评估、污染源分析等内容,为政府决策和公众了解提供科学依据。

六、监测网络与管理监测网络构建:通过整合各监测站点的数据资源,建立覆盖广泛、功能完善的大气环境监测网络。

实现数据的共享和互通,提高监测效率和质量。

空气环境监测工作方案

空气环境监测工作方案

空气环境监测工作方案一、背景与目的在当今严重的环境污染情况下,空气的质量对人们的生命安全和身体健康至关重要。

空气环境监测是保护公众健康和环境保护的必要手段。

因此,本工作方案的目的是建立一个有效的空气环境监测系统,以确保公众和环境的安全。

二、监测方法1.监测点位的选择为保证监测结果的准确性和可信性,必须选择合适的监测点位。

监测点应该在人口密集区,工业污染源周边和环境敏感区域建立。

监测点位应该按照以下准则进行选择:•覆盖全区域,反映大气质量整体状况。

•确认污染源和敏感区域。

•合理分布,避免重复测量。

2.监测项目的选择监测项目的选择是确保监测数据的准确性的重要步骤。

下面是一些常见的监测项目列表:•氮氧化物•臭氧•二氧化硫•石棉•颗粒物•挥发性有机物3.监测设备的选择根据监测项目的选择,应该选择合适的监测设备。

通常,监测设备包括以下几种:•颗粒物采样器•空气采样器•气体分析仪•大气传感器三、监测方案1.计划•每月至少监测一次,每次监测时间为48小时。

•每个月随机选择20%的点位进行特别监测。

•每季度评估并更新监测点分布图。

2.监测流程•检查监测设备是否正常工作。

•将监测设备安装在监测点位。

•开始监测并记录数据。

•拆卸设备并将数据传输到数据库。

•清洗设备并准备下一次监测。

3. 数据处理和报告•数据处理应该在最短的时间内完成。

确保数据的准确性,并在需要的情况下进行校正和补充。

•每月对监测结果进行数据汇总和分析,生成监测报告。

•每季度评估并更新监测方案和监测报告。

四、质量控制通过使用以下方法来控制监测数据的质量:•不能超出国家标准范围。

•故障应该及时修复或替换设备。

•保证监测点和监测设备的正确安装。

•用外部标准验证监测设备性能。

五、风险控制此方案的风险控制范围涵盖以下几个方面:•确保监测设备和操作人员的安全。

•在监测点附近设置安全标志和防护措施来避免安全事故发生。

•在监测点附近和设备上使用应急遥控装置,以便在状况发生时进行远程控制。

大气污染问题的环境监测方案与应对策略

大气污染问题的环境监测方案与应对策略

大气污染问题的环境监测方案与应对策略大气污染是当前世界面临的严重环境问题之一,不仅严重影响人类健康,还对环境和生态系统造成了极大的破坏。

为了有效监测大气污染并采取相应的应对策略,需要制定一份有效的环境监测方案。

本文将针对大气污染问题,制定一份环境监测方案并提出相应的应对策略,以期能够有效减少大气污染对环境和人类健康造成的危害。

一、环境监测方案1. 确定监测目标和指标需要明确监测大气污染的目标和指标。

主要监测目标包括大气中的颗粒物、有机物、氮氧化物、二氧化硫和一氧化碳等主要污染物。

监测指标需要覆盖大气污染的来源、排放量、传输过程和影响范围等,以便全面了解大气污染的状况。

2. 确定监测方法和设备需要确定监测方法和使用的监测设备。

监测方法主要包括样品采集、分析处理和数据解读等步骤。

监测设备需要具备高灵敏度、高精度和长时间稳定性,以确保监测数据的准确性和可靠性。

3. 确定监测点位和频次监测点位需要覆盖城市、工业区、交通枢纽、燃煤电厂等大气污染的重点区域,以全面了解大气污染的分布和变化。

监测频次需要根据大气污染的季节性和地区差异等因素进行调整,以确保监测数据的全面性和及时性。

4. 确定数据报告和信息通报需要确定监测数据的报告和信息通报方式。

监测数据需要及时发布,并向相关部门和公众进行通报,以引起社会关注并采取相应的应对措施。

还需建立数据共享平台,以便不同部门和研究机构之间进行数据交流和共享。

二、应对策略1. 加强大气污染源监管针对大气污染的来源,需要加强对工业排放、机动车尾气、燃煤电厂等大气污染源的监管。

可以通过严格落实大气污染物排放标准、建立污染源在线监测系统、加大对违规排放行为的处罚力度等措施,有效减少大气污染的排放量。

2. 推动清洁能源和低碳技术发展为了减少燃煤等高排放能源的使用,需要加大对清洁能源和低碳技术的支持力度。

可以通过制定清洁能源发展规划、推动燃气、太阳能、风能等清洁能源的利用,鼓励企业采用低碳生产技术等方式,减少大气污染的排放。

环境空气质量监测系统技术参数

环境空气质量监测系统技术参数

环境空气质量监测系统技术参数1.监测设备:-气象传感器:用于监测温度、湿度、大气压力和风速风向等气象参数的传感器。

-可吸入颗粒物(PM10和PM2.5)监测仪:用于监测可吸入颗粒物的浓度的仪器。

-氮氧化物(NOx)监测仪:用于监测氮氧化物浓度的仪器。

-二氧化硫(SO2)监测仪:用于监测二氧化硫浓度的仪器。

-一氧化碳(CO)监测仪:用于监测一氧化碳浓度的仪器。

-臭氧(O3)监测仪:用于监测臭氧浓度的仪器。

-挥发性有机化合物(VOCs)监测仪:用于监测挥发性有机化合物浓度的仪器。

2.数据采集和传输系统:-数据采集器:用于接收监测设备传输的数据,将其转换为数字信号并存储起来。

-通信模块:用于将采集到的数据通过有线或无线方式传输到数据处理和分析系统。

-数据传输协议:用于确保数据的安全传输和完整性。

-数据存储系统:用于长期存储大量的监测数据。

3.数据处理和分析系统:-数据预处理:对采集到的原始数据进行校正、滤波和插值等操作,以提高数据质量。

-数据分析算法:利用统计学和数学方法对监测数据进行分析,如趋势分析、时空分析等。

-模型建立和预测:通过建立数学模型,对未来的空气质量进行预测和预警。

-数据可视化:将处理后的数据以图表、地图等形式展示,方便用户理解和分析。

-数据报告和警报:生成定期报告,包括空气质量指数、污染源分析和建议措施,同时能够及时发出预警信息。

4.数据展示和报告系统:-网站和移动应用:提供用户界面,允许用户查看实时和历史空气质量数据。

-实时数据更新:确保数据的准确性和及时性,定时更新监测数据。

-空气质量指数(AQI)计算和显示:根据监测数据计算AQI并显示在界面上。

-空气质量报告和警报生成:根据监测数据生成报告和警报,并及时传送给相关用户和部门。

总的来说,环境空气质量监测系统的技术参数包括监测设备的类型和数量、数据采集和传输系统的稳定性和可靠性、数据处理和分析系统的算法和模型、数据展示和报告系统的用户界面和数据更新等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大气质量环境监测系统方案一、前言随着生活水平的提高,人们对健康越来越关注,对我们生活的环境也越来越关心,特别是一些对人体有危害的气体物质,并逐步在进行有效的监控和治理。

环境空气质量监测是伴随着日益严重的大气污染而发展起来的,环境空气质量自动监测系统近年来在我国得到普遍的应用。

二、我国环境空气质量自动监测概况1基本概念环境空气质量自动监测系统是一套自动监测仪器为核心的自动“测-控”系统。

空气质量的自动监测系统一般采用湿法和干法两种方式。

湿法的测量原理是库仑法和电导法等,需要大量试剂,存在试剂调整和废液处理等问题,操作繁琐,故障率高,维护量大。

干法基于物理光学测量原理,利用定电位电解传感器原理,结合国际上成熟的电子技术和网络通讯技术研制、开发出的最新科技产品。

使样品始终保持在气体状态,没有试剂的损耗,维护量较小,具有较强的实用性和理想的性能价格比。

2我国空气质量自动监测工作现状随着工业化进程的加快,科技的不断进步,环境空气监测从传统的事后的大气污染调查监测,事中大气染源监督发展到对大气的实时监测,据不完全统计,现阶段在我国空气质量监测工作的已经基本覆盖1800多个市、县,2000年,47个环保重点城市中只有25个城市建立了空气自动监测站,总数仅为109,,创建24小时连续自动采样系统的监测站为22个,多个城市共同建立了一个空气自动监测站的情况,大大降低了空气监测的准确性。

2004年, 42 个城市待建,除此之外的很多城市,因为城市和地区必要的仪器设备和专业人才的缺失,只能采用“五日法”监测,监测的项目具有局限性,监测常规指标为SO2 、NO2 、PM10和气象5参数,监测特异指标为CO2 、CH4 、H2O、NH3 、总烃、苯、二甲苯等。

观察我国环境空气监测工作现状,普遍化、自动化、标准化较世界先进水平都具有一定差距,为了更好地保证监测数据代表性、准确性、精密性和完整性,一方面应当抓紧空气自动监测站的普及,另一方面也要在监测技术上有所突破。

3空气质量自动监测系统的发展空气质量自动监测系统的硬件主要集中在子站,而子站的硬件又主要包括采样系统、监测仪器、校准设备,通信设备、数据处理设备等。

其中监测仪器是最重要的仪器。

空气质量监测仪器经历了第一代湿法仪器,第二代干法仪器,近年来,国内部分城市引进了瑞典OPSIS公司、美国TE公司或法国ESA公司的基于差分光谱法(也称长光程法)原理的监测仪器来代替SO2、NO2、O3等参数的测量,主要是利用长光程空气质量监测技术,能够分时测量以上三个主要参数外还能测量如:THC、CH4、n-MHC、BTX等有机污染参数,开启了空气监测仪器的第三个时代,在国内采用此类设备的空气自动监测系统即为DOAS大气环境质量监测系统,与第一代的湿法仪器和第二代的干法仪器相比,第三代的DOAS监测仪器的有点主要表现在以下几个方面,第一,传感器的使用率上,湿法仪器和干法仪器都无法避免其传感器和样气的直接接触,这样一来,湿法仪器就要经常更换库仑池中的溶液,而干法仪器传感器内中的光学元件会在受到气溶胶一类污染物的污染导致性能下降。

而第三代DOAS监测仪和样气接触的是由发射端发射的光,传感器不会跟样气直接接触,各污染物的吸收光谱是通过接收端会聚后由光导纤维传导到仪器内部的传感器去的,确保了DOAS内部的分光计不受样气中污染物的污染,从而可以有效保证传感器的使用效率。

第二,在校零问题上,校零对于监测仪器的质控来说是一项重要的工作。

但是在零气的购买商,国内缺少正规严格的零气购买途径,各级计量部门并不提供商品零气,致使除少数城市国外进口零气之外,购买高纯度的惰性气体来作为零气,可能会导致干法仪器在校零后出现负值的情况,只能通过微调仪器上的校零旋钮或在仪器上设臵一个估计的修正值来解决误差问题。

但是对于DOAS监测器而言,其校准装臵为一个长1米的校准池,在对仪器校零时,可以在校准池中通零气,由于DOAS一般的监测距离为300米左右,所以零气误差对监测结果的影响是该误差的三百分之一,能够很好地解决校零误差的问题。

第三,代表性,由于干法仪器的监测距离很短,在采集样气的时候是在一个点上,因此干法仪器也被称为点式仪器,这样一来所采集的样气范围较小,其代表性也较低,需要进行多点采集,还要进行数据分析才能得出较为具有代表性的监测结果。

在这一点上,DOAS监测仪的工作原理是利用光线反射,经过100 m甚至1,000 m的长光程来收集数据,这样一来其监测距离为数百米,监测范围相较于干法仪器的监测范围而言,大大增加了,因而有更好的代表性。

第四,异常值的识别。

在对污染物浓度的数据进行计算时,如果3个或4个小时连续出现的小时均值为统一数值,一般认为是出现了异常值,如果是干法仪器,整个相同的数值就会被认为是异常数据,但是对于DOAS监测仪来说,在可能出现异常数据情况下,还可以辅以通观察污染物浓度数据对应的光强及偏差来进行进一步的判断,以确定是否属于异常数值。

第五,污染物敏感度上,无论是湿法仪器还是干法仪器,要保证其监测数据准确度的最佳状态,需要污染物浓度在其量程的20%-80%且其线性较好的前提条件,监测数据较为准确。

如果空气本身受污染不严重,污染物浓度在仪器量程的20%左右及以下时,鉴于此时仪器线性不好,监测数据基本上变化不大,近似于一条直线,而且此时污染物在采样系统上的损失已不能忽略不计。

在这一点上,DOAS的污染物敏感度很高,线形较强,即使污染物浓度很低,也会出现有变化的曲线。

最后,在设备的维护上,DOAS的日常维护比干法仪器简单,没有试剂的损耗,备件较少,维护运转费用较低,具有较高性价比和安全度。

4环境空气质量自动监测系统的发展趋势近年来,在对监测仪的研究上,国外还在致力于发展灵敏度更高的长光程吸收光谱仪,区别于DOAS,这种仪器是基于激光光源进行监测,但目前尚处于试验阶段,而且激光雷达技术在环境监测中的应用在国际范围内也受到了广泛的重视,日本通产省已着手研制能观测三维大气中物质密度和组分的环境监测用激光雷达,以测量都市上空的NOx、SOx、O3、甲烷等气体的三维立体分布。

成为空气质量自动监测系统发展的新方向。

目前,德国、美国、意大利和瑞典等国已分别研制成功了车载式差分吸收激光雷达样机,并正在进行实用性试验。

但是差分吸收激光雷达的技术复杂、造价昂贵、并且对于操作人员专业技术素质要求较高,估计近期内推广使用有困难。

但是,拉曼激光雷达技术,虽然探测灵敏度较差,但结构简单、造价较低、性能可靠,使用维护方便,在对城市大气污染源的流动监测方面可以发挥优势,究其原因是激光雷达本身具有距离分辨率高和实时测量范围较大的特点,再加上一方面利用的是待测气体的吸收和大气(包括气体分子和气溶胶)弹性后向散射的原理,保证了较大的气体吸收截面,另一方面,由于大气气体的弹性后向散射截面也很大,较大的回波强度便于自动监测系统的接收测量。

这两方面的结合,形成差分吸收方法测量的高灵敏度,使的激光雷达成为测量气体分子浓度空间分布的一种有力工具。

但是对于国内而言,造价仍显昂贵,但是可以作为以后的发展方向,实现设备的国际化接轨。

最后,空气质量自动监测系统的硬件主要集中在子站,在子站管理模式上,我国空气质量自动监测子站将会实现普及,但是随着监测设备的不断进化,监测子站越来越多,因此,监测人员的规范管理和技术培训工作应进一步加强,子站的管理模式也应当从自管和托管两个方式入手,实现子站管理方式的规范化和科学化,这样一来才能更好地保证我国空气质量自动监测工作的进一步开展。

三、空气质量检测标准1国家、国际标准室内空气污染限量标准GB50325-2001《民用建筑工程室内环境污染控制规范》中有关空气质量验收标准如下:污染物Ⅰ类民用建筑工程Ⅱ类民用建筑工程氡(Bq/m3)≤200≤400甲醛(mg/ m3)≤0.08≤0.12苯(mg/ m3)≤0.09≤0.09氨(mg/ m3)≤0.2≤0.5TVOC(mg/ m3)≤0.5≤0.6其中:Ⅰ类民用建筑工程包括:住宅、医院病房、老年建筑、幼儿园、学校教室等建筑工程;Ⅱ类民用建筑工程包括:办公室、旅店、文化娱乐场所、书店、图书馆、展览馆、体育馆、商场(店)、公共交通工具等候室、医院候诊室、饭店(馆)、理发店等公共建筑。

美国、欧洲等国家和香港特区空气中挥发性有害有机气体限量标准污染物水平指标(mg/m3)水平指标(ppmv)测量标准国家或地区醛酮类甲醛0.120.10限量,适用于居民住宅和学校建筑物澳大利亚0.10.0830分钟平均值欧洲<0.030<0.024卓越级香港<0.100<0.081良好级目标水平:0.060;行动水平:0.120目标水平:0.05;行动水平:0.10长期暴露量加拿大0.1200.096短期暴露量0.060.058小时均值美国0.050.04产生气味的阈值是0.05-1.0ppm美,德克萨斯州丙酮62.7268h均值美,德克萨斯州烷烃类异丁烷8.2 3.48h均值美,德克萨斯州正己烷21.50.6癸烷7.20 1.22汽油(<0.9%苯)/0.83卤代烃或卤代芳烃类二氯甲烷30.84924小时欧洲2.1200.68h均值美,德克萨斯州氯仿(三氯甲烷)0.1630.033良好级香港四氯化碳0.1030.0161,1,1-三氯乙烷7.771 1.4三氯乙烯4.3×10-100.787×10-10UR/终生欧洲0.7700.143良好级香港0.9560.1758h均值美,德克萨斯州四氯乙烯0.250.036一年欧洲0.2500.037良好级香港1.380.28h均值美,德克萨斯州苯系物苯6×10-9 1.85UR/终生欧洲0.01610.005良好级香港0.1620.058h均值美,德克萨斯州甲苯0.260.068一星期欧洲1.0920.290良好级香港3.818h均值美,德克萨斯州乙苯3.24 1.014-364天的暴露水平美,德克萨斯州1.4470.333良好级香港二甲苯(邻、间、对)1.4470.333良好级香港4.418h均值美,德克萨斯州苯乙烯0.26 mg/m30.06一星期欧洲0.260.06365天和更长时间暴露水平美,德克萨斯州总挥发性有机化合物(TVOCs)0.5000.2151h均值,其中单一的化合物值不得超出总数的50%澳大利亚<0.200<0.087卓越级香港<0.600<0.261良好级30.64美国<0.2000.085高于室外空气浓度美,北卡罗来纳表1 室内空气质量标准(GB/T 18883——2002)序号参数类别参数单位标准值备注1 物理性温度℃22-28夏季空调16-24冬季采暖2 相对湿度% 40-80夏季空调30-60冬季采暖3 空气流速m/s 0.3夏季空调0.2冬季采暖4 新风量m3/h〃人30 a5化学性二氧化硫SO2mg/m30.501h均值6 过氧化氮NO2mg/m30.241h均值7 一氧化碳CO mg/m3101h均值8 二氧化碳CO2% 0.10日平均值9 氨NH3mg/m30.201h均值10 臭氧O3mg/m33 0.161h均值11 甲醛HCHO mg/m30.101h均值12 苯C6H6mg/m30.111h均值13 甲苯C7H8mg/m30.201h均值14 二甲苯C8H10mg/m30.201h均值15 苯并芘BP ng/m3 1.0日平均值16 可吸入颗粒PM10mg/m30.15日平均值17总挥发性有机TVOCmg/m30.608h均值18 生物性菌落总数cfu/m32500依据仪器定b19 放射性氡222Rn Bq/m3400年平均值(行动水平c)a 新风量要求不小于标准值,除温度、相对湿度外的其它参数要求不大于标准值。

相关文档
最新文档